summaryrefslogtreecommitdiffstats
path: root/src/collectors/python.d.plugin/changefinder
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:18 +0000
commit5da14042f70711ea5cf66e034699730335462f66 (patch)
tree0f6354ccac934ed87a2d555f45be4c831cf92f4a /src/collectors/python.d.plugin/changefinder
parentReleasing debian version 1.44.3-2. (diff)
downloadnetdata-5da14042f70711ea5cf66e034699730335462f66.tar.xz
netdata-5da14042f70711ea5cf66e034699730335462f66.zip
Merging upstream version 1.45.3+dfsg.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/collectors/python.d.plugin/changefinder')
l---------src/collectors/python.d.plugin/changefinder/README.md1
-rw-r--r--src/collectors/python.d.plugin/changefinder/changefinder.chart.py185
-rw-r--r--src/collectors/python.d.plugin/changefinder/changefinder.conf74
-rw-r--r--src/collectors/python.d.plugin/changefinder/integrations/python.d_changefinder.md217
-rw-r--r--src/collectors/python.d.plugin/changefinder/metadata.yaml212
5 files changed, 689 insertions, 0 deletions
diff --git a/src/collectors/python.d.plugin/changefinder/README.md b/src/collectors/python.d.plugin/changefinder/README.md
new file mode 120000
index 000000000..0ca704eb1
--- /dev/null
+++ b/src/collectors/python.d.plugin/changefinder/README.md
@@ -0,0 +1 @@
+integrations/python.d_changefinder.md \ No newline at end of file
diff --git a/src/collectors/python.d.plugin/changefinder/changefinder.chart.py b/src/collectors/python.d.plugin/changefinder/changefinder.chart.py
new file mode 100644
index 000000000..2a69cd9f5
--- /dev/null
+++ b/src/collectors/python.d.plugin/changefinder/changefinder.chart.py
@@ -0,0 +1,185 @@
+# -*- coding: utf-8 -*-
+# Description: changefinder netdata python.d module
+# Author: andrewm4894
+# SPDX-License-Identifier: GPL-3.0-or-later
+
+from json import loads
+import re
+
+from bases.FrameworkServices.UrlService import UrlService
+
+import numpy as np
+import changefinder
+from scipy.stats import percentileofscore
+
+update_every = 5
+disabled_by_default = True
+
+ORDER = [
+ 'scores',
+ 'flags'
+]
+
+CHARTS = {
+ 'scores': {
+ 'options': [None, 'ChangeFinder', 'score', 'Scores', 'changefinder.scores', 'line'],
+ 'lines': []
+ },
+ 'flags': {
+ 'options': [None, 'ChangeFinder', 'flag', 'Flags', 'changefinder.flags', 'stacked'],
+ 'lines': []
+ }
+}
+
+DEFAULT_PROTOCOL = 'http'
+DEFAULT_HOST = '127.0.0.1:19999'
+DEFAULT_CHARTS_REGEX = 'system.*'
+DEFAULT_MODE = 'per_chart'
+DEFAULT_CF_R = 0.5
+DEFAULT_CF_ORDER = 1
+DEFAULT_CF_SMOOTH = 15
+DEFAULT_CF_DIFF = False
+DEFAULT_CF_THRESHOLD = 99
+DEFAULT_N_SCORE_SAMPLES = 14400
+DEFAULT_SHOW_SCORES = False
+
+
+class Service(UrlService):
+ def __init__(self, configuration=None, name=None):
+ UrlService.__init__(self, configuration=configuration, name=name)
+ self.order = ORDER
+ self.definitions = CHARTS
+ self.protocol = self.configuration.get('protocol', DEFAULT_PROTOCOL)
+ self.host = self.configuration.get('host', DEFAULT_HOST)
+ self.url = '{}://{}/api/v1/allmetrics?format=json'.format(self.protocol, self.host)
+ self.charts_regex = re.compile(self.configuration.get('charts_regex', DEFAULT_CHARTS_REGEX))
+ self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
+ self.mode = self.configuration.get('mode', DEFAULT_MODE)
+ self.n_score_samples = int(self.configuration.get('n_score_samples', DEFAULT_N_SCORE_SAMPLES))
+ self.show_scores = int(self.configuration.get('show_scores', DEFAULT_SHOW_SCORES))
+ self.cf_r = float(self.configuration.get('cf_r', DEFAULT_CF_R))
+ self.cf_order = int(self.configuration.get('cf_order', DEFAULT_CF_ORDER))
+ self.cf_smooth = int(self.configuration.get('cf_smooth', DEFAULT_CF_SMOOTH))
+ self.cf_diff = bool(self.configuration.get('cf_diff', DEFAULT_CF_DIFF))
+ self.cf_threshold = float(self.configuration.get('cf_threshold', DEFAULT_CF_THRESHOLD))
+ self.collected_dims = {'scores': set(), 'flags': set()}
+ self.models = {}
+ self.x_latest = {}
+ self.scores_latest = {}
+ self.scores_samples = {}
+
+ def get_score(self, x, model):
+ """Update the score for the model based on most recent data, flag if it's percentile passes self.cf_threshold.
+ """
+
+ # get score
+ if model not in self.models:
+ # initialise empty model if needed
+ self.models[model] = changefinder.ChangeFinder(r=self.cf_r, order=self.cf_order, smooth=self.cf_smooth)
+ # if the update for this step fails then just fallback to last known score
+ try:
+ score = self.models[model].update(x)
+ self.scores_latest[model] = score
+ except Exception as _:
+ score = self.scores_latest.get(model, 0)
+ score = 0 if np.isnan(score) else score
+
+ # update sample scores used to calculate percentiles
+ if model in self.scores_samples:
+ self.scores_samples[model].append(score)
+ else:
+ self.scores_samples[model] = [score]
+ self.scores_samples[model] = self.scores_samples[model][-self.n_score_samples:]
+
+ # convert score to percentile
+ score = percentileofscore(self.scores_samples[model], score)
+
+ # flag based on score percentile
+ flag = 1 if score >= self.cf_threshold else 0
+
+ return score, flag
+
+ def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
+ """If dimension not in chart then add it.
+ """
+ if not self.charts:
+ return
+
+ for dim in data:
+ if dim not in self.collected_dims[chart]:
+ self.collected_dims[chart].add(dim)
+ self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])
+
+ for dim in list(self.collected_dims[chart]):
+ if dim not in data:
+ self.collected_dims[chart].remove(dim)
+ self.charts[chart].del_dimension(dim, hide=False)
+
+ def diff(self, x, model):
+ """Take difference of data.
+ """
+ x_diff = x - self.x_latest.get(model, 0)
+ self.x_latest[model] = x
+ x = x_diff
+ return x
+
+ def _get_data(self):
+
+ # pull data from self.url
+ raw_data = self._get_raw_data()
+ if raw_data is None:
+ return None
+
+ raw_data = loads(raw_data)
+
+ # filter to just the data for the charts specified
+ charts_in_scope = list(filter(self.charts_regex.match, raw_data.keys()))
+ charts_in_scope = [c for c in charts_in_scope if c not in self.charts_to_exclude]
+
+ data_score = {}
+ data_flag = {}
+
+ # process each chart
+ for chart in charts_in_scope:
+
+ if self.mode == 'per_chart':
+
+ # average dims on chart and run changefinder on that average
+ x = [raw_data[chart]['dimensions'][dim]['value'] for dim in raw_data[chart]['dimensions']]
+ x = [x for x in x if x is not None]
+
+ if len(x) > 0:
+
+ x = sum(x) / len(x)
+ x = self.diff(x, chart) if self.cf_diff else x
+
+ score, flag = self.get_score(x, chart)
+ if self.show_scores:
+ data_score['{}_score'.format(chart)] = score * 100
+ data_flag[chart] = flag
+
+ else:
+
+ # run changefinder on each individual dim
+ for dim in raw_data[chart]['dimensions']:
+
+ chart_dim = '{}|{}'.format(chart, dim)
+
+ x = raw_data[chart]['dimensions'][dim]['value']
+ x = x if x else 0
+ x = self.diff(x, chart_dim) if self.cf_diff else x
+
+ score, flag = self.get_score(x, chart_dim)
+ if self.show_scores:
+ data_score['{}_score'.format(chart_dim)] = score * 100
+ data_flag[chart_dim] = flag
+
+ self.validate_charts('flags', data_flag)
+
+ if self.show_scores & len(data_score) > 0:
+ data_score['average_score'] = sum(data_score.values()) / len(data_score)
+ self.validate_charts('scores', data_score, divisor=100)
+
+ data = {**data_score, **data_flag}
+
+ return data
diff --git a/src/collectors/python.d.plugin/changefinder/changefinder.conf b/src/collectors/python.d.plugin/changefinder/changefinder.conf
new file mode 100644
index 000000000..56a681f1e
--- /dev/null
+++ b/src/collectors/python.d.plugin/changefinder/changefinder.conf
@@ -0,0 +1,74 @@
+# netdata python.d.plugin configuration for example
+#
+# This file is in YaML format. Generally the format is:
+#
+# name: value
+#
+# There are 2 sections:
+# - global variables
+# - one or more JOBS
+#
+# JOBS allow you to collect values from multiple sources.
+# Each source will have its own set of charts.
+#
+# JOB parameters have to be indented (using spaces only, example below).
+
+# ----------------------------------------------------------------------
+# Global Variables
+# These variables set the defaults for all JOBs, however each JOB
+# may define its own, overriding the defaults.
+
+# update_every sets the default data collection frequency.
+# If unset, the python.d.plugin default is used.
+# update_every: 5
+
+# priority controls the order of charts at the netdata dashboard.
+# Lower numbers move the charts towards the top of the page.
+# If unset, the default for python.d.plugin is used.
+# priority: 60000
+
+# penalty indicates whether to apply penalty to update_every in case of failures.
+# Penalty will increase every 5 failed updates in a row. Maximum penalty is 10 minutes.
+# penalty: yes
+
+# autodetection_retry sets the job re-check interval in seconds.
+# The job is not deleted if check fails.
+# Attempts to start the job are made once every autodetection_retry.
+# This feature is disabled by default.
+# autodetection_retry: 0
+
+# ----------------------------------------------------------------------
+# JOBS (data collection sources)
+
+local:
+
+ # A friendly name for this job.
+ name: 'local'
+
+ # What host to pull data from.
+ host: '127.0.0.1:19999'
+
+ # What charts to pull data for - A regex like 'system\..*|' or 'system\..*|apps.cpu|apps.mem' etc.
+ charts_regex: 'system\..*'
+
+ # Charts to exclude, useful if you would like to exclude some specific charts.
+ # Note: should be a ',' separated string like 'chart.name,chart.name'.
+ charts_to_exclude: ''
+
+ # Get ChangeFinder scores 'per_dim' or 'per_chart'.
+ mode: 'per_chart'
+
+ # Default parameters that can be passed to the changefinder library.
+ cf_r: 0.5
+ cf_order: 1
+ cf_smooth: 15
+
+ # The percentile above which scores will be flagged.
+ cf_threshold: 99
+
+ # The number of recent scores to use when calculating the percentile of the changefinder score.
+ n_score_samples: 14400
+
+ # Set to true if you also want to chart the percentile scores in addition to the flags.
+ # Mainly useful for debugging or if you want to dive deeper on how the scores are evolving over time.
+ show_scores: false
diff --git a/src/collectors/python.d.plugin/changefinder/integrations/python.d_changefinder.md b/src/collectors/python.d.plugin/changefinder/integrations/python.d_changefinder.md
new file mode 100644
index 000000000..894e8c41d
--- /dev/null
+++ b/src/collectors/python.d.plugin/changefinder/integrations/python.d_changefinder.md
@@ -0,0 +1,217 @@
+<!--startmeta
+custom_edit_url: "https://github.com/netdata/netdata/edit/master/src/collectors/python.d.plugin/changefinder/README.md"
+meta_yaml: "https://github.com/netdata/netdata/edit/master/src/collectors/python.d.plugin/changefinder/metadata.yaml"
+sidebar_label: "python.d changefinder"
+learn_status: "Published"
+learn_rel_path: "Collecting Metrics/Other"
+most_popular: False
+message: "DO NOT EDIT THIS FILE DIRECTLY, IT IS GENERATED BY THE COLLECTOR'S metadata.yaml FILE"
+endmeta-->
+
+# python.d changefinder
+
+Plugin: python.d.plugin
+Module: changefinder
+
+<img src="https://img.shields.io/badge/maintained%20by-Netdata-%2300ab44" />
+
+## Overview
+
+This collector uses the Python [changefinder](https://github.com/shunsukeaihara/changefinder) library to
+perform [online](https://en.wikipedia.org/wiki/Online_machine_learning) [changepoint detection](https://en.wikipedia.org/wiki/Change_detection)
+on your Netdata charts and/or dimensions.
+
+
+Instead of this collector just _collecting_ data, it also does some computation on the data it collects to return a changepoint score for each chart or dimension you configure it to work on. This is an [online](https://en.wikipedia.org/wiki/Online_machine_learning) machine learning algorithm so there is no batch step to train the model, instead it evolves over time as more data arrives. That makes this particular algorithm quite cheap to compute at each step of data collection (see the notes section below for more details) and it should scale fairly well to work on lots of charts or hosts (if running on a parent node for example).
+### Notes - It may take an hour or two (depending on your choice of `n_score_samples`) for the collector to 'settle' into it's
+ typical behaviour in terms of the trained models and scores you will see in the normal running of your node. Mainly
+ this is because it can take a while to build up a proper distribution of previous scores in over to convert the raw
+ score returned by the ChangeFinder algorithm into a percentile based on the most recent `n_score_samples` that have
+ already been produced. So when you first turn the collector on, it will have a lot of flags in the beginning and then
+ should 'settle down' once it has built up enough history. This is a typical characteristic of online machine learning
+ approaches which need some initial window of time before they can be useful.
+- As this collector does most of the work in Python itself, you may want to try it out first on a test or development
+ system to get a sense of its performance characteristics on a node similar to where you would like to use it.
+- On a development n1-standard-2 (2 vCPUs, 7.5 GB memory) vm running Ubuntu 18.04 LTS and not doing any work some of the
+ typical performance characteristics we saw from running this collector (with defaults) were:
+ - A runtime (`netdata.runtime_changefinder`) of ~30ms.
+ - Typically ~1% additional cpu usage.
+ - About ~85mb of ram (`apps.mem`) being continually used by the `python.d.plugin` under default configuration.
+
+
+This collector is supported on all platforms.
+
+This collector supports collecting metrics from multiple instances of this integration, including remote instances.
+
+
+### Default Behavior
+
+#### Auto-Detection
+
+By default this collector will work over all `system.*` charts.
+
+#### Limits
+
+The default configuration for this integration does not impose any limits on data collection.
+
+#### Performance Impact
+
+The default configuration for this integration is not expected to impose a significant performance impact on the system.
+
+
+## Metrics
+
+Metrics grouped by *scope*.
+
+The scope defines the instance that the metric belongs to. An instance is uniquely identified by a set of labels.
+
+
+
+### Per python.d changefinder instance
+
+
+
+This scope has no labels.
+
+Metrics:
+
+| Metric | Dimensions | Unit |
+|:------|:----------|:----|
+| changefinder.scores | a dimension per chart | score |
+| changefinder.flags | a dimension per chart | flag |
+
+
+
+## Alerts
+
+There are no alerts configured by default for this integration.
+
+
+## Setup
+
+### Prerequisites
+
+#### Python Requirements
+
+This collector will only work with Python 3 and requires the packages below be installed.
+
+```bash
+# become netdata user
+sudo su -s /bin/bash netdata
+# install required packages for the netdata user
+pip3 install --user numpy==1.19.5 changefinder==0.03 scipy==1.5.4
+```
+
+**Note**: if you need to tell Netdata to use Python 3 then you can pass the below command in the python plugin section
+of your `netdata.conf` file.
+
+```yaml
+[ plugin:python.d ]
+ # update every = 1
+ command options = -ppython3
+```
+
+
+
+### Configuration
+
+#### File
+
+The configuration file name for this integration is `python.d/changefinder.conf`.
+
+
+You can edit the configuration file using the `edit-config` script from the
+Netdata [config directory](https://github.com/netdata/netdata/blob/master/docs/netdata-agent/configuration.md#the-netdata-config-directory).
+
+```bash
+cd /etc/netdata 2>/dev/null || cd /opt/netdata/etc/netdata
+sudo ./edit-config python.d/changefinder.conf
+```
+#### Options
+
+There are 2 sections:
+
+* Global variables
+* One or more JOBS that can define multiple different instances to monitor.
+
+The following options can be defined globally: priority, penalty, autodetection_retry, update_every, but can also be defined per JOB to override the global values.
+
+Additionally, the following collapsed table contains all the options that can be configured inside a JOB definition.
+
+Every configuration JOB starts with a `job_name` value which will appear in the dashboard, unless a `name` parameter is specified.
+
+
+<details><summary>Config options</summary>
+
+| Name | Description | Default | Required |
+|:----|:-----------|:-------|:--------:|
+| charts_regex | what charts to pull data for - A regex like `system\..*/` or `system\..*/apps.cpu/apps.mem` etc. | system\..* | yes |
+| charts_to_exclude | charts to exclude, useful if you would like to exclude some specific charts. note: should be a ',' separated string like 'chart.name,chart.name'. | | no |
+| mode | get ChangeFinder scores 'per_dim' or 'per_chart'. | per_chart | yes |
+| cf_r | default parameters that can be passed to the changefinder library. | 0.5 | no |
+| cf_order | default parameters that can be passed to the changefinder library. | 1 | no |
+| cf_smooth | default parameters that can be passed to the changefinder library. | 15 | no |
+| cf_threshold | the percentile above which scores will be flagged. | 99 | no |
+| n_score_samples | the number of recent scores to use when calculating the percentile of the changefinder score. | 14400 | no |
+| show_scores | set to true if you also want to chart the percentile scores in addition to the flags. (mainly useful for debugging or if you want to dive deeper on how the scores are evolving over time) | no | no |
+
+</details>
+
+#### Examples
+
+##### Default
+
+Default configuration.
+
+```yaml
+local:
+ name: 'local'
+ host: '127.0.0.1:19999'
+ charts_regex: 'system\..*'
+ charts_to_exclude: ''
+ mode: 'per_chart'
+ cf_r: 0.5
+ cf_order: 1
+ cf_smooth: 15
+ cf_threshold: 99
+ n_score_samples: 14400
+ show_scores: false
+
+```
+
+
+## Troubleshooting
+
+### Debug Mode
+
+To troubleshoot issues with the `changefinder` collector, run the `python.d.plugin` with the debug option enabled. The output
+should give you clues as to why the collector isn't working.
+
+- Navigate to the `plugins.d` directory, usually at `/usr/libexec/netdata/plugins.d/`. If that's not the case on
+ your system, open `netdata.conf` and look for the `plugins` setting under `[directories]`.
+
+ ```bash
+ cd /usr/libexec/netdata/plugins.d/
+ ```
+
+- Switch to the `netdata` user.
+
+ ```bash
+ sudo -u netdata -s
+ ```
+
+- Run the `python.d.plugin` to debug the collector:
+
+ ```bash
+ ./python.d.plugin changefinder debug trace
+ ```
+
+### Debug Mode
+
+
+
+### Log Messages
+
+
+
+
diff --git a/src/collectors/python.d.plugin/changefinder/metadata.yaml b/src/collectors/python.d.plugin/changefinder/metadata.yaml
new file mode 100644
index 000000000..170d9146a
--- /dev/null
+++ b/src/collectors/python.d.plugin/changefinder/metadata.yaml
@@ -0,0 +1,212 @@
+plugin_name: python.d.plugin
+modules:
+ - meta:
+ plugin_name: python.d.plugin
+ module_name: changefinder
+ monitored_instance:
+ name: python.d changefinder
+ link: ""
+ categories:
+ - data-collection.other
+ icon_filename: ""
+ related_resources:
+ integrations:
+ list: []
+ info_provided_to_referring_integrations:
+ description: ""
+ keywords:
+ - change detection
+ - anomaly detection
+ - machine learning
+ - ml
+ most_popular: false
+ overview:
+ data_collection:
+ metrics_description: |
+ This collector uses the Python [changefinder](https://github.com/shunsukeaihara/changefinder) library to
+ perform [online](https://en.wikipedia.org/wiki/Online_machine_learning) [changepoint detection](https://en.wikipedia.org/wiki/Change_detection)
+ on your Netdata charts and/or dimensions.
+ method_description: >
+ Instead of this collector just _collecting_ data, it also does some computation on the data it collects to return a
+ changepoint score for each chart or dimension you configure it to work on. This is
+ an [online](https://en.wikipedia.org/wiki/Online_machine_learning) machine learning algorithm so there is no batch step
+ to train the model, instead it evolves over time as more data arrives. That makes this particular algorithm quite cheap
+ to compute at each step of data collection (see the notes section below for more details) and it should scale fairly
+ well to work on lots of charts or hosts (if running on a parent node for example).
+
+ ### Notes
+ - It may take an hour or two (depending on your choice of `n_score_samples`) for the collector to 'settle' into it's
+ typical behaviour in terms of the trained models and scores you will see in the normal running of your node. Mainly
+ this is because it can take a while to build up a proper distribution of previous scores in over to convert the raw
+ score returned by the ChangeFinder algorithm into a percentile based on the most recent `n_score_samples` that have
+ already been produced. So when you first turn the collector on, it will have a lot of flags in the beginning and then
+ should 'settle down' once it has built up enough history. This is a typical characteristic of online machine learning
+ approaches which need some initial window of time before they can be useful.
+ - As this collector does most of the work in Python itself, you may want to try it out first on a test or development
+ system to get a sense of its performance characteristics on a node similar to where you would like to use it.
+ - On a development n1-standard-2 (2 vCPUs, 7.5 GB memory) vm running Ubuntu 18.04 LTS and not doing any work some of the
+ typical performance characteristics we saw from running this collector (with defaults) were:
+ - A runtime (`netdata.runtime_changefinder`) of ~30ms.
+ - Typically ~1% additional cpu usage.
+ - About ~85mb of ram (`apps.mem`) being continually used by the `python.d.plugin` under default configuration.
+ supported_platforms:
+ include: []
+ exclude: []
+ multi_instance: true
+ additional_permissions:
+ description: ""
+ default_behavior:
+ auto_detection:
+ description: "By default this collector will work over all `system.*` charts."
+ limits:
+ description: ""
+ performance_impact:
+ description: ""
+ setup:
+ prerequisites:
+ list:
+ - title: Python Requirements
+ description: |
+ This collector will only work with Python 3 and requires the packages below be installed.
+
+ ```bash
+ # become netdata user
+ sudo su -s /bin/bash netdata
+ # install required packages for the netdata user
+ pip3 install --user numpy==1.19.5 changefinder==0.03 scipy==1.5.4
+ ```
+
+ **Note**: if you need to tell Netdata to use Python 3 then you can pass the below command in the python plugin section
+ of your `netdata.conf` file.
+
+ ```yaml
+ [ plugin:python.d ]
+ # update every = 1
+ command options = -ppython3
+ ```
+ configuration:
+ file:
+ name: python.d/changefinder.conf
+ description: ""
+ options:
+ description: |
+ There are 2 sections:
+
+ * Global variables
+ * One or more JOBS that can define multiple different instances to monitor.
+
+ The following options can be defined globally: priority, penalty, autodetection_retry, update_every, but can also be defined per JOB to override the global values.
+
+ Additionally, the following collapsed table contains all the options that can be configured inside a JOB definition.
+
+ Every configuration JOB starts with a `job_name` value which will appear in the dashboard, unless a `name` parameter is specified.
+ folding:
+ title: "Config options"
+ enabled: true
+ list:
+ - name: charts_regex
+ description: what charts to pull data for - A regex like `system\..*|` or `system\..*|apps.cpu|apps.mem` etc.
+ default_value: "system\\..*"
+ required: true
+ - name: charts_to_exclude
+ description: |
+ charts to exclude, useful if you would like to exclude some specific charts.
+ note: should be a ',' separated string like 'chart.name,chart.name'.
+ default_value: ""
+ required: false
+ - name: mode
+ description: get ChangeFinder scores 'per_dim' or 'per_chart'.
+ default_value: "per_chart"
+ required: true
+ - name: cf_r
+ description: default parameters that can be passed to the changefinder library.
+ default_value: 0.5
+ required: false
+ - name: cf_order
+ description: default parameters that can be passed to the changefinder library.
+ default_value: 1
+ required: false
+ - name: cf_smooth
+ description: default parameters that can be passed to the changefinder library.
+ default_value: 15
+ required: false
+ - name: cf_threshold
+ description: the percentile above which scores will be flagged.
+ default_value: 99
+ required: false
+ - name: n_score_samples
+ description: the number of recent scores to use when calculating the percentile of the changefinder score.
+ default_value: 14400
+ required: false
+ - name: show_scores
+ description: |
+ set to true if you also want to chart the percentile scores in addition to the flags. (mainly useful for debugging or if you want to dive deeper on how the scores are evolving over time)
+ default_value: false
+ required: false
+ examples:
+ folding:
+ enabled: true
+ title: "Config"
+ list:
+ - name: Default
+ description: Default configuration.
+ folding:
+ enabled: false
+ config: |
+ local:
+ name: 'local'
+ host: '127.0.0.1:19999'
+ charts_regex: 'system\..*'
+ charts_to_exclude: ''
+ mode: 'per_chart'
+ cf_r: 0.5
+ cf_order: 1
+ cf_smooth: 15
+ cf_threshold: 99
+ n_score_samples: 14400
+ show_scores: false
+ troubleshooting:
+ problems:
+ list:
+ - name: "Debug Mode"
+ description: |
+ If you would like to log in as `netdata` user and run the collector in debug mode to see more detail.
+
+ ```bash
+ # become netdata user
+ sudo su -s /bin/bash netdata
+ # run collector in debug using `nolock` option if netdata is already running the collector itself.
+ /usr/libexec/netdata/plugins.d/python.d.plugin changefinder debug trace nolock
+ ```
+ - name: "Log Messages"
+ description: |
+ To see any relevant log messages you can use a command like below.
+
+ ```bash
+ grep 'changefinder' /var/log/netdata/error.log
+ grep 'changefinder' /var/log/netdata/collector.log
+ ```
+ alerts: []
+ metrics:
+ folding:
+ title: Metrics
+ enabled: false
+ description: ""
+ availability: []
+ scopes:
+ - name: global
+ description: ""
+ labels: []
+ metrics:
+ - name: changefinder.scores
+ description: ChangeFinder
+ unit: "score"
+ chart_type: line
+ dimensions:
+ - name: a dimension per chart
+ - name: changefinder.flags
+ description: ChangeFinder
+ unit: "flag"
+ chart_type: stacked
+ dimensions:
+ - name: a dimension per chart