summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/test/image.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-03-09 13:19:48 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-03-09 13:20:02 +0000
commit58daab21cd043e1dc37024a7f99b396788372918 (patch)
tree96771e43bb69f7c1c2b0b4f7374cb74d7866d0cb /ml/dlib/dlib/test/image.cpp
parentReleasing debian version 1.43.2-1. (diff)
downloadnetdata-58daab21cd043e1dc37024a7f99b396788372918.tar.xz
netdata-58daab21cd043e1dc37024a7f99b396788372918.zip
Merging upstream version 1.44.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/dlib/dlib/test/image.cpp')
-rw-r--r--ml/dlib/dlib/test/image.cpp1903
1 files changed, 1903 insertions, 0 deletions
diff --git a/ml/dlib/dlib/test/image.cpp b/ml/dlib/dlib/test/image.cpp
new file mode 100644
index 000000000..01f1410cf
--- /dev/null
+++ b/ml/dlib/dlib/test/image.cpp
@@ -0,0 +1,1903 @@
+// Copyright (C) 2008 Davis E. King (davis@dlib.net)
+// License: Boost Software License See LICENSE.txt for the full license.
+#include <sstream>
+#include <string>
+#include <cstdlib>
+#include <ctime>
+#include <dlib/pixel.h>
+#include <dlib/array2d.h>
+#include <dlib/image_transforms.h>
+#include <dlib/image_io.h>
+#include <dlib/matrix.h>
+#include <dlib/rand.h>
+
+#include "tester.h"
+
+namespace
+{
+ using namespace test;
+ using namespace dlib;
+ using namespace std;
+
+ logger dlog("test.image");
+
+
+ void image_test (
+ )
+ /*!
+ ensures
+ - runs tests on pixel objects and functions for compliance with the specs
+ !*/
+ {
+
+ print_spinner();
+
+ array2d<unsigned char> img1, img2;
+
+ img1.set_size(100,100);
+
+ assign_all_pixels(img1,7);
+
+ assign_image(img2, img1);
+
+ DLIB_TEST_MSG(img1.nr() == 100 && img1.nc() == 100 &&
+ img2.nr() == 100 && img2.nc() == 100,"");
+
+
+ for (long r = 0; r < img1.nr(); ++r)
+ {
+ for (long c = 0; c < img1.nc(); ++c)
+ {
+ DLIB_TEST(img1[r][c] == 7);
+ DLIB_TEST(img2[r][c] == 7);
+ }
+ }
+
+ img2.clear();
+ DLIB_TEST(img2.size() == 0);
+ DLIB_TEST(img2.nr() == 0);
+ DLIB_TEST(img2.nc() == 0);
+ assign_image(img2, mat(img1));
+
+ DLIB_TEST_MSG(img1.nr() == 100 && img1.nc() == 100 &&
+ img2.nr() == 100 && img2.nc() == 100,"");
+
+
+ for (long r = 0; r < img1.nr(); ++r)
+ {
+ for (long c = 0; c < img1.nc(); ++c)
+ {
+ DLIB_TEST(img1[r][c] == 7);
+ DLIB_TEST(img2[r][c] == 7);
+ }
+ }
+
+
+ threshold_image(img1, img2, 4);
+
+ for (long r = 0; r < img1.nr(); ++r)
+ {
+ for (long c = 0; c < img1.nc(); ++c)
+ {
+ DLIB_TEST(img1[r][c] == 7);
+ DLIB_TEST(img2[r][c] == on_pixel);
+ }
+ }
+
+ {
+ array2d<hsi_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].h = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].s = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].i = static_cast<unsigned char>(r*14 + c + 3);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ istringstream sin(sout.str());
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].h == r*14 + c + 1);
+ DLIB_TEST(img[r][c].s == r*14 + c + 2);
+ DLIB_TEST(img[r][c].i == r*14 + c + 3);
+ }
+ }
+ }
+
+
+
+
+ {
+ array2d<rgb_alpha_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ img[r][c].alpha = static_cast<unsigned char>(r*14 + c + 4);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ istringstream sin(sout.str());
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ DLIB_TEST(img[r][c].alpha == r*14 + c + 4);
+ }
+ }
+ }
+
+#ifdef DLIB_PNG_SUPPORT
+ {
+ array2d<rgb_alpha_pixel> img;
+ array2d<rgb_pixel> img2, img3;
+ img.set_size(14,15);
+ img2.set_size(img.nr(),img.nc());
+ img3.set_size(img.nr(),img.nc());
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ img[r][c].alpha = static_cast<unsigned char>(r*14 + c + 4);
+ }
+ }
+
+ save_png(img, "test.png");
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_png(img, "test.png");
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ assign_all_pixels(img2, 255);
+ assign_all_pixels(img3, 0);
+ load_png(img2, "test.png");
+ assign_image(img3, img);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ DLIB_TEST(img[r][c].alpha == r*14 + c + 4);
+
+ DLIB_TEST(img2[r][c].red == img3[r][c].red);
+ DLIB_TEST(img2[r][c].green == img3[r][c].green);
+ DLIB_TEST(img2[r][c].blue == img3[r][c].blue);
+ }
+ }
+ }
+#endif // DLIB_PNG_SUPPORT
+
+
+
+ {
+ array2d<rgb_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ istringstream sin(sout.str());
+
+ for (int i = 0; i < 2; ++i)
+ {
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_bmp(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST_MSG(img[r][c].red == r*14 + c + 1, "got " << (int)img[r][c].red << " but expected " << r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+ }
+ }
+ {
+ array2d<bgr_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ istringstream sin(sout.str());
+
+ for (int i = 0; i < 2; ++i)
+ {
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_bmp(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST_MSG(img[r][c].red == r*14 + c + 1, "got " << (int)img[r][c].red << " but expected " << r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+ }
+ }
+
+#ifdef DLIB_PNG_SUPPORT
+ {
+ array2d<rgb_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ }
+ }
+
+ save_png(img, "test.png");
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_png(img, "test.png");
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+ }
+ {
+ array2d<bgr_pixel> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c].red = static_cast<unsigned char>(r*14 + c + 1);
+ img[r][c].green = static_cast<unsigned char>(r*14 + c + 2);
+ img[r][c].blue = static_cast<unsigned char>(r*14 + c + 3);
+ }
+ }
+
+ save_png(img, "test.png");
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_png(img, "test.png");
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c].red == r*14 + c + 1);
+ DLIB_TEST(img[r][c].green == r*14 + c + 2);
+ DLIB_TEST(img[r][c].blue == r*14 + c + 3);
+ }
+ }
+ }
+#endif // DLIB_PNG_SUPPORT
+
+
+
+ {
+ array2d<unsigned short> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c] = static_cast<unsigned short>(r*14 + c + 0xF0);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ istringstream sin(sout.str());
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == r*14 + c + 0xF0);
+ }
+ }
+ }
+
+
+#ifdef DLIB_PNG_SUPPORT
+ {
+ array2d<unsigned short> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c] = static_cast<unsigned short>(r*14 + c + 0xF0);
+ }
+ }
+
+ save_png(img, "test.png");
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_png(img, "test.png");
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == r*14 + c + 0xF0);
+ }
+ }
+ }
+#endif // DLIB_PNG_SUPPORT
+
+
+
+ {
+ array2d<unsigned char> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c] = static_cast<unsigned char>(r*14 + c*111);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ istringstream sin(sout.str());
+
+ for (int i = 0; i < 2; ++i)
+ {
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == static_cast<unsigned char>(r*14 + c*111));
+ }
+ }
+
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_bmp(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == static_cast<unsigned char>(r*14 + c*111));
+ }
+ }
+ }
+ }
+
+
+#ifdef DLIB_PNG_SUPPORT
+ {
+ array2d<unsigned char> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c] = static_cast<unsigned char>(r*14 + c);
+ }
+ }
+
+ save_png(img, "test.png");
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_png(img, "test.png");
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == r*14 + c);
+ }
+ }
+
+ }
+#endif // DLIB_PNG_SUPPORT
+
+
+ {
+ // in this test we will only assign pixel values that can be
+ // represented with 8 bits even though we are using a wider pixel type.
+ array2d<unsigned short> img;
+ img.set_size(14,15);
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ img[r][c] = static_cast<unsigned char>(r*14 + c);
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ save_dng(img, sout);
+ save_bmp(img, sout);
+ istringstream sin(sout.str());
+
+ for (int i = 0; i < 2; ++i)
+ {
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_dng(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == r*14 + c);
+ }
+ }
+
+
+ img.clear();
+ DLIB_TEST(img.nr() == 0);
+ DLIB_TEST(img.nc() == 0);
+
+ load_bmp(img, sin);
+
+ DLIB_TEST(img.nr() == 14);
+ DLIB_TEST(img.nc() == 15);
+
+ for (long r = 0; r < 14; ++r)
+ {
+ for (long c = 0; c < 15; ++c)
+ {
+ DLIB_TEST(img[r][c] == r*14 + c);
+ }
+ }
+ }
+ }
+
+ {
+ array2d<unsigned short> img1;
+ array2d<unsigned char> img2;
+ img1.set_size(10,10);
+ assign_all_pixels(img1, 0);
+
+ img1[5][5] = 10000;
+ img1[7][7] = 10000;
+
+ equalize_histogram(img1, img2);
+
+ for (long r = 0; r < img1.nr(); ++r)
+ {
+ for (long c = 0; c < img2.nc(); ++c)
+ {
+ if ((r == 5 && c == 5) ||
+ (r == 7 && c == 7))
+ {
+ DLIB_TEST(img2[r][c] == 255);
+ }
+ else
+ {
+ DLIB_TEST(img2[r][c] == 0);
+ }
+ }
+ }
+
+ }
+
+ {
+ array2d<unsigned char> img;
+ img.set_size(10,10);
+ assign_all_pixels(img, 0);
+
+ assign_border_pixels(img, 2,2, 4);
+
+ DLIB_TEST(zeros_matrix<unsigned char>(6,6) == subm(mat(img), rectangle(2,2,7,7)));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,10, 4) == rowm(mat(img), 0));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,10, 4) == rowm(mat(img), 1));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,10, 4) == rowm(mat(img), 8));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,10, 4) == rowm(mat(img), 9));
+
+ DLIB_TEST(uniform_matrix<unsigned char>(10,1, 4) == colm(mat(img), 0));
+ DLIB_TEST(uniform_matrix<unsigned char>(10,1, 4) == colm(mat(img), 1));
+ DLIB_TEST(uniform_matrix<unsigned char>(10,1, 4) == colm(mat(img), 8));
+ DLIB_TEST(uniform_matrix<unsigned char>(10,1, 4) == colm(mat(img), 9));
+
+
+ assign_border_pixels(img, 7, 7, 5);
+ DLIB_TEST(uniform_matrix<unsigned char>(10,10, 5) == mat(img));
+ assign_border_pixels(img, 37, 47, 5);
+ DLIB_TEST(uniform_matrix<unsigned char>(10,10, 5) == mat(img));
+ }
+
+ {
+ array2d<unsigned char> img;
+ img.set_size(11,11);
+ assign_all_pixels(img, 0);
+
+ assign_border_pixels(img, 2,2, 4);
+
+ DLIB_TEST(zeros_matrix<unsigned char>(7,7) == subm(mat(img), rectangle(2,2,8,8)));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,11, 4) == rowm(mat(img), 0));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,11, 4) == rowm(mat(img), 1));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,11, 4) == rowm(mat(img), 9));
+ DLIB_TEST(uniform_matrix<unsigned char>(1,11, 4) == rowm(mat(img), 10));
+
+ DLIB_TEST(uniform_matrix<unsigned char>(11,1, 4) == colm(mat(img), 0));
+ DLIB_TEST(uniform_matrix<unsigned char>(11,1, 4) == colm(mat(img), 1));
+ DLIB_TEST(uniform_matrix<unsigned char>(11,1, 4) == colm(mat(img), 9));
+ DLIB_TEST(uniform_matrix<unsigned char>(11,1, 4) == colm(mat(img), 10));
+
+ assign_border_pixels(img, 7, 7, 5);
+ DLIB_TEST(uniform_matrix<unsigned char>(11,11, 5) == mat(img));
+ assign_border_pixels(img, 70, 57, 5);
+ DLIB_TEST(uniform_matrix<unsigned char>(11,11, 5) == mat(img));
+ }
+
+
+ }
+
+
+ template <typename T, typename pixel_type>
+ void test_integral_image (
+ )
+ {
+ dlib::rand rnd;
+
+ array2d<pixel_type> img;
+ integral_image_generic<T> int_img;
+
+ int_img.load(img);
+ DLIB_TEST(int_img.nr() == 0);
+ DLIB_TEST(int_img.nc() == 0);
+
+ // make 5 random images
+ for (int i = 0; i < 5; ++i)
+ {
+ print_spinner();
+ img.set_size(rnd.get_random_16bit_number()%200+1, rnd.get_random_16bit_number()%200+1);
+
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = (int)rnd.get_random_8bit_number() - 100;
+ }
+ }
+
+ int_img.load(img);
+ DLIB_TEST(int_img.nr() == img.nr());
+ DLIB_TEST(int_img.nc() == img.nc());
+
+ // make 200 random rectangles
+ for (int j = 0; j < 500; ++j)
+ {
+ point p1(rnd.get_random_32bit_number()%img.nc(), rnd.get_random_32bit_number()%img.nr());
+ point p2(rnd.get_random_32bit_number()%img.nc(), rnd.get_random_32bit_number()%img.nr());
+ rectangle rect(p1,p2);
+ DLIB_TEST(int_img.get_sum_of_area(rect) == sum(subm(matrix_cast<T>(mat(img)), rect)));
+ rect = rectangle(p1,p1);
+ DLIB_TEST(int_img.get_sum_of_area(rect) == sum(subm(matrix_cast<T>(mat(img)), rect)));
+ }
+
+ }
+
+
+ }
+
+ void test_filtering2(int nr, int nc, dlib::rand& rnd)
+ {
+ print_spinner();
+ dlog << LINFO << "test_filtering2(): " << nr << " " << nc;
+ array2d<float> img(302,301);
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = rnd.get_random_gaussian();
+ }
+ }
+ matrix<float> filt = matrix_cast<float>(randm(nr,nc,rnd));
+
+ matrix<float> out = xcorr_same(mat(img),filt);
+ matrix<float> out2 = subm(conv(mat(img),flip(filt)), filt.nr()/2, filt.nc()/2, img.nr(), img.nc());
+ // make sure xcorr_same does exactly what the docs say it should.
+ DLIB_TEST(max(abs(out-out2)) < 1e-7);
+
+ // Now compare the filtering functions to xcorr_same to make sure everything does
+ // filtering in the same way.
+ array2d<float> imout(img.nr(), img.nc());
+ assign_all_pixels(imout, 10);
+ rectangle rect = spatially_filter_image(img, imout, filt);
+ border_enumerator be(get_rect(imout),rect);
+ while (be.move_next())
+ {
+ DLIB_TEST(imout[be.element().y()][be.element().x()] == 0);
+ }
+ DLIB_TEST_MSG(max(abs(subm(mat(imout),rect) - subm(out,rect))) < 1e-5, max(abs(subm(mat(imout),rect) - subm(out,rect))));
+
+
+ assign_all_pixels(imout, 10);
+ out = 10;
+ rect = spatially_filter_image(img, imout, filt,2,true,true);
+ be = border_enumerator(get_rect(imout),rect);
+ while (be.move_next())
+ {
+ DLIB_TEST(imout[be.element().y()][be.element().x()] == 10);
+ }
+ out += abs(xcorr_same(mat(img),filt)/2);
+ DLIB_TEST(max(abs(subm(mat(imout),rect) - subm(out,rect))) < 1e-7);
+
+
+ assign_all_pixels(imout, -10);
+ out = -10;
+ rect = spatially_filter_image(img, imout, filt,2,false,true);
+ be = border_enumerator(get_rect(imout),rect);
+ while (be.move_next())
+ {
+ DLIB_TEST(imout[be.element().y()][be.element().x()] == -10);
+ }
+ out += xcorr_same(mat(img),filt)/2;
+ DLIB_TEST_MSG(max(abs(subm(mat(imout),rect) - subm(out,rect))) < 1e-5, max(abs(subm(mat(imout),rect) - subm(out,rect))));
+
+
+
+
+ matrix<float> row_filt = matrix_cast<float>(randm(nc,1,rnd));
+ matrix<float> col_filt = matrix_cast<float>(randm(nr,1,rnd));
+ assign_all_pixels(imout, 10);
+ rect = spatially_filter_image_separable(img, imout, row_filt, col_filt);
+ out = xcorr_same(tmp(xcorr_same(mat(img),trans(row_filt))), col_filt);
+ DLIB_TEST_MSG(max(abs(subm(mat(imout),rect) - subm(out,rect))) < 1e-5, max(abs(subm(mat(imout),rect) - subm(out,rect))));
+
+ be = border_enumerator(get_rect(imout),rect);
+ while (be.move_next())
+ {
+ DLIB_TEST(imout[be.element().y()][be.element().x()] == 0);
+ }
+
+
+ assign_all_pixels(imout, 10);
+ out = 10;
+ rect = spatially_filter_image_separable(img, imout, row_filt, col_filt,2,true,true);
+ out += abs(xcorr_same(tmp(xcorr_same(mat(img),trans(row_filt))), col_filt)/2);
+ DLIB_TEST_MSG(max(abs(subm(mat(imout),rect) - subm(out,rect))) < 1e-7,
+ max(abs(subm(mat(imout),rect) - subm(out,rect))));
+
+ be = border_enumerator(get_rect(imout),rect);
+ while (be.move_next())
+ {
+ DLIB_TEST(imout[be.element().y()][be.element().x()] == 10);
+ }
+
+ }
+
+ template <typename T>
+ void test_filtering(bool use_abs, unsigned long scale )
+ {
+ print_spinner();
+ dlog << LINFO << "test_filtering(" << use_abs << "," << scale << ")";
+ array2d<T> img, img2, img3;
+ img.set_size(10,11);
+
+ assign_all_pixels(img, 10);
+
+ matrix<int,3,5> filter2;
+ filter2 = 1,1,1,1,1,
+ 1,1,1,1,1,
+ 1,1,1,1,1;
+
+ assign_all_pixels(img2,3);
+ rectangle brect = spatially_filter_image(img, img2, filter2);
+ DLIB_TEST(brect == shrink_rect(get_rect(img), filter2.nc()/2, filter2.nr()/2));
+
+ const rectangle rect(2,1,img.nc()-3,img.nr()-2);
+
+ for (long r = 0; r<img2.nr(); ++r)
+ {
+ for (long c = 0; c<img2.nc(); ++c)
+ {
+ if (rect.contains(c,r))
+ {
+ DLIB_TEST_MSG(img2[r][c] == 150, (int)img2[r][c]);
+ }
+ else
+ {
+ DLIB_TEST_MSG(img2[r][c] == 0,(int)img2[r][c]);
+ }
+ }
+ }
+
+
+ assign_all_pixels(img2,3);
+ assign_all_pixels(img3,3);
+ brect = spatially_filter_image(img, img2, filter2);
+ DLIB_TEST(brect == shrink_rect(get_rect(img), filter2.nc()/2, filter2.nr()/2));
+
+ matrix<int,1,5> row_filter;
+ matrix<int,1,3> col_filter;
+
+ row_filter = 1,1,1,1,1;
+ col_filter = 1,1,1;
+
+ spatially_filter_image_separable(img, img3, row_filter, col_filter);
+
+ DLIB_TEST(mat(img2) == mat(img3));
+
+
+ dlib::rand rnd;
+
+ for (int i = 0; i < 30; ++i)
+ {
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = rnd.get_random_8bit_number();
+ }
+ }
+
+ row_filter(0) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ row_filter(1) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ row_filter(2) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ row_filter(3) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ row_filter(4) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ col_filter(0) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ col_filter(1) = ((int)rnd.get_random_8bit_number() - 100)/10;
+ col_filter(2) = ((int)rnd.get_random_8bit_number() - 100)/10;
+
+ const matrix<int,3,5> filter = trans(col_filter)*row_filter;
+
+ assign_all_pixels(img2,3);
+ assign_all_pixels(img3,3);
+ // Just make sure both filtering methods give the same results.
+ rectangle brect1, brect2;
+ brect1 = spatially_filter_image(img, img2, filter, scale, use_abs);
+ brect2 = spatially_filter_image_separable(img, img3, row_filter, col_filter, scale, use_abs);
+ DLIB_TEST(mat(img2) == mat(img3));
+
+ DLIB_TEST(brect1 == shrink_rect(get_rect(img), filter.nc()/2, filter.nr()/2));
+ DLIB_TEST(brect1 == brect2);
+ }
+
+ {
+ array2d<int> img, img2;
+ img.set_size(3,4);
+
+ matrix<int> filter(3,3);
+ filter = 1;
+ assign_all_pixels(img,-1);
+
+ spatially_filter_image(img,img2,filter);
+
+ DLIB_TEST(img2[0][0] == 0);
+ DLIB_TEST(img2[0][1] == 0);
+ DLIB_TEST(img2[0][2] == 0);
+ DLIB_TEST(img2[0][3] == 0);
+
+ DLIB_TEST(img2[1][0] == 0);
+ DLIB_TEST(img2[1][1] == -9);
+ DLIB_TEST(img2[1][2] == -9);
+ DLIB_TEST(img2[1][3] == 0);
+
+ DLIB_TEST(img2[2][0] == 0);
+ DLIB_TEST(img2[2][1] == 0);
+ DLIB_TEST(img2[2][2] == 0);
+ DLIB_TEST(img2[2][3] == 0);
+
+ assign_all_pixels(img,-1);
+
+ spatially_filter_image(img,img2,filter,2,true);
+
+ DLIB_TEST(img2[0][0] == 0);
+ DLIB_TEST(img2[0][1] == 0);
+ DLIB_TEST(img2[0][2] == 0);
+ DLIB_TEST(img2[0][3] == 0);
+
+ DLIB_TEST(img2[1][0] == 0);
+ DLIB_TEST(img2[1][1] == 4);
+ DLIB_TEST(img2[1][2] == 4);
+ DLIB_TEST(img2[1][3] == 0);
+
+ DLIB_TEST(img2[2][0] == 0);
+ DLIB_TEST(img2[2][1] == 0);
+ DLIB_TEST(img2[2][2] == 0);
+ DLIB_TEST(img2[2][3] == 0);
+
+ matrix<int> rowf(3,1), colf(3,1);
+ rowf = 1;
+ colf = 1;
+ assign_all_pixels(img,-1);
+
+ spatially_filter_image_separable(img,img2,rowf,colf);
+ DLIB_TEST(img2[0][0] == 0);
+ DLIB_TEST(img2[0][1] == 0);
+ DLIB_TEST(img2[0][2] == 0);
+ DLIB_TEST(img2[0][3] == 0);
+
+ DLIB_TEST(img2[1][0] == 0);
+ DLIB_TEST(img2[1][1] == -9);
+ DLIB_TEST(img2[1][2] == -9);
+ DLIB_TEST(img2[1][3] == 0);
+
+ DLIB_TEST(img2[2][0] == 0);
+ DLIB_TEST(img2[2][1] == 0);
+ DLIB_TEST(img2[2][2] == 0);
+ DLIB_TEST(img2[2][3] == 0);
+
+ spatially_filter_image_separable(img,img2,rowf,colf,1,true);
+ DLIB_TEST(img2[0][0] == 0);
+ DLIB_TEST(img2[0][1] == 0);
+ DLIB_TEST(img2[0][2] == 0);
+ DLIB_TEST(img2[0][3] == 0);
+
+ DLIB_TEST(img2[1][0] == 0);
+ DLIB_TEST(img2[1][1] == 9);
+ DLIB_TEST(img2[1][2] == 9);
+ DLIB_TEST(img2[1][3] == 0);
+
+ DLIB_TEST(img2[2][0] == 0);
+ DLIB_TEST(img2[2][1] == 0);
+ DLIB_TEST(img2[2][2] == 0);
+ DLIB_TEST(img2[2][3] == 0);
+
+ assign_all_pixels(img2, 3);
+ spatially_filter_image_separable(img,img2,rowf,colf,1,true, true);
+ DLIB_TEST(img2[0][0] == 3);
+ DLIB_TEST(img2[0][1] == 3);
+ DLIB_TEST(img2[0][2] == 3);
+ DLIB_TEST(img2[0][3] == 3);
+
+ DLIB_TEST(img2[1][0] == 3);
+ DLIB_TEST_MSG(img2[1][1] == 9+3, img2[1][1] );
+ DLIB_TEST(img2[1][2] == 9+3);
+ DLIB_TEST(img2[1][3] == 3);
+
+ DLIB_TEST(img2[2][0] == 3);
+ DLIB_TEST(img2[2][1] == 3);
+ DLIB_TEST(img2[2][2] == 3);
+ DLIB_TEST(img2[2][3] == 3);
+ }
+ {
+ array2d<double> img, img2;
+ img.set_size(3,4);
+
+ matrix<double> filter(3,3);
+ filter = 1;
+ assign_all_pixels(img,-1);
+
+ spatially_filter_image(img,img2,filter,2);
+
+ DLIB_TEST(img2[0][0] == 0);
+ DLIB_TEST(img2[0][1] == 0);
+ DLIB_TEST(img2[0][2] == 0);
+ DLIB_TEST(img2[0][3] == 0);
+
+ DLIB_TEST(img2[1][0] == 0);
+ DLIB_TEST(std::abs(img2[1][1] - -4.5) < 1e-14);
+ DLIB_TEST(std::abs(img2[1][2] - -4.5) < 1e-14);
+ DLIB_TEST(img2[1][3] == 0);
+
+ DLIB_TEST(img2[2][0] == 0);
+ DLIB_TEST(img2[2][1] == 0);
+ DLIB_TEST(img2[2][2] == 0);
+ DLIB_TEST(img2[2][3] == 0);
+
+ }
+ {
+ array2d<double> img, img2;
+ img.set_size(3,4);
+ img2.set_size(3,4);
+ assign_all_pixels(img2, 8);
+
+ matrix<double> filter(3,3);
+ filter = 1;
+ assign_all_pixels(img,-1);
+
+ spatially_filter_image(img,img2,filter,2, false, true);
+
+ DLIB_TEST(img2[0][0] == 8);
+ DLIB_TEST(img2[0][1] == 8);
+ DLIB_TEST(img2[0][2] == 8);
+ DLIB_TEST(img2[0][3] == 8);
+
+ DLIB_TEST(img2[1][0] == 8);
+ DLIB_TEST(std::abs(img2[1][1] - -4.5 - 8) < 1e-14);
+ DLIB_TEST(std::abs(img2[1][2] - -4.5 - 8) < 1e-14);
+ DLIB_TEST(img2[1][3] == 8);
+
+ DLIB_TEST(img2[2][0] == 8);
+ DLIB_TEST(img2[2][1] == 8);
+ DLIB_TEST(img2[2][2] == 8);
+ DLIB_TEST(img2[2][3] == 8);
+
+ }
+ }
+
+
+ void test_zero_border_pixels(
+ )
+ {
+ array2d<unsigned char> img;
+ img.set_size(4,5);
+
+ assign_all_pixels(img, 1);
+ zero_border_pixels(img, 2,1);
+
+ DLIB_TEST(img[0][0] == 0);
+ DLIB_TEST(img[1][0] == 0);
+ DLIB_TEST(img[2][0] == 0);
+ DLIB_TEST(img[3][0] == 0);
+ DLIB_TEST(img[0][1] == 0);
+ DLIB_TEST(img[1][1] == 0);
+ DLIB_TEST(img[2][1] == 0);
+ DLIB_TEST(img[3][1] == 0);
+
+ DLIB_TEST(img[0][3] == 0);
+ DLIB_TEST(img[1][3] == 0);
+ DLIB_TEST(img[2][3] == 0);
+ DLIB_TEST(img[3][3] == 0);
+ DLIB_TEST(img[0][4] == 0);
+ DLIB_TEST(img[1][4] == 0);
+ DLIB_TEST(img[2][4] == 0);
+ DLIB_TEST(img[3][4] == 0);
+
+ DLIB_TEST(img[0][2] == 0);
+ DLIB_TEST(img[3][2] == 0);
+
+ DLIB_TEST(img[1][2] == 1);
+ DLIB_TEST(img[2][2] == 1);
+
+ rectangle rect = get_rect(img);
+ rect.left()+=2;
+ rect.top()+=1;
+ rect.right()-=2;
+ rect.bottom()-=1;
+ assign_all_pixels(img, 1);
+ zero_border_pixels(img, rect);
+
+ DLIB_TEST(img[0][0] == 0);
+ DLIB_TEST(img[1][0] == 0);
+ DLIB_TEST(img[2][0] == 0);
+ DLIB_TEST(img[3][0] == 0);
+ DLIB_TEST(img[0][1] == 0);
+ DLIB_TEST(img[1][1] == 0);
+ DLIB_TEST(img[2][1] == 0);
+ DLIB_TEST(img[3][1] == 0);
+
+ DLIB_TEST(img[0][3] == 0);
+ DLIB_TEST(img[1][3] == 0);
+ DLIB_TEST(img[2][3] == 0);
+ DLIB_TEST(img[3][3] == 0);
+ DLIB_TEST(img[0][4] == 0);
+ DLIB_TEST(img[1][4] == 0);
+ DLIB_TEST(img[2][4] == 0);
+ DLIB_TEST(img[3][4] == 0);
+
+ DLIB_TEST(img[0][2] == 0);
+ DLIB_TEST(img[3][2] == 0);
+
+ DLIB_TEST(img[1][2] == 1);
+ DLIB_TEST(img[2][2] == 1);
+
+ rect.right()+=1;
+ assign_all_pixels(img, 1);
+ zero_border_pixels(img, rect);
+ DLIB_TEST(img[0][0] == 0);
+ DLIB_TEST(img[1][0] == 0);
+ DLIB_TEST(img[2][0] == 0);
+ DLIB_TEST(img[3][0] == 0);
+ DLIB_TEST(img[0][1] == 0);
+ DLIB_TEST(img[1][1] == 0);
+ DLIB_TEST(img[2][1] == 0);
+ DLIB_TEST(img[3][1] == 0);
+
+ DLIB_TEST(img[0][3] == 0);
+ DLIB_TEST(img[1][3] == 1);
+ DLIB_TEST(img[2][3] == 1);
+ DLIB_TEST(img[3][3] == 0);
+ DLIB_TEST(img[0][4] == 0);
+ DLIB_TEST(img[1][4] == 0);
+ DLIB_TEST(img[2][4] == 0);
+ DLIB_TEST(img[3][4] == 0);
+
+ DLIB_TEST(img[0][2] == 0);
+ DLIB_TEST(img[3][2] == 0);
+
+ DLIB_TEST(img[1][2] == 1);
+ DLIB_TEST(img[2][2] == 1);
+ }
+
+
+ void test_label_connected_blobs()
+ {
+ array2d<unsigned char> img;
+ img.set_size(400,401);
+
+ assign_all_pixels(img,0);
+
+ rectangle rect1, rect2, rect3;
+
+ rect1 = centered_rect(99,120, 50,70);
+ rect2 = centered_rect(199,80, 34,68);
+ rect3 = centered_rect(249,180, 120,78);
+
+ fill_rect(img, rect1, 255);
+ fill_rect(img, rect2, 255);
+ fill_rect(img, rect3, 255);
+
+ array2d<unsigned char> labels;
+ unsigned long num;
+ num = label_connected_blobs(img,
+ zero_pixels_are_background(),
+ neighbors_8(),
+ connected_if_both_not_zero(),
+ labels);
+
+ DLIB_TEST(num == 4);
+ DLIB_TEST(labels.nr() == img.nr());
+ DLIB_TEST(labels.nc() == img.nc());
+
+ const unsigned char l1 = labels[rect1.top()][rect1.left()];
+ const unsigned char l2 = labels[rect2.top()][rect2.left()];
+ const unsigned char l3 = labels[rect3.top()][rect3.left()];
+
+ DLIB_TEST(l1 != 0 && l2 != 0 && l3 != 0);
+ DLIB_TEST(l1 != l2 && l1 != l3 && l2 != l3);
+
+ for (long r = 0; r < labels.nr(); ++r)
+ {
+ for (long c = 0; c < labels.nc(); ++c)
+ {
+ if (rect1.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l1);
+ }
+ else if (rect2.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l2);
+ }
+ else if (rect3.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l3);
+ }
+ else
+ {
+ DLIB_TEST(labels[r][c] == 0);
+ }
+ }
+ }
+ }
+
+ void test_label_connected_blobs2()
+ {
+ array2d<unsigned char> img;
+ img.set_size(400,401);
+
+ assign_all_pixels(img,0);
+
+ rectangle rect1, rect2, rect3;
+
+ rect1 = centered_rect(99,120, 50,70);
+ rect2 = centered_rect(199,80, 34,68);
+ rect3 = centered_rect(249,180, 120,78);
+
+ fill_rect(img, rect1, 255);
+ fill_rect(img, rect2, 253);
+ fill_rect(img, rect3, 255);
+
+ array2d<unsigned char> labels;
+ unsigned long num;
+ num = label_connected_blobs(img,
+ nothing_is_background(),
+ neighbors_4(),
+ connected_if_equal(),
+ labels);
+
+ DLIB_TEST(num == 5);
+ DLIB_TEST(labels.nr() == img.nr());
+ DLIB_TEST(labels.nc() == img.nc());
+
+ const unsigned char l0 = labels[0][0];
+ const unsigned char l1 = labels[rect1.top()][rect1.left()];
+ const unsigned char l2 = labels[rect2.top()][rect2.left()];
+ const unsigned char l3 = labels[rect3.top()][rect3.left()];
+
+ DLIB_TEST(l0 != 0 && l1 != 0 && l2 != 0 && l3 != 0);
+ DLIB_TEST(l1 != l2 && l1 != l3 && l2 != l3 &&
+ l0 != l1 && l0 != l2 && l0 != l3);
+
+ for (long r = 0; r < labels.nr(); ++r)
+ {
+ for (long c = 0; c < labels.nc(); ++c)
+ {
+ if (rect1.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l1);
+ }
+ else if (rect2.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l2);
+ }
+ else if (rect3.contains(c,r))
+ {
+ DLIB_TEST(labels[r][c] == l3);
+ }
+ else
+ {
+ DLIB_TEST(labels[r][c] == l0);
+ }
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename in_image_type,
+ typename out_image_type
+ >
+ void downsample_image (
+ const unsigned long downsample,
+ const in_image_type& in_img,
+ out_image_type& out_img,
+ bool add_to
+ )
+ {
+ out_img.set_size((in_img.nr()+downsample-1)/downsample,
+ (in_img.nc()+downsample-1)/downsample);
+
+ for (long r = 0; r < out_img.nr(); ++r)
+ {
+ for (long c = 0; c < out_img.nc(); ++c)
+ {
+ if (add_to)
+ out_img[r][c] += in_img[r*downsample][c*downsample];
+ else
+ out_img[r][c] = in_img[r*downsample][c*downsample];
+ }
+ }
+ }
+
+ template <
+ typename in_image_type,
+ typename out_image_type,
+ typename EXP1,
+ typename EXP2,
+ typename T
+ >
+ void test_spatially_filter_image_separable_down_simple (
+ const unsigned long downsample,
+ const in_image_type& in_img,
+ out_image_type& out_img,
+ const matrix_exp<EXP1>& row_filter,
+ const matrix_exp<EXP2>& col_filter,
+ T scale,
+ bool use_abs = false,
+ bool add_to = false
+ )
+ {
+ out_image_type temp;
+ spatially_filter_image_separable(in_img, temp, row_filter, col_filter, scale, use_abs, false);
+ downsample_image(downsample, temp, out_img, add_to);
+ }
+
+
+
+
+ template <unsigned long downsample>
+ void test_downsampled_filtering_helper(long row_filt_size, long col_filt_size)
+ {
+ print_spinner();
+ dlog << LTRACE << "***********************************";
+ dlog << LTRACE << "downsample: " << downsample;
+ dlog << LTRACE << "row_filt_size: "<< row_filt_size;
+ dlog << LTRACE << "col_filt_size: "<< col_filt_size;
+ dlib::rand rnd;
+ array2d<int> out1, out2;
+ for (long nr = 0; nr < 3; ++nr)
+ {
+ for (long nc = 0; nc < 3; ++nc)
+ {
+ dlog << LTRACE << "nr: "<< nr;
+ dlog << LTRACE << "nc: "<< nc;
+ array2d<unsigned char> img(25+nr,25+nc);
+ for (int k = 0; k < 5; ++k)
+ {
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = rnd.get_random_8bit_number();
+ }
+ }
+
+ matrix<int,0,1> row_filter(row_filt_size);
+ matrix<int,0,1> col_filter(col_filt_size);
+
+ row_filter = matrix_cast<int>(10*randm(row_filt_size,1, rnd));
+ col_filter = matrix_cast<int>(10*randm(col_filt_size,1, rnd));
+
+ row_filter -= 3;
+ col_filter -= 3;
+
+
+ test_spatially_filter_image_separable_down_simple(downsample, img, out1, row_filter, col_filter,1 );
+ spatially_filter_image_separable_down(downsample, img, out2, row_filter, col_filter);
+
+ DLIB_TEST(get_rect(out1) == get_rect(out2));
+ DLIB_TEST(mat(out1) == mat(out2));
+
+ test_spatially_filter_image_separable_down_simple(downsample, img, out1, row_filter, col_filter,3, true, true );
+ spatially_filter_image_separable_down(downsample, img, out2, row_filter, col_filter, 3, true, true);
+
+ DLIB_TEST(get_rect(out1) == get_rect(out2));
+ DLIB_TEST(mat(out1) == mat(out2));
+
+ }
+ }
+ }
+ }
+
+ void test_downsampled_filtering()
+ {
+ test_downsampled_filtering_helper<1>(5,5);
+ test_downsampled_filtering_helper<2>(5,5);
+ test_downsampled_filtering_helper<3>(5,5);
+ test_downsampled_filtering_helper<1>(3,5);
+ test_downsampled_filtering_helper<2>(3,5);
+ test_downsampled_filtering_helper<3>(3,5);
+ test_downsampled_filtering_helper<1>(5,3);
+ test_downsampled_filtering_helper<2>(5,3);
+ test_downsampled_filtering_helper<3>(5,3);
+
+ test_downsampled_filtering_helper<1>(3,3);
+ test_downsampled_filtering_helper<2>(3,3);
+ test_downsampled_filtering_helper<3>(3,3);
+
+ test_downsampled_filtering_helper<1>(1,1);
+ test_downsampled_filtering_helper<2>(1,1);
+ test_downsampled_filtering_helper<3>(1,1);
+
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename T>
+ void test_segment_image()
+ {
+ print_spinner();
+ array2d<T> img(100,100);
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ if (c < 50 || r < 50)
+ assign_pixel(img[r][c], 0);
+ else
+ assign_pixel(img[r][c], 255);
+ }
+ }
+
+ array2d<unsigned long> out;
+ segment_image(img, out);
+
+ DLIB_TEST(get_rect(img) == get_rect(out));
+ const unsigned long v1 = out[0][0];
+ const unsigned long v2 = out[90][90];
+
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ if (c < 50 || r < 50)
+ {
+ DLIB_TEST(out[r][c] == v1);
+ }
+ else
+ {
+ DLIB_TEST(out[r][c] == v2);
+ }
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename T>
+ void test_dng_floats(double scale)
+ {
+ dlog << LINFO << "in test_dng_floats";
+ print_spinner();
+ array2d<T> img(100,101);
+
+ dlib::rand rnd;
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ T val = rnd.get_random_double()*scale;
+ img[r][c] = val;
+
+ // Lets the float_details object while we are here doing this stuff.
+ float_details temp = val;
+ T val2 = temp;
+ // for the same type we should exactly reproduce the value (unless
+ // it's long double and then maybe it's slightly different).
+ if (is_same_type<T,long double>::value)
+ {
+ DLIB_TEST(std::abs(val2-val) < scale*std::numeric_limits<T>::epsilon());
+ }
+ else
+ {
+ DLIB_TEST(val2 == val);
+ }
+
+ float valf = temp;
+ double vald = temp;
+ long double vall = temp;
+
+ DLIB_TEST(std::abs(valf-val) < scale*std::numeric_limits<float>::epsilon());
+ DLIB_TEST(std::abs(vald-val) < scale*std::numeric_limits<double>::epsilon());
+ DLIB_TEST(std::abs(vall-val) < scale*std::numeric_limits<long double>::epsilon());
+ }
+ }
+
+ ostringstream sout;
+ save_dng(img, sout);
+ istringstream sin;
+
+ array2d<float> img1;
+ array2d<double> img2;
+ array2d<long double> img3;
+
+ sin.clear(); sin.str(sout.str());
+ load_dng(img1, sin);
+
+ sin.clear(); sin.str(sout.str());
+ load_dng(img2, sin);
+
+ sin.clear(); sin.str(sout.str());
+ load_dng(img3, sin);
+
+ DLIB_TEST(img.nr() == img1.nr());
+ DLIB_TEST(img.nr() == img2.nr());
+ DLIB_TEST(img.nr() == img3.nr());
+ DLIB_TEST(img.nc() == img1.nc());
+ DLIB_TEST(img.nc() == img2.nc());
+ DLIB_TEST(img.nc() == img3.nc());
+
+ DLIB_TEST(max(abs(mat(img) - matrix_cast<T>(mat(img1)))) < scale*std::numeric_limits<float>::epsilon());
+ DLIB_TEST(max(abs(mat(img) - matrix_cast<T>(mat(img2)))) < scale*std::numeric_limits<double>::epsilon());
+ DLIB_TEST(max(abs(mat(img) - matrix_cast<T>(mat(img3)))) < scale*std::numeric_limits<long double>::epsilon());
+ }
+
+ void test_dng_float_int()
+ {
+ dlog << LINFO << "in test_dng_float_int";
+ print_spinner();
+
+ array2d<uint16> img;
+ assign_image(img, gaussian_randm(101,100)*10000);
+
+ ostringstream sout;
+ save_dng(img, sout);
+ istringstream sin(sout.str());
+ array2d<double> img2;
+ load_dng(img2, sin);
+ sout.clear(); sout.str("");
+
+ save_dng(img2, sout);
+ sin.clear(); sin.str(sout.str());
+ array2d<uint16> img3;
+ load_dng(img3, sin);
+
+ // this whole thing should have been totally lossless.
+ DLIB_TEST(mat(img) == mat(img3));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename T>
+ void test_filtering_center (
+ dlib::rand& rnd
+ )
+ {
+ array2d<T> img(rnd.get_random_32bit_number()%100+1,
+ rnd.get_random_32bit_number()%100+1);
+ matrix<T> filt(rnd.get_random_32bit_number()%10+1,
+ rnd.get_random_32bit_number()%10+1);
+
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = rnd.get_random_32bit_number()%100;
+ }
+ }
+ for (long r = 0; r < filt.nr(); ++r)
+ {
+ for (long c = 0; c < filt.nc(); ++c)
+ {
+ filt(r,c) = rnd.get_random_32bit_number()%100;
+ }
+ }
+
+ array2d<T> out;
+ const rectangle area = spatially_filter_image(img, out, filt);
+
+ for (long r = 0; r < out.nr(); ++r)
+ {
+ for (long c = 0; c < out.nc(); ++c)
+ {
+ const rectangle rect = centered_rect(point(c,r), filt.nc(), filt.nr());
+ if (get_rect(out).contains(rect))
+ {
+ T val = sum(pointwise_multiply(filt, subm(mat(img),rect)));
+ DLIB_TEST_MSG(val == out[r][c],"err: " << val-out[r][c]);
+ DLIB_TEST(area.contains(point(c,r)));
+ }
+ else
+ {
+ DLIB_TEST(!area.contains(point(c,r)));
+ }
+ }
+ }
+ }
+
+ template <typename T>
+ void test_separable_filtering_center (
+ dlib::rand& rnd
+ )
+ {
+ array2d<T> img(rnd.get_random_32bit_number()%100+1,
+ rnd.get_random_32bit_number()%100+1);
+ matrix<T,1,0> row_filt(rnd.get_random_32bit_number()%10+1);
+ matrix<T,0,1> col_filt(rnd.get_random_32bit_number()%10+1);
+
+ for (long r = 0; r < img.nr(); ++r)
+ {
+ for (long c = 0; c < img.nc(); ++c)
+ {
+ img[r][c] = rnd.get_random_32bit_number()%10;
+ }
+ }
+ for (long r = 0; r < row_filt.size(); ++r)
+ {
+ row_filt(r) = rnd.get_random_32bit_number()%10;
+ }
+ for (long r = 0; r < col_filt.size(); ++r)
+ {
+ col_filt(r) = rnd.get_random_32bit_number()%10;
+ }
+
+ array2d<T> out;
+ const rectangle area = spatially_filter_image_separable(img, out, row_filt, col_filt);
+
+ for (long r = 0; r < out.nr(); ++r)
+ {
+ for (long c = 0; c < out.nc(); ++c)
+ {
+ const rectangle rect = centered_rect(point(c,r), row_filt.size(), col_filt.size());
+ if (get_rect(out).contains(rect))
+ {
+ T val = sum(pointwise_multiply(col_filt*row_filt, subm(mat(img),rect)));
+ DLIB_TEST_MSG(val == out[r][c],"err: " << val-out[r][c]);
+
+ DLIB_TEST(area.contains(point(c,r)));
+ }
+ else
+ {
+ DLIB_TEST(!area.contains(point(c,r)));
+ }
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ void run_hough_test()
+ {
+ array2d<unsigned char> img(300,300);
+
+
+ for (int k = -2; k <= 2; ++k)
+ {
+ print_spinner();
+ running_stats<double> rs;
+ array2d<int> himg;
+ hough_transform ht(200+k);
+ double angle1 = 0;
+ double angle2 = 0;
+ const int len = 90;
+ // Draw a bunch of random lines, hough transform them, then make sure the hough
+ // transform detects them accurately.
+ for (int i = 0; i < 500; ++i)
+ {
+ point cent = center(get_rect(img));
+ point arc = cent + point(len,0);
+ arc = rotate_point(cent, arc, angle1);
+
+ point l = arc + point(500,0);
+ point r = arc - point(500,0);
+ l = rotate_point(arc, l, angle2);
+ r = rotate_point(arc, r, angle2);
+
+ angle1 += pi/13;
+ angle2 += pi/40;
+
+ assign_all_pixels(img, 0);
+ draw_line(img, l, r, 255);
+ rectangle box = translate_rect(get_rect(ht),point(50,50));
+ ht(img, box, himg);
+
+ point p = max_point(mat(himg));
+ DLIB_TEST(himg[p.y()][p.x()] > 255*3);
+
+ l -= point(50,50);
+ r -= point(50,50);
+ std::pair<point,point> line = ht.get_line(p);
+ // make sure the best scoring hough point matches the line we drew.
+ double dist1 = distance_to_line(make_pair(l,r), line.first);
+ double dist2 = distance_to_line(make_pair(l,r), line.second);
+ //cout << "DIST1: " << dist1 << endl;
+ //cout << "DIST2: " << dist2 << endl;
+ rs.add(dist1);
+ rs.add(dist2);
+ DLIB_TEST(dist1 < 2.5);
+ DLIB_TEST(dist2 < 2.5);
+ }
+ //cout << "rs.mean(): " << rs.mean() << endl;
+ DLIB_TEST(rs.mean() < 0.7);
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ void test_extract_image_chips()
+ {
+ dlib::rand rnd;
+
+ // Make sure that cropping a white box out of a larger white image always produces an
+ // exact white box. This should catch any bad border effects from a messed up internal
+ // cropping.
+ for (int iter = 0; iter < 1000; ++iter)
+ {
+ print_spinner();
+ const long nr = rnd.get_random_32bit_number()%100 + 1;
+ const long nc = rnd.get_random_32bit_number()%100 + 1;
+ const long size = rnd.get_random_32bit_number()%10000 + 4;
+ const double angle = rnd.get_random_double() * pi;
+
+ matrix<int> img(501,501), chip;
+ img = 255;
+ chip_details details(centered_rect(center(get_rect(img)),nr,nc), size, angle);
+ extract_image_chip(img, details, chip);
+ DLIB_TEST_MSG(max(abs(chip-255))==0,"nr: " << nr << " nc: "<< nc << " size: " << size << " angle: " << angle
+ << " error: " << max(abs(chip-255)) );
+ }
+
+
+ {
+ // Make sure that the interpolation in extract_image_chip() keeps stuff in the
+ // right places.
+
+ matrix<unsigned char> img(10,10), chip;
+ img = 0;
+ img(1,1) = 255;
+ img(8,8) = 255;
+
+ extract_image_chip(img, chip_details(get_rect(img), 9*9), chip);
+
+ DLIB_TEST(chip(1,1) == 195);
+ DLIB_TEST(chip(7,7) == 195);
+ chip(1,1) -= 195;
+ chip(7,7) -= 195;
+ DLIB_TEST(sum(matrix_cast<int>(chip)) == 0);
+ }
+
+
+
+ // Test the rotation ability of extract_image_chip(). Do this by drawing a line and
+ // then rotating it so it's horizontal. Check that it worked correctly by hough
+ // transforming it.
+ hough_transform ht(151);
+ matrix<unsigned char> img(300,300);
+ for (int iter = 0; iter < 1000; ++iter)
+ {
+ print_spinner();
+ img = 0;
+ const int len = 9000;
+ point cent = center(get_rect(img));
+ point l = cent + point(len,0);
+ point r = cent - point(len,0);
+ const double angle = rnd.get_random_double()*pi*3;
+ l = rotate_point(cent, l, angle);
+ r = rotate_point(cent, r, angle);
+ draw_line(img, l, r, 255);
+
+
+ const long wsize = rnd.get_random_32bit_number()%350 + 150;
+
+ matrix<unsigned char> temp;
+ chip_details details(centered_rect(center(get_rect(img)), wsize,wsize), chip_dims(ht.size(),ht.size()), angle);
+ extract_image_chip(img, details, temp);
+
+
+ matrix<long> tform;
+ ht(temp, get_rect(temp), tform);
+ std::pair<point,point> line = ht.get_line(max_point(tform));
+
+ DLIB_TEST_MSG(line.first.y() == line.second.y()," wsize: " << wsize);
+ DLIB_TEST(length(line.first-line.second) > 100);
+ DLIB_TEST(length((line.first+line.second)/2.0 - center(get_rect(temp))) <= 1);
+ }
+
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ class image_tester : public tester
+ {
+ public:
+ image_tester (
+ ) :
+ tester ("test_image",
+ "Runs tests on the image processing objects and functions.")
+ {}
+
+ void perform_test (
+ )
+ {
+ image_test();
+ run_hough_test();
+ test_extract_image_chips();
+ test_integral_image<long, unsigned char>();
+ test_integral_image<double, int>();
+ test_integral_image<long, unsigned char>();
+ test_integral_image<double, float>();
+
+ test_zero_border_pixels();
+
+ test_filtering<unsigned char>(false,1);
+ test_filtering<unsigned char>(true,1);
+ test_filtering<unsigned char>(false,3);
+ test_filtering<unsigned char>(true,3);
+ test_filtering<int>(false,1);
+ test_filtering<int>(true,1);
+ test_filtering<int>(false,3);
+ test_filtering<int>(true,3);
+
+ test_label_connected_blobs();
+ test_label_connected_blobs2();
+ test_downsampled_filtering();
+
+ test_segment_image<unsigned char>();
+ test_segment_image<unsigned short>();
+ test_segment_image<double>();
+ test_segment_image<int>();
+ test_segment_image<rgb_pixel>();
+ test_segment_image<rgb_alpha_pixel>();
+
+ test_dng_floats<float>(1);
+ test_dng_floats<double>(1);
+ test_dng_floats<long double>(1);
+ test_dng_floats<float>(1e30);
+ test_dng_floats<double>(1e30);
+ test_dng_floats<long double>(1e30);
+
+ test_dng_float_int();
+
+ dlib::rand rnd;
+ for (int i = 0; i < 10; ++i)
+ {
+ // the spatial filtering stuff is the same as xcorr_same when the filter
+ // sizes are odd.
+ test_filtering2(3,3,rnd);
+ test_filtering2(5,5,rnd);
+ test_filtering2(7,7,rnd);
+ }
+
+ for (int i = 0; i < 100; ++i)
+ test_filtering_center<float>(rnd);
+ for (int i = 0; i < 100; ++i)
+ test_filtering_center<int>(rnd);
+ for (int i = 0; i < 100; ++i)
+ test_separable_filtering_center<int>(rnd);
+ for (int i = 0; i < 100; ++i)
+ test_separable_filtering_center<float>(rnd);
+
+ {
+ print_spinner();
+ matrix<unsigned char> img(40,80);
+ assign_all_pixels(img, 255);
+ skeleton(img);
+
+ DLIB_TEST(sum(matrix_cast<int>(mat(img)))/255 == 40);
+ draw_line(img, point(20,19), point(59,19), 00);
+ DLIB_TEST(sum(matrix_cast<int>(mat(img))) == 0);
+ }
+ }
+ } a;
+
+}
+
+
+