summaryrefslogtreecommitdiffstats
path: root/gf8.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gf8.cc')
-rw-r--r--gf8.cc244
1 files changed, 244 insertions, 0 deletions
diff --git a/gf8.cc b/gf8.cc
new file mode 100644
index 0000000..2bb19f0
--- /dev/null
+++ b/gf8.cc
@@ -0,0 +1,244 @@
+/* Lziprecover - Data recovery tool for the lzip format
+ Copyright (C) 2023-2024 Antonio Diaz Diaz.
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#define _FILE_OFFSET_BITS 64
+
+#include <cstdio>
+#include <cstring>
+#include <list>
+#include <string>
+#include <vector>
+#include <stdint.h>
+
+#include "lzip.h"
+#include "md5.h"
+#include "fec.h"
+
+namespace {
+
+struct Galois8_table // addition/subtraction is exclusive or
+ {
+ enum { size = 1 << 8, poly = 0x11D }; // generator polynomial
+ uint8_t * log, * ilog, * mul_table;
+
+ Galois8_table() : log( 0 ), ilog( 0 ), mul_table( 0 ) {}
+// ~Galois8_table() { delete[] mul_table; delete[] ilog; delete[] log; }
+
+ void init() // fill log, inverse log, and multiplication tables
+ {
+ if( log ) return;
+ log = new uint8_t[size]; ilog = new uint8_t[size];
+ mul_table = new uint8_t[size * size];
+ for( unsigned b = 1, i = 0; i < size - 1; ++i )
+ {
+ log[b] = i;
+ ilog[i] = b;
+ b <<= 1;
+ if( b & size ) b ^= poly;
+ }
+ log[0] = size - 1; // log(0) is not defined, so use a special value
+ ilog[size-1] = 1;
+
+ for( int i = 1; i < size; ++i )
+ {
+ uint8_t * const mul_row = mul_table + i * size;
+ for( int j = 1; j < size; ++j )
+ mul_row[j] = ilog[(log[i] + log[j]) % (size - 1)];
+ }
+ for( int i = 0; i < size; ++i )
+ mul_table[0 * size + i] = mul_table[i * size + 0] = 0;
+ }
+
+ uint8_t inverse( const uint8_t a ) const { return ilog[size-1-log[a]]; }
+ } gf;
+
+
+// check that A * B = I (A, B, I are square matrices of size k * k)
+bool check_inverse( const uint8_t * const A, const uint8_t * const B,
+ const unsigned k )
+ {
+ for( unsigned row = 0; row < k; ++row ) // multiply A * B
+ for( unsigned col = 0; col < k; ++col )
+ {
+ const uint8_t * pa = A + row * k;
+ const uint8_t * pb = B + col;
+ uint8_t sum = 0;
+ for( unsigned i = 0; i < k; ++i, ++pa, pb += k )
+ sum ^= gf.mul_table[*pa * gf.size + *pb];
+ if( sum != ( row == col ) ) return false; // A * B != I
+ }
+ return true;
+ }
+
+
+/* Invert in place a matrix of size k * k.
+ This is like Gaussian elimination with a virtual identity matrix:
+ A --some_changes--> I, I --same_changes--> A^-1
+ Galois arithmetic is exact. Swapping rows or columns is not needed. */
+bool invert_matrix( uint8_t * const matrix, const unsigned k )
+ {
+ for( unsigned row = 0; row < k; ++row )
+ {
+ uint8_t * const pivot_row = matrix + row * k;
+ const uint8_t pivot = pivot_row[row];
+ if( pivot == 0 ) return false;
+ if( pivot != 1 ) // scale the pivot_row
+ {
+ const uint8_t * const mul_row =
+ gf.mul_table + gf.inverse( pivot ) * gf.size;
+ pivot_row[row] = 1;
+ for( unsigned col = 0; col < k; ++col )
+ pivot_row[col] = mul_row[pivot_row[col]];
+ }
+ // subtract pivot_row from the other rows
+ for( unsigned row2 = 0; row2 < k; ++row2 )
+ if( row2 != row )
+ {
+ uint8_t * const dst_row = matrix + row2 * k;
+ const uint8_t c = dst_row[row]; dst_row[row] = 0;
+ const uint8_t * const mul_row = gf.mul_table + c * gf.size;
+ for( unsigned col = 0; col < k; ++col )
+ dst_row[col] ^= mul_row[pivot_row[col]];
+ }
+ }
+ return true;
+ }
+
+
+// create dec_matrix containing only the rows needed and invert it in place
+const uint8_t * init_dec_matrix( const std::vector< unsigned > & bb_vector,
+ const std::vector< unsigned > & fbn_vector )
+ {
+ const unsigned bad_blocks = bb_vector.size();
+ uint8_t * const dec_matrix = new uint8_t[bad_blocks * bad_blocks];
+
+ // one row for each missing data block
+ for( unsigned row = 0; row < bad_blocks; ++row )
+ {
+ uint8_t * const dec_row = dec_matrix + row * bad_blocks;
+ const unsigned fbn = fbn_vector[row] | 0x80;
+ for( unsigned col = 0; col < bad_blocks; ++col )
+ dec_row[col] = gf.inverse( fbn ^ bb_vector[col] );
+ }
+ if( !invert_matrix( dec_matrix, bad_blocks ) )
+ internal_error( "GF(2^8) matrix not invertible." );
+ return dec_matrix;
+ }
+
+
+/* compute dst[] += c * src[]
+ treat the buffers as arrays of quadruples of 8-bit Galois values */
+inline void mul_add( const uint8_t * const src, uint8_t * const dst,
+ const unsigned long fbs, const uint8_t c )
+ {
+ if( c == 0 ) return; // nothing to add
+ const uint8_t * const mul_row = gf.mul_table + c * gf.size;
+ const uint32_t * const src32 = (const uint32_t *)src;
+ uint32_t * const dst32 = (uint32_t *)dst;
+
+ for( unsigned long i = 0; i < fbs / 4; ++i )
+ { const uint32_t s = src32[i];
+ dst32[i] ^= mul_row[s & 0xFF] ^ mul_row[s >> 8 & 0xFF] << 8 ^
+ mul_row[s >> 16 & 0xFF] << 16 ^ mul_row[s >> 24] << 24; }
+ }
+
+} // end namespace
+
+
+void gf8_init() { gf.init(); }
+
+bool gf8_check( const std::vector< unsigned > & fbn_vector, const unsigned k )
+ {
+ if( k == 0 ) return true;
+ gf.init();
+ bool good = true;
+ for( unsigned a = 1; a < gf.size; ++a )
+ if( gf.mul_table[a * gf.size + gf.inverse( a )] != 1 )
+ { good = false;
+ std::fprintf( stderr, "%u * ( 1/%u ) != 1 in GF(2^8)\n", a, a ); }
+ uint8_t * const enc_matrix = new uint8_t[k * k];
+ uint8_t * const dec_matrix = new uint8_t[k * k];
+ const bool random = fbn_vector.size() == k;
+ for( unsigned row = 0; row < k; ++row )
+ {
+ const unsigned fbn = ( random ? fbn_vector[row] : row ) | 0x80;
+ uint8_t * const enc_row = enc_matrix + row * k;
+ for( unsigned col = 0; col < k; ++col )
+ enc_row[col] = gf.inverse( fbn ^ col );
+ }
+ std::memcpy( dec_matrix, enc_matrix, k * k );
+ if( !invert_matrix( dec_matrix, k ) )
+ { good = false; show_error( "GF(2^8) matrix not invertible." ); }
+ else if( !check_inverse( enc_matrix, dec_matrix, k ) )
+ { good = false; show_error( "GF(2^8) matrix A * A^-1 != I" ); }
+ delete[] dec_matrix;
+ delete[] enc_matrix;
+ return good;
+ }
+
+
+void rs8_encode( const uint8_t * const buffer, const uint8_t * const lastbuf,
+ uint8_t * const fec_block, const unsigned long fbs,
+ const unsigned fbn, const unsigned k )
+ {
+ if( !gf.log ) internal_error( "GF(2^8) tables not initialized." );
+ /* The encode matrix is a Hilbert matrix of size k * k with one row per
+ fec block and one column per data block.
+ The value of each element is computed on the fly with inverse. */
+ const unsigned row = fbn | 0x80;
+ std::memset( fec_block, 0, fbs );
+ for( unsigned col = 0; col < k; ++col )
+ {
+ const uint8_t * const src =
+ ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
+ mul_add( src, fec_block, fbs, gf.inverse( row ^ col ) );
+ }
+ }
+
+
+void rs8_decode( uint8_t * const buffer, uint8_t * const lastbuf,
+ const std::vector< unsigned > & bb_vector,
+ const std::vector< unsigned > & fbn_vector,
+ uint8_t * const fecbuf, const unsigned long fbs,
+ const unsigned k )
+ {
+ gf.init();
+ const unsigned bad_blocks = bb_vector.size();
+ for( unsigned col = 0, bi = 0; col < k; ++col ) // reduce
+ {
+ if( bi < bad_blocks && col == bb_vector[bi] ) { ++bi; continue; }
+ const uint8_t * const src =
+ ( col < k - (lastbuf != 0) ) ? buffer + col * fbs : lastbuf;
+ for( unsigned row = 0; row < bad_blocks; ++row )
+ {
+ const unsigned fbn = fbn_vector[row] | 0x80;
+ mul_add( src, fecbuf + row * fbs, fbs, gf.inverse( fbn ^ col ) );
+ }
+ }
+ const uint8_t * const dec_matrix = init_dec_matrix( bb_vector, fbn_vector );
+ for( unsigned col = 0; col < bad_blocks; ++col ) // solve
+ {
+ const unsigned di = bb_vector[col];
+ uint8_t * const dst =
+ ( di < k - (lastbuf != 0) ) ? buffer + di * fbs : lastbuf;
+ std::memset( dst, 0, fbs );
+ const uint8_t * const dec_row = dec_matrix + col * bad_blocks;
+ for( unsigned row = 0; row < bad_blocks; ++row )
+ mul_add( fecbuf + row * fbs, dst, fbs, dec_row[row] );
+ }
+ delete[] dec_matrix;
+ }