summaryrefslogtreecommitdiffstats
path: root/libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:18 +0000
commit5da14042f70711ea5cf66e034699730335462f66 (patch)
tree0f6354ccac934ed87a2d555f45be4c831cf92f4a /libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c
parentReleasing debian version 1.44.3-2. (diff)
downloadnetdata-5da14042f70711ea5cf66e034699730335462f66.tar.xz
netdata-5da14042f70711ea5cf66e034699730335462f66.zip
Merging upstream version 1.45.3+dfsg.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c')
-rw-r--r--libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c1390
1 files changed, 0 insertions, 1390 deletions
diff --git a/libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c b/libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c
deleted file mode 100644
index 4da43565d..000000000
--- a/libnetdata/libjudy/src/JudyL/JudyLPrevEmpty.c
+++ /dev/null
@@ -1,1390 +0,0 @@
-// Copyright (C) 2000 - 2002 Hewlett-Packard Company
-//
-// This program is free software; you can redistribute it and/or modify it
-// under the term of the GNU Lesser General Public License as published by the
-// Free Software Foundation; either version 2 of the License, or (at your
-// option) any later version.
-//
-// This program is distributed in the hope that it will be useful, but WITHOUT
-// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
-// for more details.
-//
-// You should have received a copy of the GNU Lesser General Public License
-// along with this program; if not, write to the Free Software Foundation,
-// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-// _________________
-
-// @(#) $Revision: 4.32 $ $Source: /judy/src/JudyCommon/JudyPrevNextEmpty.c $
-//
-// Judy*PrevEmpty() and Judy*NextEmpty() functions for Judy1 and JudyL.
-// Compile with one of -DJUDY1 or -DJUDYL.
-//
-// Compile with -DJUDYNEXT for the Judy*NextEmpty() function; otherwise
-// defaults to Judy*PrevEmpty().
-//
-// Compile with -DTRACEJPSE to trace JP traversals.
-//
-// This file is separate from JudyPrevNext.c because it differs too greatly for
-// ifdefs. This might be a bit surprising, but there are two reasons:
-//
-// - First, down in the details, searching for an empty index (SearchEmpty) is
-// remarkably asymmetric with searching for a valid index (SearchValid),
-// mainly with respect to: No return of a value area for JudyL; partially-
-// full versus totally-full JPs; and handling of narrow pointers.
-//
-// - Second, we chose to implement SearchEmpty without a backtrack stack or
-// backtrack engine, partly as an experiment, and partly because we think
-// restarting from the top of the tree is less likely for SearchEmpty than
-// for SearchValid, because empty indexes are more likely than valid indexes.
-//
-// A word about naming: A prior version of this feature (see 4.13) was named
-// Judy*Free(), but there were concerns about that being read as a verb rather
-// than an adjective. After prolonged debate and based on user input, we
-// changed "Free" to "Empty".
-
-#if (! (defined(JUDY1) || defined(JUDYL)))
-#error: One of -DJUDY1 or -DJUDYL must be specified.
-#endif
-
-#ifndef JUDYNEXT
-#ifndef JUDYPREV
-#define JUDYPREV 1 // neither set => use default.
-#endif
-#endif
-
-#ifdef JUDY1
-#include "Judy1.h"
-#else
-#include "JudyL.h"
-#endif
-
-#include "JudyPrivate1L.h"
-
-#ifdef TRACEJPSE
-#include "JudyPrintJP.c"
-#endif
-
-
-// ****************************************************************************
-// J U D Y 1 P R E V E M P T Y
-// J U D Y 1 N E X T E M P T Y
-// J U D Y L P R E V E M P T Y
-// J U D Y L N E X T E M P T Y
-//
-// See the manual entry for the API.
-//
-// OVERVIEW OF Judy*PrevEmpty() / Judy*NextEmpty():
-//
-// See also for comparison the equivalent comments in JudyPrevNext.c.
-//
-// Take the callers *PIndex and subtract/add 1, but watch out for
-// underflow/overflow, which means "no previous/next empty index found." Use a
-// reentrant switch statement (state machine, see SMGetRestart and
-// SMGetContinue) to decode Index, starting with the JRP (PArray), through a
-// JPM and branches, if any, down to an immediate or a leaf. Look for Index in
-// that immediate or leaf, and if not found (invalid index), return success
-// (Index is empty).
-//
-// This search can result in a dead end where taking a different path is
-// required. There are four kinds of dead ends:
-//
-// BRANCH PRIMARY dead end: Encountering a fully-populated JP for the
-// appropriate digit in Index. Search sideways in the branch for the
-// previous/next absent/null/non-full JP, and if one is found, set Index to the
-// highest/lowest index possible in that JPs expanse. Then if the JP is an
-// absent or null JP, return success; otherwise for a non-full JP, traverse
-// through the partially populated JP.
-//
-// BRANCH SECONDARY dead end: Reaching the end of a branch during a sideways
-// search after a branch primary dead end. Set Index to the lowest/highest
-// index possible in the whole branchs expanse (one higher/lower than the
-// previous/next branchs expanse), then restart at the top of the tree, which
-// includes pre-decrementing/incrementing Index (again) and watching for
-// underflow/overflow (again).
-//
-// LEAF PRIMARY dead end: Finding a valid (non-empty) index in an immediate or
-// leaf matching Index. Search sideways in the immediate/leaf for the
-// previous/next empty index; if found, set *PIndex to match and return success.
-//
-// LEAF SECONDARY dead end: Reaching the end of an immediate or leaf during a
-// sideways search after a leaf primary dead end. Just as for a branch
-// secondary dead end, restart at the top of the tree with Index set to the
-// lowest/highest index possible in the whole immediate/leafs expanse.
-// TBD: If leaf secondary dead end occurs, could shortcut and treat it as a
-// branch primary dead end; but this would require remembering the parent
-// branchs type and offset (a "one-deep stack"), and also wrestling with
-// narrow pointers, at least for leaves (but not for immediates).
-//
-// Note some ASYMMETRIES between SearchValid and SearchEmpty:
-//
-// - The SearchValid code, upon descending through a narrow pointer, if Index
-// is outside the expanse of the subsidiary node (effectively a secondary
-// dead end), must decide whether to backtrack or findlimit. But the
-// SearchEmpty code simply returns success (Index is empty).
-//
-// - Similarly, the SearchValid code, upon finding no previous/next index in
-// the expanse of a narrow pointer (again, a secondary dead end), can simply
-// start to backtrack at the parent JP. But the SearchEmpty code would have
-// to first determine whether or not the parent JPs narrow expanse contains
-// a previous/next empty index outside the subexpanse. Rather than keeping a
-// parent state stack and backtracking this way, upon a secondary dead end,
-// the SearchEmpty code simply restarts at the top of the tree, whether or
-// not a narrow pointer is involved. Again, see the equivalent comments in
-// JudyPrevNext.c for comparison.
-//
-// This function is written iteratively for speed, rather than recursively.
-//
-// TBD: Wed like to enhance this function to make successive searches faster.
-// This would require saving some previous state, including the previous Index
-// returned, and in which leaf it was found. If the next call is for the same
-// Index and the array has not been modified, start at the same leaf. This
-// should be much easier to implement since this is iterative rather than
-// recursive code.
-
-#ifdef JUDY1
-#ifdef JUDYPREV
-FUNCTION int Judy1PrevEmpty
-#else
-FUNCTION int Judy1NextEmpty
-#endif
-#else
-#ifdef JUDYPREV
-FUNCTION int JudyLPrevEmpty
-#else
-FUNCTION int JudyLNextEmpty
-#endif
-#endif
- (
- Pcvoid_t PArray, // Judy array to search.
- Word_t * PIndex, // starting point and result.
- PJError_t PJError // optional, for returning error info.
- )
-{
- Word_t Index; // fast copy, in a register.
- Pjp_t Pjp; // current JP.
- Pjbl_t Pjbl; // Pjp->jp_Addr masked and cast to types:
- Pjbb_t Pjbb;
- Pjbu_t Pjbu;
- Pjlb_t Pjlb;
- PWord_t Pword; // alternate name for use by GET* macros.
-
- Word_t digit; // next digit to decode from Index.
- Word_t digits; // current state in SM = digits left to decode.
- Word_t pop0; // in a leaf.
- Word_t pop0mask; // precalculated to avoid variable shifts.
- long offset; // within a branch or leaf (can be large).
- int subexp; // subexpanse in a bitmap branch.
- BITMAPB_t bitposmaskB; // bit in bitmap for bitmap branch.
- BITMAPL_t bitposmaskL; // bit in bitmap for bitmap leaf.
- Word_t possfullJP1; // JP types for possibly full subexpanses:
- Word_t possfullJP2;
- Word_t possfullJP3;
-
-
-// ----------------------------------------------------------------------------
-// M A C R O S
-//
-// These are intended to make the code a bit more readable and less redundant.
-
-
-// CHECK FOR NULL JP:
-//
-// TBD: In principle this can be reduced (here and in other *.c files) to just
-// the latter clause since no Type should ever be below cJU_JPNULL1, but in
-// fact some root pointer types can be lower, so for safety do both checks.
-
-#define JPNULL(Type) (((Type) >= cJU_JPNULL1) && ((Type) <= cJU_JPNULLMAX))
-
-
-// CHECK FOR A FULL JP:
-//
-// Given a JP, indicate if it is fully populated. Use digits, pop0mask, and
-// possfullJP1..3 in the context.
-//
-// This is a difficult problem because it requires checking the Pop0 bits for
-// all-ones, but the number of bytes depends on the JP type, which is not
-// directly related to the parent branchs type or level -- the JPs child
-// could be under a narrow pointer (hence not full). The simple answer
-// requires switching on or otherwise calculating the JP type, which could be
-// slow. Instead, in SMPREPB* precalculate pop0mask and also record in
-// possfullJP1..3 the child JP (branch) types that could possibly be full (one
-// level down), and use them here. For level-2 branches (with digits == 2),
-// the test for a full child depends on Judy1/JudyL.
-//
-// Note: This cannot be applied to the JP in a JPM because it doesnt have
-// enough pop0 digits.
-//
-// TBD: JPFULL_BRANCH diligently checks for BranchL or BranchB, where neither
-// of those can ever be full as it turns out. Could just check for a BranchU
-// at the right level. Also, pop0mask might be overkill, its not used much,
-// so perhaps just call cJU_POP0MASK(digits - 1) here?
-//
-// First, JPFULL_BRANCH checks for a full expanse for a JP whose child can be a
-// branch, that is, a JP in a branch at level 3 or higher:
-
-#define JPFULL_BRANCH(Pjp) \
- ((((JU_JPDCDPOP0(Pjp) ^ cJU_ALLONES) & pop0mask) == 0) \
- && ((JU_JPTYPE(Pjp) == possfullJP1) \
- || (JU_JPTYPE(Pjp) == possfullJP2) \
- || (JU_JPTYPE(Pjp) == possfullJP3)))
-
-#ifdef JUDY1
-#define JPFULL(Pjp) \
- ((digits == 2) ? \
- (JU_JPTYPE(Pjp) == cJ1_JPFULLPOPU1) : JPFULL_BRANCH(Pjp))
-#else
-#define JPFULL(Pjp) \
- ((digits == 2) ? \
- (JU_JPTYPE(Pjp) == cJU_JPLEAF_B1) \
- && (((JU_JPDCDPOP0(Pjp) & cJU_POP0MASK(1)) == cJU_POP0MASK(1))) : \
- JPFULL_BRANCH(Pjp))
-#endif
-
-
-// RETURN SUCCESS:
-//
-// This hides the need to set *PIndex back to the local value of Index -- use a
-// local value for faster operation. Note that the callers *PIndex is ALWAYS
-// modified upon success, at least decremented/incremented.
-
-#define RET_SUCCESS { *PIndex = Index; return(1); }
-
-
-// RETURN A CORRUPTION:
-
-#define RET_CORRUPT { JU_SET_ERRNO(PJError, JU_ERRNO_CORRUPT); return(JERRI); }
-
-
-// SEARCH A BITMAP BRANCH:
-//
-// This is a weak analog of j__udySearchLeaf*() for bitmap branches. Return
-// the actual or next-left position, base 0, of Digit in a BITMAPB_t bitmap
-// (subexpanse of a full bitmap), also given a Bitposmask for Digit. The
-// position is the offset within the set bits.
-//
-// Unlike j__udySearchLeaf*(), the offset is not returned bit-complemented if
-// Digits bit is unset, because the caller can check the bitmap themselves to
-// determine that. Also, if Digits bit is unset, the returned offset is to
-// the next-left JP or index (including -1), not to the "ideal" position for
-// the index = next-right JP or index.
-//
-// Shortcut and skip calling j__udyCountBitsB() if the bitmap is full, in which
-// case (Digit % cJU_BITSPERSUBEXPB) itself is the base-0 offset.
-
-#define SEARCHBITMAPB(Bitmap,Digit,Bitposmask) \
- (((Bitmap) == cJU_FULLBITMAPB) ? (Digit % cJU_BITSPERSUBEXPB) : \
- j__udyCountBitsB((Bitmap) & JU_MASKLOWERINC(Bitposmask)) - 1)
-
-#ifdef JUDYPREV
-// Equivalent to search for the highest offset in Bitmap, that is, one less
-// than the number of bits set:
-
-#define SEARCHBITMAPMAXB(Bitmap) \
- (((Bitmap) == cJU_FULLBITMAPB) ? cJU_BITSPERSUBEXPB - 1 : \
- j__udyCountBitsB(Bitmap) - 1)
-#endif
-
-
-// CHECK DECODE BYTES:
-//
-// Check Decode bytes in a JP against the equivalent portion of Index. If they
-// dont match, Index is outside the subexpanse of a narrow pointer, hence is
-// empty.
-
-#define CHECKDCD(cDigits) \
- if (JU_DCDNOTMATCHINDEX(Index, Pjp, cDigits)) RET_SUCCESS
-
-
-// REVISE REMAINDER OF INDEX:
-//
-// Put one digit in place in Index and clear/set the lower digits, if any, so
-// the resulting Index is at the start/end of an expanse, or just clear/set the
-// least digits.
-//
-// Actually, to make simple use of JU_LEASTBYTESMASK, first clear/set all least
-// digits of Index including the digit to be overridden, then set the value of
-// that one digit. If Digits == 1 the first operation is redundant, but either
-// very fast or even removed by the optimizer.
-
-#define CLEARLEASTDIGITS(Digits) Index &= ~JU_LEASTBYTESMASK(Digits)
-#define SETLEASTDIGITS( Digits) Index |= JU_LEASTBYTESMASK(Digits)
-
-#define CLEARLEASTDIGITS_D(Digit,Digits) \
- { \
- CLEARLEASTDIGITS(Digits); \
- JU_SETDIGIT(Index, Digit, Digits); \
- }
-
-#define SETLEASTDIGITS_D(Digit,Digits) \
- { \
- SETLEASTDIGITS(Digits); \
- JU_SETDIGIT(Index, Digit, Digits); \
- }
-
-
-// SET REMAINDER OF INDEX AND THEN RETURN OR CONTINUE:
-
-#define SET_AND_RETURN(OpLeastDigits,Digit,Digits) \
- { \
- OpLeastDigits(Digit, Digits); \
- RET_SUCCESS; \
- }
-
-#define SET_AND_CONTINUE(OpLeastDigits,Digit,Digits) \
- { \
- OpLeastDigits(Digit, Digits); \
- goto SMGetContinue; \
- }
-
-
-// PREPARE TO HANDLE A LEAFW OR JP BRANCH IN THE STATE MACHINE:
-//
-// Extract a state-dependent digit from Index in a "constant" way, then jump to
-// common code for multiple cases.
-//
-// TBD: Should this macro do more, such as preparing variable-shift masks for
-// use in CLEARLEASTDIGITS and SETLEASTDIGITS?
-
-#define SMPREPB(cDigits,Next,PossFullJP1,PossFullJP2,PossFullJP3) \
- digits = (cDigits); \
- digit = JU_DIGITATSTATE(Index, cDigits); \
- pop0mask = cJU_POP0MASK((cDigits) - 1); /* for branchs JPs */ \
- possfullJP1 = (PossFullJP1); \
- possfullJP2 = (PossFullJP2); \
- possfullJP3 = (PossFullJP3); \
- goto Next
-
-// Variations for specific-level branches and for shorthands:
-//
-// Note: SMPREPB2 need not initialize possfullJP* because JPFULL does not use
-// them for digits == 2, but gcc -Wall isnt quite smart enough to see this, so
-// waste a bit of time and space to get rid of the warning:
-
-#define SMPREPB2(Next) \
- digits = 2; \
- digit = JU_DIGITATSTATE(Index, 2); \
- pop0mask = cJU_POP0MASK(1); /* for branchs JPs */ \
- possfullJP1 = possfullJP2 = possfullJP3 = 0; \
- goto Next
-
-#define SMPREPB3(Next) SMPREPB(3, Next, cJU_JPBRANCH_L2, \
- cJU_JPBRANCH_B2, \
- cJU_JPBRANCH_U2)
-#ifndef JU_64BIT
-#define SMPREPBL(Next) SMPREPB(cJU_ROOTSTATE, Next, cJU_JPBRANCH_L3, \
- cJU_JPBRANCH_B3, \
- cJU_JPBRANCH_U3)
-#else
-#define SMPREPB4(Next) SMPREPB(4, Next, cJU_JPBRANCH_L3, \
- cJU_JPBRANCH_B3, \
- cJU_JPBRANCH_U3)
-#define SMPREPB5(Next) SMPREPB(5, Next, cJU_JPBRANCH_L4, \
- cJU_JPBRANCH_B4, \
- cJU_JPBRANCH_U4)
-#define SMPREPB6(Next) SMPREPB(6, Next, cJU_JPBRANCH_L5, \
- cJU_JPBRANCH_B5, \
- cJU_JPBRANCH_U5)
-#define SMPREPB7(Next) SMPREPB(7, Next, cJU_JPBRANCH_L6, \
- cJU_JPBRANCH_B6, \
- cJU_JPBRANCH_U6)
-#define SMPREPBL(Next) SMPREPB(cJU_ROOTSTATE, Next, cJU_JPBRANCH_L7, \
- cJU_JPBRANCH_B7, \
- cJU_JPBRANCH_U7)
-#endif
-
-
-// RESTART AFTER SECONDARY DEAD END:
-//
-// Set Index to the first/last index in the branch or leaf subexpanse and start
-// over at the top of the tree.
-
-#ifdef JUDYPREV
-#define SMRESTART(Digits) { CLEARLEASTDIGITS(Digits); goto SMGetRestart; }
-#else
-#define SMRESTART(Digits) { SETLEASTDIGITS( Digits); goto SMGetRestart; }
-#endif
-
-
-// CHECK EDGE OF LEAFS EXPANSE:
-//
-// Given the LSBs of the lowest/highest valid index in a leaf (or equivalently
-// in an immediate JP), the level (index size) of the leaf, and the full index
-// to return (as Index in the context) already set to the full index matching
-// the lowest/highest one, determine if there is an empty index in the leafs
-// expanse below/above the lowest/highest index, which is true if the
-// lowest/highest index is not at the "edge" of the leafs expanse based on its
-// LSBs. If so, return Index decremented/incremented; otherwise restart at the
-// top of the tree.
-//
-// Note: In many cases Index is already at the right spot and calling
-// SMRESTART instead of just going directly to SMGetRestart is a bit of
-// overkill.
-//
-// Note: Variable shift occurs if Digits is not a constant.
-
-#ifdef JUDYPREV
-#define LEAF_EDGE(MinIndex,Digits) \
- { \
- if (MinIndex) { --Index; RET_SUCCESS; } \
- SMRESTART(Digits); \
- }
-#else
-#define LEAF_EDGE(MaxIndex,Digits) \
- { \
- if ((MaxIndex) != JU_LEASTBYTES(cJU_ALLONES, Digits)) \
- { ++Index; RET_SUCCESS; } \
- SMRESTART(Digits); \
- }
-#endif
-
-// Same as above except Index is not already set to match the lowest/highest
-// index, so do that before decrementing/incrementing it:
-
-#ifdef JUDYPREV
-#define LEAF_EDGE_SET(MinIndex,Digits) \
- { \
- if (MinIndex) \
- { JU_SETDIGITS(Index, MinIndex, Digits); --Index; RET_SUCCESS; } \
- SMRESTART(Digits); \
- }
-#else
-#define LEAF_EDGE_SET(MaxIndex,Digits) \
- { \
- if ((MaxIndex) != JU_LEASTBYTES(cJU_ALLONES, Digits)) \
- { JU_SETDIGITS(Index, MaxIndex, Digits); ++Index; RET_SUCCESS; } \
- SMRESTART(Digits); \
- }
-#endif
-
-
-// FIND A HOLE (EMPTY INDEX) IN AN IMMEDIATE OR LEAF:
-//
-// Given an index location in a leaf (or equivalently an immediate JP) known to
-// contain a usable hole (an empty index less/greater than Index), and the LSBs
-// of a minimum/maximum index to locate, find the previous/next empty index and
-// return it.
-//
-// Note: "Even" index sizes (1,2,4[,8] bytes) have corresponding native C
-// types; "odd" index sizes dont, but they are not represented here because
-// they are handled completely differently; see elsewhere.
-
-#ifdef JUDYPREV
-
-#define LEAF_HOLE_EVEN(cDigits,Pjll,IndexLSB) \
- { \
- while (*(Pjll) > (IndexLSB)) --(Pjll); /* too high */ \
- if (*(Pjll) < (IndexLSB)) RET_SUCCESS /* Index is empty */ \
- while (*(--(Pjll)) == --(IndexLSB)) /* null, find a hole */;\
- JU_SETDIGITS(Index, IndexLSB, cDigits); \
- RET_SUCCESS; \
- }
-#else
-#define LEAF_HOLE_EVEN(cDigits,Pjll,IndexLSB) \
- { \
- while (*(Pjll) < (IndexLSB)) ++(Pjll); /* too low */ \
- if (*(Pjll) > (IndexLSB)) RET_SUCCESS /* Index is empty */ \
- while (*(++(Pjll)) == ++(IndexLSB)) /* null, find a hole */;\
- JU_SETDIGITS(Index, IndexLSB, cDigits); \
- RET_SUCCESS; \
- }
-#endif
-
-
-// SEARCH FOR AN EMPTY INDEX IN AN IMMEDIATE OR LEAF:
-//
-// Given a pointer to the first index in a leaf (or equivalently an immediate
-// JP), the population of the leaf, and a first empty Index to find (inclusive,
-// as Index in the context), where Index is known to fall within the expanse of
-// the leaf to search, efficiently find the previous/next empty index in the
-// leaf, if any. For simplicity the following overview is stated in terms of
-// Judy*NextEmpty() only, but the same concepts apply symmetrically for
-// Judy*PrevEmpty(). Also, in each case the comparisons are for the LSBs of
-// Index and leaf indexes, according to the leafs level.
-//
-// 1. If Index is GREATER than the last (highest) index in the leaf
-// (maxindex), return success, Index is empty. (Remember, Index is known
-// to be in the leafs expanse.)
-//
-// 2. If Index is EQUAL to maxindex: If maxindex is not at the edge of the
-// leafs expanse, increment Index and return success, there is an empty
-// Index one higher than any in the leaf; otherwise restart with Index
-// reset to the upper edge of the leafs expanse. Note: This might cause
-// an extra cache line fill, but this is OK for repeatedly-called search
-// code, and it saves CPU time.
-//
-// 3. If Index is LESS than maxindex, check for "dense to end of leaf":
-// Subtract Index from maxindex, and back up that many slots in the leaf.
-// If the resulting offset is not before the start of the leaf then compare
-// the index at this offset (baseindex) with Index:
-//
-// 3a. If GREATER, the leaf must be corrupt, since indexes are sorted and
-// there are no duplicates.
-//
-// 3b. If EQUAL, the leaf is "dense" from Index to maxindex, meaning there is
-// no reason to search it. "Slide right" to the high end of the leaf
-// (modify Index to maxindex) and continue with step 2 above.
-//
-// 3c. If LESS, continue with step 4.
-//
-// 4. If the offset based on maxindex minus Index falls BEFORE the start of
-// the leaf, or if, per 3c above, baseindex is LESS than Index, the leaf is
-// guaranteed "not dense to the end" and a usable empty Index must exist.
-// This supports a more efficient search loop. Start at the FIRST index in
-// the leaf, or one BEYOND baseindex, respectively, and search the leaf as
-// follows, comparing each current index (currindex) with Index:
-//
-// 4a. If LESS, keep going to next index. Note: This is certain to terminate
-// because maxindex is known to be greater than Index, hence the loop can
-// be small and fast.
-//
-// 4b. If EQUAL, loop and increment Index until finding currindex greater than
-// Index, and return success with the modified Index.
-//
-// 4c. If GREATER, return success, Index (unmodified) is empty.
-//
-// Note: These are macros rather than functions for speed.
-
-#ifdef JUDYPREV
-
-#define JSLE_EVEN(Addr,Pop0,cDigits,LeafType) \
- { \
- LeafType * PjllLSB = (LeafType *) (Addr); \
- LeafType IndexLSB = Index; /* auto-masking */ \
- \
- /* Index before or at start of leaf: */ \
- \
- if (*PjllLSB >= IndexLSB) /* no need to search */ \
- { \
- if (*PjllLSB > IndexLSB) RET_SUCCESS; /* Index empty */ \
- LEAF_EDGE(*PjllLSB, cDigits); \
- } \
- \
- /* Index in or after leaf: */ \
- \
- offset = IndexLSB - *PjllLSB; /* tentative offset */ \
- if (offset <= (Pop0)) /* can check density */ \
- { \
- PjllLSB += offset; /* move to slot */ \
- \
- if (*PjllLSB <= IndexLSB) /* dense or corrupt */ \
- { \
- if (*PjllLSB == IndexLSB) /* dense, check edge */ \
- LEAF_EDGE_SET(PjllLSB[-offset], cDigits); \
- RET_CORRUPT; \
- } \
- --PjllLSB; /* not dense, start at previous */ \
- } \
- else PjllLSB = ((LeafType *) (Addr)) + (Pop0); /* start at max */ \
- \
- LEAF_HOLE_EVEN(cDigits, PjllLSB, IndexLSB); \
- }
-
-// JSLE_ODD is completely different from JSLE_EVEN because its important to
-// minimize copying odd indexes to compare them (see 4.14). Furthermore, a
-// very complex version (4.17, but abandoned before fully debugged) that
-// avoided calling j__udySearchLeaf*() ran twice as fast as 4.14, but still
-// half as fast as SearchValid. Doug suggested that to minimize complexity and
-// share common code we should use j__udySearchLeaf*() for the initial search
-// to establish if Index is empty, which should be common. If Index is valid
-// in a leaf or immediate indexes, odds are good that an empty Index is nearby,
-// so for simplicity just use a *COPY* function to linearly search the
-// remainder.
-//
-// TBD: Pathological case? Average performance should be good, but worst-case
-// might suffer. When Search says the initial Index is valid, so a linear
-// copy-and-compare is begun, if the caller builds fairly large leaves with
-// dense clusters AND frequently does a SearchEmpty at one end of such a
-// cluster, performance wont be very good. Might a dense-check help? This
-// means checking offset against the index at offset, and then against the
-// first/last index in the leaf. We doubt the pathological case will appear
-// much in real applications because they will probably alternate SearchValid
-// and SearchEmpty calls.
-
-#define JSLE_ODD(cDigits,Pjll,Pop0,Search,Copy) \
- { \
- Word_t IndexLSB; /* least bytes only */ \
- Word_t IndexFound; /* in leaf */ \
- \
- if ((offset = Search(Pjll, (Pop0) + 1, Index)) < 0) \
- RET_SUCCESS; /* Index is empty */ \
- \
- IndexLSB = JU_LEASTBYTES(Index, cDigits); \
- offset *= (cDigits); \
- \
- while ((offset -= (cDigits)) >= 0) \
- { /* skip until empty or start */ \
- Copy(IndexFound, ((uint8_t *) (Pjll)) + offset); \
- if (IndexFound != (--IndexLSB)) /* found an empty */ \
- { JU_SETDIGITS(Index, IndexLSB, cDigits); RET_SUCCESS; }\
- } \
- LEAF_EDGE_SET(IndexLSB, cDigits); \
- }
-
-#else // JUDYNEXT
-
-#define JSLE_EVEN(Addr,Pop0,cDigits,LeafType) \
- { \
- LeafType * PjllLSB = ((LeafType *) (Addr)) + (Pop0); \
- LeafType IndexLSB = Index; /* auto-masking */ \
- \
- /* Index at or after end of leaf: */ \
- \
- if (*PjllLSB <= IndexLSB) /* no need to search */ \
- { \
- if (*PjllLSB < IndexLSB) RET_SUCCESS; /* Index empty */\
- LEAF_EDGE(*PjllLSB, cDigits); \
- } \
- \
- /* Index before or in leaf: */ \
- \
- offset = *PjllLSB - IndexLSB; /* tentative offset */ \
- if (offset <= (Pop0)) /* can check density */ \
- { \
- PjllLSB -= offset; /* move to slot */ \
- \
- if (*PjllLSB >= IndexLSB) /* dense or corrupt */ \
- { \
- if (*PjllLSB == IndexLSB) /* dense, check edge */ \
- LEAF_EDGE_SET(PjllLSB[offset], cDigits); \
- RET_CORRUPT; \
- } \
- ++PjllLSB; /* not dense, start at next */ \
- } \
- else PjllLSB = (LeafType *) (Addr); /* start at minimum */ \
- \
- LEAF_HOLE_EVEN(cDigits, PjllLSB, IndexLSB); \
- }
-
-#define JSLE_ODD(cDigits,Pjll,Pop0,Search,Copy) \
- { \
- Word_t IndexLSB; /* least bytes only */ \
- Word_t IndexFound; /* in leaf */ \
- int offsetmax; /* in bytes */ \
- \
- if ((offset = Search(Pjll, (Pop0) + 1, Index)) < 0) \
- RET_SUCCESS; /* Index is empty */ \
- \
- IndexLSB = JU_LEASTBYTES(Index, cDigits); \
- offset *= (cDigits); \
- offsetmax = (Pop0) * (cDigits); /* single multiply */ \
- \
- while ((offset += (cDigits)) <= offsetmax) \
- { /* skip until empty or end */ \
- Copy(IndexFound, ((uint8_t *) (Pjll)) + offset); \
- if (IndexFound != (++IndexLSB)) /* found an empty */ \
- { JU_SETDIGITS(Index, IndexLSB, cDigits); RET_SUCCESS; } \
- } \
- LEAF_EDGE_SET(IndexLSB, cDigits); \
- }
-
-#endif // JUDYNEXT
-
-// Note: Immediate indexes never fill a single index group, so for odd index
-// sizes, save time by calling JSLE_ODD_IMM instead of JSLE_ODD.
-
-#define j__udySearchLeafEmpty1(Addr,Pop0) \
- JSLE_EVEN(Addr, Pop0, 1, uint8_t)
-
-#define j__udySearchLeafEmpty2(Addr,Pop0) \
- JSLE_EVEN(Addr, Pop0, 2, uint16_t)
-
-#define j__udySearchLeafEmpty3(Addr,Pop0) \
- JSLE_ODD(3, Addr, Pop0, j__udySearchLeaf3, JU_COPY3_PINDEX_TO_LONG)
-
-#ifndef JU_64BIT
-
-#define j__udySearchLeafEmptyL(Addr,Pop0) \
- JSLE_EVEN(Addr, Pop0, 4, Word_t)
-
-#else
-
-#define j__udySearchLeafEmpty4(Addr,Pop0) \
- JSLE_EVEN(Addr, Pop0, 4, uint32_t)
-
-#define j__udySearchLeafEmpty5(Addr,Pop0) \
- JSLE_ODD(5, Addr, Pop0, j__udySearchLeaf5, JU_COPY5_PINDEX_TO_LONG)
-
-#define j__udySearchLeafEmpty6(Addr,Pop0) \
- JSLE_ODD(6, Addr, Pop0, j__udySearchLeaf6, JU_COPY6_PINDEX_TO_LONG)
-
-#define j__udySearchLeafEmpty7(Addr,Pop0) \
- JSLE_ODD(7, Addr, Pop0, j__udySearchLeaf7, JU_COPY7_PINDEX_TO_LONG)
-
-#define j__udySearchLeafEmptyL(Addr,Pop0) \
- JSLE_EVEN(Addr, Pop0, 8, Word_t)
-
-#endif // JU_64BIT
-
-
-// ----------------------------------------------------------------------------
-// START OF CODE:
-//
-// CHECK FOR SHORTCUTS:
-//
-// Error out if PIndex is null.
-
- if (PIndex == (PWord_t) NULL)
- {
- JU_SET_ERRNO(PJError, JU_ERRNO_NULLPINDEX);
- return(JERRI);
- }
-
- Index = *PIndex; // fast local copy.
-
-// Set and pre-decrement/increment Index, watching for underflow/overflow:
-//
-// An out-of-bounds Index means failure: No previous/next empty index.
-
-SMGetRestart: // return here with revised Index.
-
-#ifdef JUDYPREV
- if (Index-- == 0) return(0);
-#else
- if (++Index == 0) return(0);
-#endif
-
-// An empty array with an in-bounds (not underflowed/overflowed) Index means
-// success:
-//
-// Note: This check is redundant after restarting at SMGetRestart, but should
-// take insignificant time.
-
- if (PArray == (Pvoid_t) NULL) RET_SUCCESS;
-
-// ----------------------------------------------------------------------------
-// ROOT-LEVEL LEAF that starts with a Pop0 word; just look within the leaf:
-//
-// If Index is not in the leaf, return success; otherwise return the first
-// empty Index, if any, below/above where it would belong.
-
- if (JU_LEAFW_POP0(PArray) < cJU_LEAFW_MAXPOP1) // must be a LEAFW
- {
- Pjlw_t Pjlw = P_JLW(PArray); // first word of leaf.
- pop0 = Pjlw[0];
-
-#ifdef JUDY1
- if (pop0 == 0) // special case.
- {
-#ifdef JUDYPREV
- if ((Index != Pjlw[1]) || (Index-- != 0)) RET_SUCCESS;
-#else
- if ((Index != Pjlw[1]) || (++Index != 0)) RET_SUCCESS;
-#endif
- return(0); // no previous/next empty index.
- }
-#endif // JUDY1
-
- j__udySearchLeafEmptyL(Pjlw + 1, pop0);
-
-// No return -- thanks ALAN
-
- }
- else
-
-// ----------------------------------------------------------------------------
-// HANDLE JRP Branch:
-//
-// For JRP branches, traverse the JPM; handle LEAFW
-// directly; but look for the most common cases first.
-
- {
- Pjpm_t Pjpm = P_JPM(PArray);
- Pjp = &(Pjpm->jpm_JP);
-
-// goto SMGetContinue;
- }
-
-
-// ============================================================================
-// STATE MACHINE -- GET INDEX:
-//
-// Search for Index (already decremented/incremented so as to be an inclusive
-// search). If not found (empty index), return success. Otherwise do a
-// previous/next search, and if successful modify Index to the empty index
-// found. See function header comments.
-//
-// ENTRY: Pjp points to next JP to interpret, whose Decode bytes have not yet
-// been checked.
-//
-// Note: Check Decode bytes at the start of each loop, not after looking up a
-// new JP, so its easy to do constant shifts/masks.
-//
-// EXIT: Return, or branch to SMGetRestart with modified Index, or branch to
-// SMGetContinue with a modified Pjp, as described elsewhere.
-//
-// WARNING: For run-time efficiency the following cases replicate code with
-// varying constants, rather than using common code with variable values!
-
-SMGetContinue: // return here for next branch/leaf.
-
-#ifdef TRACEJPSE
- JudyPrintJP(Pjp, "sf", __LINE__);
-#endif
-
- switch (JU_JPTYPE(Pjp))
- {
-
-
-// ----------------------------------------------------------------------------
-// LINEAR BRANCH:
-//
-// Check Decode bytes, if any, in the current JP, then search for a JP for the
-// next digit in Index.
-
- case cJU_JPBRANCH_L2: CHECKDCD(2); SMPREPB2(SMBranchL);
- case cJU_JPBRANCH_L3: CHECKDCD(3); SMPREPB3(SMBranchL);
-#ifdef JU_64BIT
- case cJU_JPBRANCH_L4: CHECKDCD(4); SMPREPB4(SMBranchL);
- case cJU_JPBRANCH_L5: CHECKDCD(5); SMPREPB5(SMBranchL);
- case cJU_JPBRANCH_L6: CHECKDCD(6); SMPREPB6(SMBranchL);
- case cJU_JPBRANCH_L7: CHECKDCD(7); SMPREPB7(SMBranchL);
-#endif
- case cJU_JPBRANCH_L: SMPREPBL(SMBranchL);
-
-// Common code (state-independent) for all cases of linear branches:
-
-SMBranchL:
- Pjbl = P_JBL(Pjp->jp_Addr);
-
-// First, check if Indexs expanse (digit) is below/above the first/last
-// populated expanse in the BranchL, in which case Index is empty; otherwise
-// find the offset of the lowest/highest populated expanse at or above/below
-// digit, if any:
-//
-// Note: The for-loop is guaranteed to exit eventually because the first/last
-// expanse is known to be a terminator.
-//
-// Note: Cannot use j__udySearchLeaf*Empty1() here because it only applies to
-// leaves and does not know about partial versus full JPs, unlike the use of
-// j__udySearchLeaf1() for BranchLs in SearchValid code. Also, since linear
-// leaf expanse lists are small, dont waste time calling j__udySearchLeaf1(),
-// just scan the expanse list.
-
-#ifdef JUDYPREV
- if ((Pjbl->jbl_Expanse[0]) > digit) RET_SUCCESS;
-
- for (offset = (Pjbl->jbl_NumJPs) - 1; /* null */; --offset)
-#else
- if ((Pjbl->jbl_Expanse[(Pjbl->jbl_NumJPs) - 1]) < digit)
- RET_SUCCESS;
-
- for (offset = 0; /* null */; ++offset)
-#endif
- {
-
-// Too low/high, keep going; or too high/low, meaning the loop passed a hole
-// and the initial Index is empty:
-
-#ifdef JUDYPREV
- if ((Pjbl->jbl_Expanse[offset]) > digit) continue;
- if ((Pjbl->jbl_Expanse[offset]) < digit) RET_SUCCESS;
-#else
- if ((Pjbl->jbl_Expanse[offset]) < digit) continue;
- if ((Pjbl->jbl_Expanse[offset]) > digit) RET_SUCCESS;
-#endif
-
-// Found expanse matching digit; if its not full, traverse through it:
-
- if (! JPFULL((Pjbl->jbl_jp) + offset))
- {
- Pjp = (Pjbl->jbl_jp) + offset;
- goto SMGetContinue;
- }
-
-// Common code: While searching for a lower/higher hole or a non-full JP, upon
-// finding a lower/higher hole, adjust Index using the revised digit and
-// return; or upon finding a consecutive lower/higher expanse, if the expanses
-// JP is non-full, modify Index and traverse through the JP:
-
-#define BRANCHL_CHECK(OpIncDec,OpLeastDigits,Digit,Digits) \
- { \
- if ((Pjbl->jbl_Expanse[offset]) != OpIncDec digit) \
- SET_AND_RETURN(OpLeastDigits, Digit, Digits); \
- \
- if (! JPFULL((Pjbl->jbl_jp) + offset)) \
- { \
- Pjp = (Pjbl->jbl_jp) + offset; \
- SET_AND_CONTINUE(OpLeastDigits, Digit, Digits); \
- } \
- }
-
-// BranchL primary dead end: Expanse matching Index/digit is full (rare except
-// for dense/sequential indexes):
-//
-// Search for a lower/higher hole, a non-full JP, or the end of the expanse
-// list, while decrementing/incrementing digit.
-
-#ifdef JUDYPREV
- while (--offset >= 0)
- BRANCHL_CHECK(--, SETLEASTDIGITS_D, digit, digits)
-#else
- while (++offset < Pjbl->jbl_NumJPs)
- BRANCHL_CHECK(++, CLEARLEASTDIGITS_D, digit, digits)
-#endif
-
-// Passed end of BranchL expanse list after finding a matching but full
-// expanse:
-//
-// Digit now matches the lowest/highest expanse, which is a full expanse; if
-// digit is at the end of BranchLs expanse (no hole before/after), break out
-// of the loop; otherwise modify Index to the next lower/higher digit and
-// return success:
-
-#ifdef JUDYPREV
- if (digit == 0) break;
- --digit; SET_AND_RETURN(SETLEASTDIGITS_D, digit, digits);
-#else
- if (digit == JU_LEASTBYTES(cJU_ALLONES, 1)) break;
- ++digit; SET_AND_RETURN(CLEARLEASTDIGITS_D, digit, digits);
-#endif
- } // for-loop
-
-// BranchL secondary dead end, no non-full previous/next JP:
-
- SMRESTART(digits);
-
-
-// ----------------------------------------------------------------------------
-// BITMAP BRANCH:
-//
-// Check Decode bytes, if any, in the current JP, then search for a JP for the
-// next digit in Index.
-
- case cJU_JPBRANCH_B2: CHECKDCD(2); SMPREPB2(SMBranchB);
- case cJU_JPBRANCH_B3: CHECKDCD(3); SMPREPB3(SMBranchB);
-#ifdef JU_64BIT
- case cJU_JPBRANCH_B4: CHECKDCD(4); SMPREPB4(SMBranchB);
- case cJU_JPBRANCH_B5: CHECKDCD(5); SMPREPB5(SMBranchB);
- case cJU_JPBRANCH_B6: CHECKDCD(6); SMPREPB6(SMBranchB);
- case cJU_JPBRANCH_B7: CHECKDCD(7); SMPREPB7(SMBranchB);
-#endif
- case cJU_JPBRANCH_B: SMPREPBL(SMBranchB);
-
-// Common code (state-independent) for all cases of bitmap branches:
-
-SMBranchB:
- Pjbb = P_JBB(Pjp->jp_Addr);
-
-// Locate the digits JP in the subexpanse list, if present:
-
- subexp = digit / cJU_BITSPERSUBEXPB;
- assert(subexp < cJU_NUMSUBEXPB); // falls in expected range.
- bitposmaskB = JU_BITPOSMASKB(digit);
-
-// Absent JP = no JP matches current digit in Index:
-
-// if (! JU_BITMAPTESTB(Pjbb, digit)) // slower.
- if (! (JU_JBB_BITMAP(Pjbb, subexp) & bitposmaskB)) // faster.
- RET_SUCCESS;
-
-// Non-full JP matches current digit in Index:
-//
-// Iterate to the subsidiary non-full JP.
-
- offset = SEARCHBITMAPB(JU_JBB_BITMAP(Pjbb, subexp), digit,
- bitposmaskB);
- // not negative since at least one bit is set:
- assert(offset >= 0);
- assert(offset < (int) cJU_BITSPERSUBEXPB);
-
-// Watch for null JP subarray pointer with non-null bitmap (a corruption):
-
- if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp)))
- == (Pjp_t) NULL) RET_CORRUPT;
-
- Pjp += offset;
- if (! JPFULL(Pjp)) goto SMGetContinue;
-
-// BranchB primary dead end:
-//
-// Upon hitting a full JP in a BranchB for the next digit in Index, search
-// sideways for a previous/next absent JP (unset bit) or non-full JP (set bit
-// with non-full JP); first in the current bitmap subexpanse, then in
-// lower/higher subexpanses. Upon entry, Pjp points to a known-unusable JP,
-// ready to decrement/increment.
-//
-// Note: The preceding code is separate from this loop because Index does not
-// need revising (see SET_AND_*()) if the initial index is an empty index.
-//
-// TBD: For speed, shift bitposmaskB instead of using JU_BITMAPTESTB or
-// JU_BITPOSMASKB, but this shift has knowledge of bit order that really should
-// be encapsulated in a header file.
-
-#define BRANCHB_CHECKBIT(OpLeastDigits) \
- if (! (JU_JBB_BITMAP(Pjbb, subexp) & bitposmaskB)) /* absent JP */ \
- SET_AND_RETURN(OpLeastDigits, digit, digits)
-
-#define BRANCHB_CHECKJPFULL(OpLeastDigits) \
- if (! JPFULL(Pjp)) \
- SET_AND_CONTINUE(OpLeastDigits, digit, digits)
-
-#define BRANCHB_STARTSUBEXP(OpLeastDigits) \
- if (! JU_JBB_BITMAP(Pjbb, subexp)) /* empty subexpanse, shortcut */ \
- SET_AND_RETURN(OpLeastDigits, digit, digits) \
- if ((Pjp = P_JP(JU_JBB_PJP(Pjbb, subexp))) == (Pjp_t) NULL) RET_CORRUPT
-
-#ifdef JUDYPREV
-
- --digit; // skip initial digit.
- bitposmaskB >>= 1; // see TBD above.
-
-BranchBNextSubexp: // return here to check next bitmap subexpanse.
-
- while (bitposmaskB) // more bits to check in subexp.
- {
- BRANCHB_CHECKBIT(SETLEASTDIGITS_D);
- --Pjp; // previous in subarray.
- BRANCHB_CHECKJPFULL(SETLEASTDIGITS_D);
- assert(digit >= 0);
- --digit;
- bitposmaskB >>= 1;
- }
-
- if (subexp-- > 0) // more subexpanses.
- {
- BRANCHB_STARTSUBEXP(SETLEASTDIGITS_D);
- Pjp += SEARCHBITMAPMAXB(JU_JBB_BITMAP(Pjbb, subexp)) + 1;
- bitposmaskB = (1U << (cJU_BITSPERSUBEXPB - 1));
- goto BranchBNextSubexp;
- }
-
-#else // JUDYNEXT
-
- ++digit; // skip initial digit.
- bitposmaskB <<= 1; // note: BITMAPB_t.
-
-BranchBNextSubexp: // return here to check next bitmap subexpanse.
-
- while (bitposmaskB) // more bits to check in subexp.
- {
- BRANCHB_CHECKBIT(CLEARLEASTDIGITS_D);
- ++Pjp; // previous in subarray.
- BRANCHB_CHECKJPFULL(CLEARLEASTDIGITS_D);
- assert(digit < cJU_SUBEXPPERSTATE);
- ++digit;
- bitposmaskB <<= 1; // note: BITMAPB_t.
- }
-
- if (++subexp < cJU_NUMSUBEXPB) // more subexpanses.
- {
- BRANCHB_STARTSUBEXP(CLEARLEASTDIGITS_D);
- --Pjp; // pre-decrement.
- bitposmaskB = 1;
- goto BranchBNextSubexp;
- }
-
-#endif // JUDYNEXT
-
-// BranchB secondary dead end, no non-full previous/next JP:
-
- SMRESTART(digits);
-
-
-// ----------------------------------------------------------------------------
-// UNCOMPRESSED BRANCH:
-//
-// Check Decode bytes, if any, in the current JP, then search for a JP for the
-// next digit in Index.
-
- case cJU_JPBRANCH_U2: CHECKDCD(2); SMPREPB2(SMBranchU);
- case cJU_JPBRANCH_U3: CHECKDCD(3); SMPREPB3(SMBranchU);
-#ifdef JU_64BIT
- case cJU_JPBRANCH_U4: CHECKDCD(4); SMPREPB4(SMBranchU);
- case cJU_JPBRANCH_U5: CHECKDCD(5); SMPREPB5(SMBranchU);
- case cJU_JPBRANCH_U6: CHECKDCD(6); SMPREPB6(SMBranchU);
- case cJU_JPBRANCH_U7: CHECKDCD(7); SMPREPB7(SMBranchU);
-#endif
- case cJU_JPBRANCH_U: SMPREPBL(SMBranchU);
-
-// Common code (state-independent) for all cases of uncompressed branches:
-
-SMBranchU:
- Pjbu = P_JBU(Pjp->jp_Addr);
- Pjp = (Pjbu->jbu_jp) + digit;
-
-// Absent JP = null JP for current digit in Index:
-
- if (JPNULL(JU_JPTYPE(Pjp))) RET_SUCCESS;
-
-// Non-full JP matches current digit in Index:
-//
-// Iterate to the subsidiary JP.
-
- if (! JPFULL(Pjp)) goto SMGetContinue;
-
-// BranchU primary dead end:
-//
-// Upon hitting a full JP in a BranchU for the next digit in Index, search
-// sideways for a previous/next null or non-full JP. BRANCHU_CHECKJP() is
-// shorthand for common code.
-//
-// Note: The preceding code is separate from this loop because Index does not
-// need revising (see SET_AND_*()) if the initial index is an empty index.
-
-#define BRANCHU_CHECKJP(OpIncDec,OpLeastDigits) \
- { \
- OpIncDec Pjp; \
- \
- if (JPNULL(JU_JPTYPE(Pjp))) \
- SET_AND_RETURN(OpLeastDigits, digit, digits) \
- \
- if (! JPFULL(Pjp)) \
- SET_AND_CONTINUE(OpLeastDigits, digit, digits) \
- }
-
-#ifdef JUDYPREV
- while (digit-- > 0)
- BRANCHU_CHECKJP(--, SETLEASTDIGITS_D);
-#else
- while (++digit < cJU_BRANCHUNUMJPS)
- BRANCHU_CHECKJP(++, CLEARLEASTDIGITS_D);
-#endif
-
-// BranchU secondary dead end, no non-full previous/next JP:
-
- SMRESTART(digits);
-
-
-// ----------------------------------------------------------------------------
-// LINEAR LEAF:
-//
-// Check Decode bytes, if any, in the current JP, then search the leaf for the
-// previous/next empty index starting at Index. Primary leaf dead end is
-// hidden within j__udySearchLeaf*Empty*(). In case of secondary leaf dead
-// end, restart at the top of the tree.
-//
-// Note: Pword is the name known to GET*; think of it as Pjlw.
-
-#define SMLEAFL(cDigits,Func) \
- Pword = (PWord_t) P_JLW(Pjp->jp_Addr); \
- pop0 = JU_JPLEAF_POP0(Pjp); \
- Func(Pword, pop0)
-
-#if (defined(JUDYL) || (! defined(JU_64BIT)))
- case cJU_JPLEAF1: CHECKDCD(1); SMLEAFL(1, j__udySearchLeafEmpty1);
-#endif
- case cJU_JPLEAF2: CHECKDCD(2); SMLEAFL(2, j__udySearchLeafEmpty2);
- case cJU_JPLEAF3: CHECKDCD(3); SMLEAFL(3, j__udySearchLeafEmpty3);
-
-#ifdef JU_64BIT
- case cJU_JPLEAF4: CHECKDCD(4); SMLEAFL(4, j__udySearchLeafEmpty4);
- case cJU_JPLEAF5: CHECKDCD(5); SMLEAFL(5, j__udySearchLeafEmpty5);
- case cJU_JPLEAF6: CHECKDCD(6); SMLEAFL(6, j__udySearchLeafEmpty6);
- case cJU_JPLEAF7: CHECKDCD(7); SMLEAFL(7, j__udySearchLeafEmpty7);
-#endif
-
-
-// ----------------------------------------------------------------------------
-// BITMAP LEAF:
-//
-// Check Decode bytes, if any, in the current JP, then search the leaf for the
-// previous/next empty index starting at Index.
-
- case cJU_JPLEAF_B1:
-
- CHECKDCD(1);
-
- Pjlb = P_JLB(Pjp->jp_Addr);
- digit = JU_DIGITATSTATE(Index, 1);
- subexp = digit / cJU_BITSPERSUBEXPL;
- bitposmaskL = JU_BITPOSMASKL(digit);
- assert(subexp < cJU_NUMSUBEXPL); // falls in expected range.
-
-// Absent index = no index matches current digit in Index:
-
-// if (! JU_BITMAPTESTL(Pjlb, digit)) // slower.
- if (! (JU_JLB_BITMAP(Pjlb, subexp) & bitposmaskL)) // faster.
- RET_SUCCESS;
-
-// LeafB1 primary dead end:
-//
-// Upon hitting a valid (non-empty) index in a LeafB1 for the last digit in
-// Index, search sideways for a previous/next absent index, first in the
-// current bitmap subexpanse, then in lower/higher subexpanses.
-// LEAFB1_CHECKBIT() is shorthand for common code to handle one bit in one
-// bitmap subexpanse.
-//
-// Note: The preceding code is separate from this loop because Index does not
-// need revising (see SET_AND_*()) if the initial index is an empty index.
-//
-// TBD: For speed, shift bitposmaskL instead of using JU_BITMAPTESTL or
-// JU_BITPOSMASKL, but this shift has knowledge of bit order that really should
-// be encapsulated in a header file.
-
-#define LEAFB1_CHECKBIT(OpLeastDigits) \
- if (! (JU_JLB_BITMAP(Pjlb, subexp) & bitposmaskL)) \
- SET_AND_RETURN(OpLeastDigits, digit, 1)
-
-#define LEAFB1_STARTSUBEXP(OpLeastDigits) \
- if (! JU_JLB_BITMAP(Pjlb, subexp)) /* empty subexp */ \
- SET_AND_RETURN(OpLeastDigits, digit, 1)
-
-#ifdef JUDYPREV
-
- --digit; // skip initial digit.
- bitposmaskL >>= 1; // see TBD above.
-
-LeafB1NextSubexp: // return here to check next bitmap subexpanse.
-
- while (bitposmaskL) // more bits to check in subexp.
- {
- LEAFB1_CHECKBIT(SETLEASTDIGITS_D);
- assert(digit >= 0);
- --digit;
- bitposmaskL >>= 1;
- }
-
- if (subexp-- > 0) // more subexpanses.
- {
- LEAFB1_STARTSUBEXP(SETLEASTDIGITS_D);
- bitposmaskL = (1UL << (cJU_BITSPERSUBEXPL - 1));
- goto LeafB1NextSubexp;
- }
-
-#else // JUDYNEXT
-
- ++digit; // skip initial digit.
- bitposmaskL <<= 1; // note: BITMAPL_t.
-
-LeafB1NextSubexp: // return here to check next bitmap subexpanse.
-
- while (bitposmaskL) // more bits to check in subexp.
- {
- LEAFB1_CHECKBIT(CLEARLEASTDIGITS_D);
- assert(digit < cJU_SUBEXPPERSTATE);
- ++digit;
- bitposmaskL <<= 1; // note: BITMAPL_t.
- }
-
- if (++subexp < cJU_NUMSUBEXPL) // more subexpanses.
- {
- LEAFB1_STARTSUBEXP(CLEARLEASTDIGITS_D);
- bitposmaskL = 1;
- goto LeafB1NextSubexp;
- }
-
-#endif // JUDYNEXT
-
-// LeafB1 secondary dead end, no empty index:
-
- SMRESTART(1);
-
-
-#ifdef JUDY1
-// ----------------------------------------------------------------------------
-// FULL POPULATION:
-//
-// If the Decode bytes do not match, Index is empty (without modification);
-// otherwise restart.
-
- case cJ1_JPFULLPOPU1:
-
- CHECKDCD(1);
- SMRESTART(1);
-#endif
-
-
-// ----------------------------------------------------------------------------
-// IMMEDIATE:
-//
-// Pop1 = 1 Immediate JPs:
-//
-// If Index is not in the immediate JP, return success; otherwise check if
-// there is an empty index below/above the immediate JPs index, and if so,
-// return success with modified Index, else restart.
-//
-// Note: Doug says its fast enough to calculate the index size (digits) in
-// the following; no need to set it separately for each case.
-
- case cJU_JPIMMED_1_01:
- case cJU_JPIMMED_2_01:
- case cJU_JPIMMED_3_01:
-#ifdef JU_64BIT
- case cJU_JPIMMED_4_01:
- case cJU_JPIMMED_5_01:
- case cJU_JPIMMED_6_01:
- case cJU_JPIMMED_7_01:
-#endif
- if (JU_JPDCDPOP0(Pjp) != JU_TRIMTODCDSIZE(Index)) RET_SUCCESS;
- digits = JU_JPTYPE(Pjp) - cJU_JPIMMED_1_01 + 1;
- LEAF_EDGE(JU_LEASTBYTES(JU_JPDCDPOP0(Pjp), digits), digits);
-
-// Immediate JPs with Pop1 > 1:
-
-#define IMM_MULTI(Func,BaseJPType) \
- JUDY1CODE(Pword = (PWord_t) (Pjp->jp_1Index);) \
- JUDYLCODE(Pword = (PWord_t) (Pjp->jp_LIndex);) \
- Func(Pword, JU_JPTYPE(Pjp) - (BaseJPType) + 1)
-
- case cJU_JPIMMED_1_02:
- case cJU_JPIMMED_1_03:
-#if (defined(JUDY1) || defined(JU_64BIT))
- case cJU_JPIMMED_1_04:
- case cJU_JPIMMED_1_05:
- case cJU_JPIMMED_1_06:
- case cJU_JPIMMED_1_07:
-#endif
-#if (defined(JUDY1) && defined(JU_64BIT))
- case cJ1_JPIMMED_1_08:
- case cJ1_JPIMMED_1_09:
- case cJ1_JPIMMED_1_10:
- case cJ1_JPIMMED_1_11:
- case cJ1_JPIMMED_1_12:
- case cJ1_JPIMMED_1_13:
- case cJ1_JPIMMED_1_14:
- case cJ1_JPIMMED_1_15:
-#endif
- IMM_MULTI(j__udySearchLeafEmpty1, cJU_JPIMMED_1_02);
-
-#if (defined(JUDY1) || defined(JU_64BIT))
- case cJU_JPIMMED_2_02:
- case cJU_JPIMMED_2_03:
-#endif
-#if (defined(JUDY1) && defined(JU_64BIT))
- case cJ1_JPIMMED_2_04:
- case cJ1_JPIMMED_2_05:
- case cJ1_JPIMMED_2_06:
- case cJ1_JPIMMED_2_07:
-#endif
-#if (defined(JUDY1) || defined(JU_64BIT))
- IMM_MULTI(j__udySearchLeafEmpty2, cJU_JPIMMED_2_02);
-#endif
-
-#if (defined(JUDY1) || defined(JU_64BIT))
- case cJU_JPIMMED_3_02:
-#endif
-#if (defined(JUDY1) && defined(JU_64BIT))
- case cJ1_JPIMMED_3_03:
- case cJ1_JPIMMED_3_04:
- case cJ1_JPIMMED_3_05:
-#endif
-#if (defined(JUDY1) || defined(JU_64BIT))
- IMM_MULTI(j__udySearchLeafEmpty3, cJU_JPIMMED_3_02);
-#endif
-
-#if (defined(JUDY1) && defined(JU_64BIT))
- case cJ1_JPIMMED_4_02:
- case cJ1_JPIMMED_4_03:
- IMM_MULTI(j__udySearchLeafEmpty4, cJ1_JPIMMED_4_02);
-
- case cJ1_JPIMMED_5_02:
- case cJ1_JPIMMED_5_03:
- IMM_MULTI(j__udySearchLeafEmpty5, cJ1_JPIMMED_5_02);
-
- case cJ1_JPIMMED_6_02:
- IMM_MULTI(j__udySearchLeafEmpty6, cJ1_JPIMMED_6_02);
-
- case cJ1_JPIMMED_7_02:
- IMM_MULTI(j__udySearchLeafEmpty7, cJ1_JPIMMED_7_02);
-#endif
-
-
-// ----------------------------------------------------------------------------
-// INVALID JP TYPE:
-
- default: RET_CORRUPT;
-
- } // SMGet switch.
-
-} // Judy1PrevEmpty() / Judy1NextEmpty() / JudyLPrevEmpty() / JudyLNextEmpty()