summaryrefslogtreecommitdiffstats
path: root/src/ml/dlib/examples/dnn_introduction2_ex.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:18 +0000
commit5da14042f70711ea5cf66e034699730335462f66 (patch)
tree0f6354ccac934ed87a2d555f45be4c831cf92f4a /src/ml/dlib/examples/dnn_introduction2_ex.cpp
parentReleasing debian version 1.44.3-2. (diff)
downloadnetdata-5da14042f70711ea5cf66e034699730335462f66.tar.xz
netdata-5da14042f70711ea5cf66e034699730335462f66.zip
Merging upstream version 1.45.3+dfsg.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/ml/dlib/examples/dnn_introduction2_ex.cpp')
-rw-r--r--src/ml/dlib/examples/dnn_introduction2_ex.cpp388
1 files changed, 388 insertions, 0 deletions
diff --git a/src/ml/dlib/examples/dnn_introduction2_ex.cpp b/src/ml/dlib/examples/dnn_introduction2_ex.cpp
new file mode 100644
index 000000000..70b6edee7
--- /dev/null
+++ b/src/ml/dlib/examples/dnn_introduction2_ex.cpp
@@ -0,0 +1,388 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This is an example illustrating the use of the deep learning tools from the
+ dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp
+ example. So in this example program I'm going to go over a number of more
+ advanced parts of the API, including:
+ - Using multiple GPUs
+ - Training on large datasets that don't fit in memory
+ - Defining large networks
+ - Accessing and configuring layers in a network
+*/
+
+#include <dlib/dnn.h>
+#include <iostream>
+#include <dlib/data_io.h>
+
+using namespace std;
+using namespace dlib;
+
+// ----------------------------------------------------------------------------------------
+
+// Let's start by showing how you can conveniently define large and complex
+// networks. The most important tool for doing this are C++'s alias templates.
+// These let us define new layer types that are combinations of a bunch of other
+// layers. These will form the building blocks for more complex networks.
+
+// So let's begin by defining the building block of a residual network (see
+// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
+// and Sun). We are going to decompose the residual block into a few alias
+// statements. First, we define the core block.
+
+// Here we have parameterized the "block" layer on a BN layer (nominally some
+// kind of batch normalization), the number of filter outputs N, and the stride
+// the block operates at.
+template <
+ int N,
+ template <typename> class BN,
+ int stride,
+ typename SUBNET
+ >
+using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
+
+// Next, we need to define the skip layer mechanism used in the residual network
+// paper. They create their blocks by adding the input tensor to the output of
+// each block. So we define an alias statement that takes a block and wraps it
+// with this skip/add structure.
+
+// Note the tag layer. This layer doesn't do any computation. It exists solely
+// so other layers can refer to it. In this case, the add_prev1 layer looks for
+// the tag1 layer and will take the tag1 output and add it to the input of the
+// add_prev1 layer. This combination allows us to implement skip and residual
+// style networks. We have also set the block stride to 1 in this statement.
+// The significance of that is explained next.
+template <
+ template <int,template<typename>class,int,typename> class block,
+ int N,
+ template<typename>class BN,
+ typename SUBNET
+ >
+using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
+
+// Some residual blocks do downsampling. They do this by using a stride of 2
+// instead of 1. However, when downsampling we need to also take care to
+// downsample the part of the network that adds the original input to the output
+// or the sizes won't make sense (the network will still run, but the results
+// aren't as good). So here we define a downsampling version of residual. In
+// it, we make use of the skip1 layer. This layer simply outputs whatever is
+// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
+// skip3, etc. in dlib) allows you to create branching network structures.
+
+// residual_down creates a network structure like this:
+/*
+ input from SUBNET
+ / \
+ / \
+ block downsample(using avg_pool)
+ \ /
+ \ /
+ add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
+ |
+ output
+*/
+template <
+ template <int,template<typename>class,int,typename> class block,
+ int N,
+ template<typename>class BN,
+ typename SUBNET
+ >
+using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
+
+
+
+// Now we can define 4 different residual blocks we will use in this example.
+// The first two are non-downsampling residual blocks while the last two
+// downsample. Also, res and res_down use batch normalization while ares and
+// ares_down have had the batch normalization replaced with simple affine
+// layers. We will use the affine version of the layers when testing our
+// networks.
+template <typename SUBNET> using res = relu<residual<block,8,bn_con,SUBNET>>;
+template <typename SUBNET> using ares = relu<residual<block,8,affine,SUBNET>>;
+template <typename SUBNET> using res_down = relu<residual_down<block,8,bn_con,SUBNET>>;
+template <typename SUBNET> using ares_down = relu<residual_down<block,8,affine,SUBNET>>;
+
+
+
+// Now that we have these convenient aliases, we can define a residual network
+// without a lot of typing. Note the use of a repeat layer. This special layer
+// type allows us to type repeat<9,res,SUBNET> instead of
+// res<res<res<res<res<res<res<res<res<SUBNET>>>>>>>>>. It will also prevent
+// the compiler from complaining about super deep template nesting when creating
+// large networks.
+const unsigned long number_of_classes = 10;
+using net_type = loss_multiclass_log<fc<number_of_classes,
+ avg_pool_everything<
+ res<res<res<res_down<
+ repeat<9,res, // repeat this layer 9 times
+ res_down<
+ res<
+ input<matrix<unsigned char>>
+ >>>>>>>>>>;
+
+
+// And finally, let's define a residual network building block that uses
+// parametric ReLU units instead of regular ReLU.
+template <typename SUBNET>
+using pres = prelu<add_prev1<bn_con<con<8,3,3,1,1,prelu<bn_con<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
+
+// ----------------------------------------------------------------------------------------
+
+int main(int argc, char** argv) try
+{
+ if (argc != 2)
+ {
+ cout << "This example needs the MNIST dataset to run!" << endl;
+ cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
+ cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
+ cout << "put them in a folder. Then give that folder as input to this program." << endl;
+ return 1;
+ }
+
+ std::vector<matrix<unsigned char>> training_images;
+ std::vector<unsigned long> training_labels;
+ std::vector<matrix<unsigned char>> testing_images;
+ std::vector<unsigned long> testing_labels;
+ load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
+
+
+ // dlib uses cuDNN under the covers. One of the features of cuDNN is the
+ // option to use slower methods that use less RAM or faster methods that use
+ // a lot of RAM. If you find that you run out of RAM on your graphics card
+ // then you can call this function and we will request the slower but more
+ // RAM frugal cuDNN algorithms.
+ set_dnn_prefer_smallest_algorithms();
+
+
+ // Create a network as defined above. This network will produce 10 outputs
+ // because that's how we defined net_type. However, fc layers can have the
+ // number of outputs they produce changed at runtime.
+ net_type net;
+ // So if you wanted to use the same network but override the number of
+ // outputs at runtime you can do so like this:
+ net_type net2(num_fc_outputs(15));
+
+ // Now, let's imagine we wanted to replace some of the relu layers with
+ // prelu layers. We might do it like this:
+ using net_type2 = loss_multiclass_log<fc<number_of_classes,
+ avg_pool_everything<
+ pres<res<res<res_down< // 2 prelu layers here
+ tag4<repeat<9,pres, // 9 groups, each containing 2 prelu layers
+ res_down<
+ res<
+ input<matrix<unsigned char>>
+ >>>>>>>>>>>;
+
+ // prelu layers have a floating point parameter. If you want to set it to
+ // something other than its default value you can do so like this:
+ net_type2 pnet(prelu_(0.2),
+ prelu_(0.25),
+ repeat_group(prelu_(0.3),prelu_(0.4)) // Initialize all the prelu instances in the repeat
+ // layer. repeat_group() is needed to group the
+ // things that are part of repeat's block.
+ );
+ // As you can see, a network will greedily assign things given to its
+ // constructor to the layers inside itself. The assignment is done in the
+ // order the layers are defined, but it will skip layers where the
+ // assignment doesn't make sense.
+
+ // Now let's print the details of the pnet to the screen and inspect it.
+ cout << "The pnet has " << pnet.num_layers << " layers in it." << endl;
+ cout << pnet << endl;
+ // These print statements will output this (I've truncated it since it's
+ // long, but you get the idea):
+ /*
+ The pnet has 131 layers in it.
+ layer<0> loss_multiclass_log
+ layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<2> avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
+ layer<3> prelu (initial_param_value=0.2)
+ layer<4> add_prev1
+ layer<5> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<7> prelu (initial_param_value=0.25)
+ layer<8> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<10> tag1
+ ...
+ layer<34> relu
+ layer<35> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<36> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<37> tag1
+ layer<38> tag4
+ layer<39> prelu (initial_param_value=0.3)
+ layer<40> add_prev1
+ layer<41> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ ...
+ layer<118> relu
+ layer<119> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<120> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<121> tag1
+ layer<122> relu
+ layer<123> add_prev1
+ layer<124> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<125> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<126> relu
+ layer<127> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
+ layer<128> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
+ layer<129> tag1
+ layer<130> input<matrix>
+ */
+
+ // Now that we know the index numbers for each layer, we can access them
+ // individually using layer<index>(pnet). For example, to access the output
+ // tensor for the first prelu layer we can say:
+ layer<3>(pnet).get_output();
+ // Or to print the prelu parameter for layer 7 we can say:
+ cout << "prelu param: "<< layer<7>(pnet).layer_details().get_initial_param_value() << endl;
+
+ // We can also access layers by their type. This next statement finds the
+ // first tag1 layer in pnet, and is therefore equivalent to calling
+ // layer<10>(pnet):
+ layer<tag1>(pnet);
+ // The tag layers don't do anything at all and exist simply so you can tag
+ // parts of your network and access them by layer<tag>(). You can also
+ // index relative to a tag. So for example, to access the layer immediately
+ // after tag4 you can say:
+ layer<tag4,1>(pnet); // Equivalent to layer<38+1>(pnet).
+
+ // Or to access the layer 2 layers after tag4:
+ layer<tag4,2>(pnet);
+ // Tagging is a very useful tool for making complex network structures. For
+ // example, the add_prev1 layer is implemented internally by using a call to
+ // layer<tag1>().
+
+
+
+ // Ok, that's enough talk about defining and inspecting networks. Let's
+ // talk about training networks!
+
+ // The dnn_trainer will use SGD by default, but you can tell it to use
+ // different solvers like adam with a weight decay of 0.0005 and the given
+ // momentum parameters.
+ dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999));
+ // Also, if you have multiple graphics cards you can tell the trainer to use
+ // them together to make the training faster. For example, replacing the
+ // above constructor call with this one would cause it to use GPU cards 0
+ // and 1.
+ //dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
+
+ trainer.be_verbose();
+ // While the trainer is running it keeps an eye on the training error. If
+ // it looks like the error hasn't decreased for the last 2000 iterations it
+ // will automatically reduce the learning rate by 0.1. You can change these
+ // default parameters to some other values by calling these functions. Or
+ // disable the automatic shrinking entirely by setting the shrink factor to 1.
+ trainer.set_iterations_without_progress_threshold(2000);
+ trainer.set_learning_rate_shrink_factor(0.1);
+ // The learning rate will start at 1e-3.
+ trainer.set_learning_rate(1e-3);
+ trainer.set_synchronization_file("mnist_resnet_sync", std::chrono::seconds(100));
+
+
+ // Now, what if your training dataset is so big it doesn't fit in RAM? You
+ // make mini-batches yourself, any way you like, and you send them to the
+ // trainer by repeatedly calling trainer.train_one_step().
+ //
+ // For example, the loop below stream MNIST data to out trainer.
+ std::vector<matrix<unsigned char>> mini_batch_samples;
+ std::vector<unsigned long> mini_batch_labels;
+ dlib::rand rnd(time(0));
+ // Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
+ // Given our settings, this means it will stop training after it has shrunk the
+ // learning rate 3 times.
+ while(trainer.get_learning_rate() >= 1e-6)
+ {
+ mini_batch_samples.clear();
+ mini_batch_labels.clear();
+
+ // make a 128 image mini-batch
+ while(mini_batch_samples.size() < 128)
+ {
+ auto idx = rnd.get_random_32bit_number()%training_images.size();
+ mini_batch_samples.push_back(training_images[idx]);
+ mini_batch_labels.push_back(training_labels[idx]);
+ }
+
+ // Tell the trainer to update the network given this mini-batch
+ trainer.train_one_step(mini_batch_samples, mini_batch_labels);
+
+ // You can also feed validation data into the trainer by periodically
+ // calling trainer.test_one_step(samples,labels). Unlike train_one_step(),
+ // test_one_step() doesn't modify the network, it only computes the testing
+ // error which it records internally. This testing error will then be print
+ // in the verbose logging and will also determine when the trainer's
+ // automatic learning rate shrinking happens. Therefore, test_one_step()
+ // can be used to perform automatic early stopping based on held out data.
+ }
+
+ // When you call train_one_step(), the trainer will do its processing in a
+ // separate thread. This allows the main thread to work on loading data
+ // while the trainer is busy executing the mini-batches in parallel.
+ // However, this also means we need to wait for any mini-batches that are
+ // still executing to stop before we mess with the net object. Calling
+ // get_net() performs the necessary synchronization.
+ trainer.get_net();
+
+
+ net.clean();
+ serialize("mnist_res_network.dat") << net;
+
+
+ // Now we have a trained network. However, it has batch normalization
+ // layers in it. As is customary, we should replace these with simple
+ // affine layers before we use the network. This can be accomplished by
+ // making a network type which is identical to net_type but with the batch
+ // normalization layers replaced with affine. For example:
+ using test_net_type = loss_multiclass_log<fc<number_of_classes,
+ avg_pool_everything<
+ ares<ares<ares<ares_down<
+ repeat<9,ares,
+ ares_down<
+ ares<
+ input<matrix<unsigned char>>
+ >>>>>>>>>>;
+ // Then we can simply assign our trained net to our testing net.
+ test_net_type tnet = net;
+ // Or if you only had a file with your trained network you could deserialize
+ // it directly into your testing network.
+ deserialize("mnist_res_network.dat") >> tnet;
+
+
+ // And finally, we can run the testing network over our data.
+
+ std::vector<unsigned long> predicted_labels = tnet(training_images);
+ int num_right = 0;
+ int num_wrong = 0;
+ for (size_t i = 0; i < training_images.size(); ++i)
+ {
+ if (predicted_labels[i] == training_labels[i])
+ ++num_right;
+ else
+ ++num_wrong;
+
+ }
+ cout << "training num_right: " << num_right << endl;
+ cout << "training num_wrong: " << num_wrong << endl;
+ cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
+
+ predicted_labels = tnet(testing_images);
+ num_right = 0;
+ num_wrong = 0;
+ for (size_t i = 0; i < testing_images.size(); ++i)
+ {
+ if (predicted_labels[i] == testing_labels[i])
+ ++num_right;
+ else
+ ++num_wrong;
+
+ }
+ cout << "testing num_right: " << num_right << endl;
+ cout << "testing num_wrong: " << num_wrong << endl;
+ cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
+
+}
+catch(std::exception& e)
+{
+ cout << e.what() << endl;
+}
+