summaryrefslogtreecommitdiffstats
path: root/src/web/api/queries/weights.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 12:08:18 +0000
commit5da14042f70711ea5cf66e034699730335462f66 (patch)
tree0f6354ccac934ed87a2d555f45be4c831cf92f4a /src/web/api/queries/weights.c
parentReleasing debian version 1.44.3-2. (diff)
downloadnetdata-5da14042f70711ea5cf66e034699730335462f66.tar.xz
netdata-5da14042f70711ea5cf66e034699730335462f66.zip
Merging upstream version 1.45.3+dfsg.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/web/api/queries/weights.c')
-rw-r--r--src/web/api/queries/weights.c2105
1 files changed, 2105 insertions, 0 deletions
diff --git a/src/web/api/queries/weights.c b/src/web/api/queries/weights.c
new file mode 100644
index 000000000..44928fea8
--- /dev/null
+++ b/src/web/api/queries/weights.c
@@ -0,0 +1,2105 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#include "daemon/common.h"
+#include "database/KolmogorovSmirnovDist.h"
+
+#define MAX_POINTS 10000
+int enable_metric_correlations = CONFIG_BOOLEAN_YES;
+int metric_correlations_version = 1;
+WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2;
+
+typedef struct weights_stats {
+ NETDATA_DOUBLE max_base_high_ratio;
+ size_t db_points;
+ size_t result_points;
+ size_t db_queries;
+ size_t db_points_per_tier[RRD_STORAGE_TIERS];
+ size_t binary_searches;
+} WEIGHTS_STATS;
+
+// ----------------------------------------------------------------------------
+// parse and render metric correlations methods
+
+static struct {
+ const char *name;
+ WEIGHTS_METHOD value;
+} weights_methods[] = {
+ { "ks2" , WEIGHTS_METHOD_MC_KS2}
+ , { "volume" , WEIGHTS_METHOD_MC_VOLUME}
+ , { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE}
+ , { "value" , WEIGHTS_METHOD_VALUE}
+ , { NULL , 0 }
+};
+
+WEIGHTS_METHOD weights_string_to_method(const char *method) {
+ for(int i = 0; weights_methods[i].name ;i++)
+ if(strcmp(method, weights_methods[i].name) == 0)
+ return weights_methods[i].value;
+
+ return default_metric_correlations_method;
+}
+
+const char *weights_method_to_string(WEIGHTS_METHOD method) {
+ for(int i = 0; weights_methods[i].name ;i++)
+ if(weights_methods[i].value == method)
+ return weights_methods[i].name;
+
+ return "unknown";
+}
+
+// ----------------------------------------------------------------------------
+// The results per dimension are aggregated into a dictionary
+
+typedef enum {
+ RESULT_IS_BASE_HIGH_RATIO = (1 << 0),
+ RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1),
+} RESULT_FLAGS;
+
+struct register_result {
+ RESULT_FLAGS flags;
+ RRDHOST *host;
+ RRDCONTEXT_ACQUIRED *rca;
+ RRDINSTANCE_ACQUIRED *ria;
+ RRDMETRIC_ACQUIRED *rma;
+ NETDATA_DOUBLE value;
+ STORAGE_POINT highlighted;
+ STORAGE_POINT baseline;
+ usec_t duration_ut;
+};
+
+static DICTIONARY *register_result_init() {
+ DICTIONARY *results = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct register_result));
+ return results;
+}
+
+static void register_result_destroy(DICTIONARY *results) {
+ dictionary_destroy(results);
+}
+
+static void register_result(DICTIONARY *results, RRDHOST *host, RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria,
+ RRDMETRIC_ACQUIRED *rma, NETDATA_DOUBLE value, RESULT_FLAGS flags,
+ STORAGE_POINT *highlighted, STORAGE_POINT *baseline, WEIGHTS_STATS *stats,
+ bool register_zero, usec_t duration_ut) {
+
+ if(!netdata_double_isnumber(value)) return;
+
+ // make it positive
+ NETDATA_DOUBLE v = fabsndd(value);
+
+ // no need to store zero scored values
+ if(unlikely(fpclassify(v) == FP_ZERO && !register_zero))
+ return;
+
+ // keep track of the max of the baseline / highlight ratio
+ if((flags & RESULT_IS_BASE_HIGH_RATIO) && v > stats->max_base_high_ratio)
+ stats->max_base_high_ratio = v;
+
+ struct register_result t = {
+ .flags = flags,
+ .host = host,
+ .rca = rca,
+ .ria = ria,
+ .rma = rma,
+ .value = v,
+ .duration_ut = duration_ut,
+ };
+
+ if(highlighted)
+ t.highlighted = *highlighted;
+
+ if(baseline)
+ t.baseline = *baseline;
+
+ // we can use the pointer address or RMA as a unique key for each metric
+ char buf[20 + 1];
+ ssize_t len = snprintfz(buf, sizeof(buf) - 1, "%p", rma);
+ dictionary_set_advanced(results, buf, len, &t, sizeof(struct register_result), NULL);
+}
+
+// ----------------------------------------------------------------------------
+// Generation of JSON output for the results
+
+static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions __maybe_unused, usec_t duration,
+ WEIGHTS_STATS *stats) {
+
+ buffer_json_member_add_time_t(wb, "after", after);
+ buffer_json_member_add_time_t(wb, "before", before);
+ buffer_json_member_add_time_t(wb, "duration", before - after);
+ buffer_json_member_add_uint64(wb, "points", points);
+
+ if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
+ buffer_json_member_add_time_t(wb, "baseline_after", baseline_after);
+ buffer_json_member_add_time_t(wb, "baseline_before", baseline_before);
+ buffer_json_member_add_time_t(wb, "baseline_duration", baseline_before - baseline_after);
+ buffer_json_member_add_uint64(wb, "baseline_points", points << shifts);
+ }
+
+ buffer_json_member_add_object(wb, "statistics");
+ {
+ buffer_json_member_add_double(wb, "query_time_ms", (double) duration / (double) USEC_PER_MS);
+ buffer_json_member_add_uint64(wb, "db_queries", stats->db_queries);
+ buffer_json_member_add_uint64(wb, "query_result_points", stats->result_points);
+ buffer_json_member_add_uint64(wb, "binary_searches", stats->binary_searches);
+ buffer_json_member_add_uint64(wb, "db_points_read", stats->db_points);
+
+ buffer_json_member_add_array(wb, "db_points_per_tier");
+ {
+ for (size_t tier = 0; tier < storage_tiers; tier++)
+ buffer_json_add_array_item_uint64(wb, stats->db_points_per_tier[tier]);
+ }
+ buffer_json_array_close(wb);
+ }
+ buffer_json_object_close(wb);
+
+ buffer_json_member_add_string(wb, "group", time_grouping_tostring(group));
+ buffer_json_member_add_string(wb, "method", weights_method_to_string(method));
+ rrdr_options_to_buffer_json_array(wb, "options", options);
+}
+
+static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions, usec_t duration,
+ WEIGHTS_STATS *stats) {
+
+ buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT);
+
+ results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
+ points, method, group, options, shifts, examined_dimensions, duration, stats);
+
+ buffer_json_member_add_object(wb, "correlated_charts");
+
+ size_t charts = 0, total_dimensions = 0;
+ struct register_result *t;
+ RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison
+ dfe_start_read(results, t) {
+ if(t->ria != last_ria) {
+ last_ria = t->ria;
+
+ if(charts) {
+ buffer_json_object_close(wb); // dimensions
+ buffer_json_object_close(wb); // chart:id
+ }
+
+ buffer_json_member_add_object(wb, rrdinstance_acquired_id(t->ria));
+ buffer_json_member_add_string(wb, "context", rrdcontext_acquired_id(t->rca));
+ buffer_json_member_add_object(wb, "dimensions");
+ charts++;
+ }
+ buffer_json_member_add_double(wb, rrdmetric_acquired_name(t->rma), t->value);
+ total_dimensions++;
+ }
+ dfe_done(t);
+
+ // close dimensions and chart
+ if (total_dimensions) {
+ buffer_json_object_close(wb); // dimensions
+ buffer_json_object_close(wb); // chart:id
+ }
+
+ buffer_json_object_close(wb);
+
+ buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions);
+ buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions);
+ buffer_json_finalize(wb);
+
+ return total_dimensions;
+}
+
+static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions, usec_t duration,
+ WEIGHTS_STATS *stats) {
+
+ buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT);
+
+ results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
+ points, method, group, options, shifts, examined_dimensions, duration, stats);
+
+ buffer_json_member_add_object(wb, "contexts");
+
+ size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0;
+ NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0;
+ struct register_result *t;
+ RRDCONTEXT_ACQUIRED *last_rca = NULL;
+ RRDINSTANCE_ACQUIRED *last_ria = NULL;
+ dfe_start_read(results, t) {
+
+ if(t->rca != last_rca) {
+ last_rca = t->rca;
+
+ if(contexts) {
+ buffer_json_object_close(wb); // dimensions
+ buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims);
+ buffer_json_object_close(wb); // chart:id
+ buffer_json_object_close(wb); // charts
+ buffer_json_member_add_double(wb, "weight", contexts_total_weight / (double) context_dims);
+ buffer_json_object_close(wb); // context
+ }
+
+ buffer_json_member_add_object(wb, rrdcontext_acquired_id(t->rca));
+ buffer_json_member_add_object(wb, "charts");
+
+ contexts++;
+ charts = 0;
+ context_dims = 0;
+ contexts_total_weight = 0.0;
+
+ last_ria = NULL;
+ }
+
+ if(t->ria != last_ria) {
+ last_ria = t->ria;
+
+ if(charts) {
+ buffer_json_object_close(wb); // dimensions
+ buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims);
+ buffer_json_object_close(wb); // chart:id
+ }
+
+ buffer_json_member_add_object(wb, rrdinstance_acquired_id(t->ria));
+ buffer_json_member_add_object(wb, "dimensions");
+
+ charts++;
+ chart_dims = 0;
+ charts_total_weight = 0.0;
+ }
+
+ buffer_json_member_add_double(wb, rrdmetric_acquired_name(t->rma), t->value);
+ charts_total_weight += t->value;
+ contexts_total_weight += t->value;
+ chart_dims++;
+ context_dims++;
+ total_dimensions++;
+ }
+ dfe_done(t);
+
+ // close dimensions and chart
+ if (total_dimensions) {
+ buffer_json_object_close(wb); // dimensions
+ buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims);
+ buffer_json_object_close(wb); // chart:id
+ buffer_json_object_close(wb); // charts
+ buffer_json_member_add_double(wb, "weight", contexts_total_weight / (double) context_dims);
+ buffer_json_object_close(wb); // context
+ }
+
+ buffer_json_object_close(wb);
+
+ buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions);
+ buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions);
+ buffer_json_finalize(wb);
+
+ return total_dimensions;
+}
+
+struct query_weights_data {
+ QUERY_WEIGHTS_REQUEST *qwr;
+
+ SIMPLE_PATTERN *scope_nodes_sp;
+ SIMPLE_PATTERN *scope_contexts_sp;
+ SIMPLE_PATTERN *nodes_sp;
+ SIMPLE_PATTERN *contexts_sp;
+ SIMPLE_PATTERN *instances_sp;
+ SIMPLE_PATTERN *dimensions_sp;
+ SIMPLE_PATTERN *labels_sp;
+ SIMPLE_PATTERN *alerts_sp;
+
+ usec_t timeout_us;
+ bool timed_out;
+ bool interrupted;
+
+ struct query_timings timings;
+
+ size_t examined_dimensions;
+ bool register_zero;
+
+ DICTIONARY *results;
+ WEIGHTS_STATS stats;
+
+ uint32_t shifts;
+
+ struct query_versions versions;
+};
+
+#define AGGREGATED_WEIGHT_EMPTY (struct aggregated_weight) { \
+ .min = NAN, \
+ .max = NAN, \
+ .sum = NAN, \
+ .count = 0, \
+ .hsp = STORAGE_POINT_UNSET, \
+ .bsp = STORAGE_POINT_UNSET, \
+}
+
+#define merge_into_aw(aw, t) do { \
+ if(!(aw).count) { \
+ (aw).count = 1; \
+ (aw).min = (aw).max = (aw).sum = (t)->value; \
+ (aw).hsp = (t)->highlighted; \
+ if(baseline) \
+ (aw).bsp = (t)->baseline; \
+ } \
+ else { \
+ (aw).count++; \
+ (aw).sum += (t)->value; \
+ if((t)->value < (aw).min) \
+ (aw).min = (t)->value; \
+ if((t)->value > (aw).max) \
+ (aw).max = (t)->value; \
+ storage_point_merge_to((aw).hsp, (t)->highlighted); \
+ if(baseline) \
+ storage_point_merge_to((aw).bsp, (t)->baseline); \
+ } \
+} while(0)
+
+static void results_header_to_json_v2(DICTIONARY *results __maybe_unused, BUFFER *wb, struct query_weights_data *qwd,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions __maybe_unused, usec_t duration __maybe_unused,
+ WEIGHTS_STATS *stats, bool group_by) {
+
+ buffer_json_member_add_object(wb, "request");
+ buffer_json_member_add_string(wb, "method", weights_method_to_string(method));
+ rrdr_options_to_buffer_json_array(wb, "options", options);
+
+ buffer_json_member_add_object(wb, "scope");
+ buffer_json_member_add_string(wb, "scope_nodes", qwd->qwr->scope_nodes ? qwd->qwr->scope_nodes : "*");
+ buffer_json_member_add_string(wb, "scope_contexts", qwd->qwr->scope_contexts ? qwd->qwr->scope_contexts : "*");
+ buffer_json_object_close(wb);
+
+ buffer_json_member_add_object(wb, "selectors");
+ buffer_json_member_add_string(wb, "nodes", qwd->qwr->nodes ? qwd->qwr->nodes : "*");
+ buffer_json_member_add_string(wb, "contexts", qwd->qwr->contexts ? qwd->qwr->contexts : "*");
+ buffer_json_member_add_string(wb, "instances", qwd->qwr->instances ? qwd->qwr->instances : "*");
+ buffer_json_member_add_string(wb, "dimensions", qwd->qwr->dimensions ? qwd->qwr->dimensions : "*");
+ buffer_json_member_add_string(wb, "labels", qwd->qwr->labels ? qwd->qwr->labels : "*");
+ buffer_json_member_add_string(wb, "alerts", qwd->qwr->alerts ? qwd->qwr->alerts : "*");
+ buffer_json_object_close(wb);
+
+ buffer_json_member_add_object(wb, "window");
+ buffer_json_member_add_time_t(wb, "after", qwd->qwr->after);
+ buffer_json_member_add_time_t(wb, "before", qwd->qwr->before);
+ buffer_json_member_add_uint64(wb, "points", qwd->qwr->points);
+ if(qwd->qwr->options & RRDR_OPTION_SELECTED_TIER)
+ buffer_json_member_add_uint64(wb, "tier", qwd->qwr->tier);
+ else
+ buffer_json_member_add_string(wb, "tier", NULL);
+ buffer_json_object_close(wb);
+
+ if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
+ buffer_json_member_add_object(wb, "baseline");
+ buffer_json_member_add_time_t(wb, "baseline_after", qwd->qwr->baseline_after);
+ buffer_json_member_add_time_t(wb, "baseline_before", qwd->qwr->baseline_before);
+ buffer_json_object_close(wb);
+ }
+
+ buffer_json_member_add_object(wb, "aggregations");
+ buffer_json_member_add_object(wb, "time");
+ buffer_json_member_add_string(wb, "time_group", time_grouping_tostring(qwd->qwr->time_group_method));
+ buffer_json_member_add_string(wb, "time_group_options", qwd->qwr->time_group_options);
+ buffer_json_object_close(wb); // time
+
+ buffer_json_member_add_array(wb, "metrics");
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_array(wb, "group_by");
+ buffer_json_group_by_to_array(wb, qwd->qwr->group_by.group_by);
+ buffer_json_array_close(wb);
+
+// buffer_json_member_add_array(wb, "group_by_label");
+// buffer_json_array_close(wb);
+
+ buffer_json_member_add_string(wb, "aggregation", group_by_aggregate_function_to_string(qwd->qwr->group_by.aggregation));
+ }
+ buffer_json_object_close(wb); // 1st group by
+ buffer_json_array_close(wb); // array
+ buffer_json_object_close(wb); // aggregations
+
+ buffer_json_member_add_uint64(wb, "timeout", qwd->qwr->timeout_ms);
+ buffer_json_object_close(wb); // request
+
+ buffer_json_member_add_object(wb, "view");
+ buffer_json_member_add_string(wb, "format", (group_by)?"grouped":"full");
+ buffer_json_member_add_string(wb, "time_group", time_grouping_tostring(group));
+
+ buffer_json_member_add_object(wb, "window");
+ buffer_json_member_add_time_t(wb, "after", after);
+ buffer_json_member_add_time_t(wb, "before", before);
+ buffer_json_member_add_time_t(wb, "duration", before - after);
+ buffer_json_member_add_uint64(wb, "points", points);
+ buffer_json_object_close(wb);
+
+ if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
+ buffer_json_member_add_object(wb, "baseline");
+ buffer_json_member_add_time_t(wb, "after", baseline_after);
+ buffer_json_member_add_time_t(wb, "before", baseline_before);
+ buffer_json_member_add_time_t(wb, "duration", baseline_before - baseline_after);
+ buffer_json_member_add_uint64(wb, "points", points << shifts);
+ buffer_json_object_close(wb);
+ }
+
+ buffer_json_object_close(wb); // view
+
+ buffer_json_member_add_object(wb, "db");
+ {
+ buffer_json_member_add_uint64(wb, "db_queries", stats->db_queries);
+ buffer_json_member_add_uint64(wb, "query_result_points", stats->result_points);
+ buffer_json_member_add_uint64(wb, "binary_searches", stats->binary_searches);
+ buffer_json_member_add_uint64(wb, "db_points_read", stats->db_points);
+
+ buffer_json_member_add_array(wb, "db_points_per_tier");
+ {
+ for (size_t tier = 0; tier < storage_tiers; tier++)
+ buffer_json_add_array_item_uint64(wb, stats->db_points_per_tier[tier]);
+ }
+ buffer_json_array_close(wb);
+ }
+ buffer_json_object_close(wb); // db
+}
+
+typedef enum {
+ WPT_DIMENSION = 0,
+ WPT_INSTANCE = 1,
+ WPT_CONTEXT = 2,
+ WPT_NODE = 3,
+ WPT_GROUP = 4,
+} WEIGHTS_POINT_TYPE;
+
+struct aggregated_weight {
+ const char *name;
+ NETDATA_DOUBLE min;
+ NETDATA_DOUBLE max;
+ NETDATA_DOUBLE sum;
+ size_t count;
+ STORAGE_POINT hsp;
+ STORAGE_POINT bsp;
+};
+
+static inline void storage_point_to_json(BUFFER *wb, WEIGHTS_POINT_TYPE type, ssize_t di, ssize_t ii, ssize_t ci, ssize_t ni, struct aggregated_weight *aw, RRDR_OPTIONS options __maybe_unused, bool baseline) {
+ if(type != WPT_GROUP) {
+ buffer_json_add_array_item_array(wb);
+ buffer_json_add_array_item_uint64(wb, type); // "type"
+ buffer_json_add_array_item_int64(wb, ni);
+ if (type != WPT_NODE) {
+ buffer_json_add_array_item_int64(wb, ci);
+ if (type != WPT_CONTEXT) {
+ buffer_json_add_array_item_int64(wb, ii);
+ if (type != WPT_INSTANCE)
+ buffer_json_add_array_item_int64(wb, di);
+ else
+ buffer_json_add_array_item_string(wb, NULL);
+ }
+ else {
+ buffer_json_add_array_item_string(wb, NULL);
+ buffer_json_add_array_item_string(wb, NULL);
+ }
+ }
+ else {
+ buffer_json_add_array_item_string(wb, NULL);
+ buffer_json_add_array_item_string(wb, NULL);
+ buffer_json_add_array_item_string(wb, NULL);
+ }
+ buffer_json_add_array_item_double(wb, (aw->count) ? aw->sum / (NETDATA_DOUBLE)aw->count : 0.0); // "weight"
+ }
+ else {
+ buffer_json_member_add_array(wb, "v");
+ buffer_json_add_array_item_array(wb);
+ buffer_json_add_array_item_double(wb, aw->min); // "min"
+ buffer_json_add_array_item_double(wb, (aw->count) ? aw->sum / (NETDATA_DOUBLE)aw->count : 0.0); // "avg"
+ buffer_json_add_array_item_double(wb, aw->max); // "max"
+ buffer_json_add_array_item_double(wb, aw->sum); // "sum"
+ buffer_json_add_array_item_uint64(wb, aw->count); // "count"
+ buffer_json_array_close(wb);
+ }
+
+ buffer_json_add_array_item_array(wb);
+ buffer_json_add_array_item_double(wb, aw->hsp.min); // "min"
+ buffer_json_add_array_item_double(wb, (aw->hsp.count) ? aw->hsp.sum / (NETDATA_DOUBLE) aw->hsp.count : 0.0); // "avg"
+ buffer_json_add_array_item_double(wb, aw->hsp.max); // "max"
+ buffer_json_add_array_item_double(wb, aw->hsp.sum); // "sum"
+ buffer_json_add_array_item_uint64(wb, aw->hsp.count); // "count"
+ buffer_json_add_array_item_uint64(wb, aw->hsp.anomaly_count); // "anomaly_count"
+ buffer_json_array_close(wb);
+
+ if(baseline) {
+ buffer_json_add_array_item_array(wb);
+ buffer_json_add_array_item_double(wb, aw->bsp.min); // "min"
+ buffer_json_add_array_item_double(wb, (aw->bsp.count) ? aw->bsp.sum / (NETDATA_DOUBLE) aw->bsp.count : 0.0); // "avg"
+ buffer_json_add_array_item_double(wb, aw->bsp.max); // "max"
+ buffer_json_add_array_item_double(wb, aw->bsp.sum); // "sum"
+ buffer_json_add_array_item_uint64(wb, aw->bsp.count); // "count"
+ buffer_json_add_array_item_uint64(wb, aw->bsp.anomaly_count); // "anomaly_count"
+ buffer_json_array_close(wb);
+ }
+
+ buffer_json_array_close(wb);
+}
+
+static void multinode_data_schema(BUFFER *wb, RRDR_OPTIONS options __maybe_unused, const char *key, bool baseline, bool group_by) {
+ buffer_json_member_add_object(wb, key); // schema
+
+ buffer_json_member_add_string(wb, "type", "array");
+ buffer_json_member_add_array(wb, "items");
+
+ if(group_by) {
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "weight");
+ buffer_json_member_add_string(wb, "type", "array");
+ buffer_json_member_add_array(wb, "labels");
+ {
+ buffer_json_add_array_item_string(wb, "min");
+ buffer_json_add_array_item_string(wb, "avg");
+ buffer_json_add_array_item_string(wb, "max");
+ buffer_json_add_array_item_string(wb, "sum");
+ buffer_json_add_array_item_string(wb, "count");
+ }
+ buffer_json_array_close(wb);
+ }
+ buffer_json_object_close(wb);
+ }
+ else {
+ buffer_json_add_array_item_object(wb);
+ buffer_json_member_add_string(wb, "name", "row_type");
+ buffer_json_member_add_string(wb, "type", "integer");
+ buffer_json_member_add_array(wb, "value");
+ buffer_json_add_array_item_string(wb, "dimension");
+ buffer_json_add_array_item_string(wb, "instance");
+ buffer_json_add_array_item_string(wb, "context");
+ buffer_json_add_array_item_string(wb, "node");
+ buffer_json_array_close(wb);
+ buffer_json_object_close(wb);
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "ni");
+ buffer_json_member_add_string(wb, "type", "integer");
+ buffer_json_member_add_string(wb, "dictionary", "nodes");
+ }
+ buffer_json_object_close(wb);
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "ci");
+ buffer_json_member_add_string(wb, "type", "integer");
+ buffer_json_member_add_string(wb, "dictionary", "contexts");
+ }
+ buffer_json_object_close(wb);
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "ii");
+ buffer_json_member_add_string(wb, "type", "integer");
+ buffer_json_member_add_string(wb, "dictionary", "instances");
+ }
+ buffer_json_object_close(wb);
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "di");
+ buffer_json_member_add_string(wb, "type", "integer");
+ buffer_json_member_add_string(wb, "dictionary", "dimensions");
+ }
+ buffer_json_object_close(wb);
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "weight");
+ buffer_json_member_add_string(wb, "type", "number");
+ }
+ buffer_json_object_close(wb);
+ }
+
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "timeframe");
+ buffer_json_member_add_string(wb, "type", "array");
+ buffer_json_member_add_array(wb, "labels");
+ {
+ buffer_json_add_array_item_string(wb, "min");
+ buffer_json_add_array_item_string(wb, "avg");
+ buffer_json_add_array_item_string(wb, "max");
+ buffer_json_add_array_item_string(wb, "sum");
+ buffer_json_add_array_item_string(wb, "count");
+ buffer_json_add_array_item_string(wb, "anomaly_count");
+ }
+ buffer_json_array_close(wb);
+ buffer_json_member_add_object(wb, "calculations");
+ buffer_json_member_add_string(wb, "anomaly rate", "anomaly_count * 100 / count");
+ buffer_json_object_close(wb);
+ }
+ buffer_json_object_close(wb);
+
+ if(baseline) {
+ buffer_json_add_array_item_object(wb);
+ {
+ buffer_json_member_add_string(wb, "name", "baseline timeframe");
+ buffer_json_member_add_string(wb, "type", "array");
+ buffer_json_member_add_array(wb, "labels");
+ {
+ buffer_json_add_array_item_string(wb, "min");
+ buffer_json_add_array_item_string(wb, "avg");
+ buffer_json_add_array_item_string(wb, "max");
+ buffer_json_add_array_item_string(wb, "sum");
+ buffer_json_add_array_item_string(wb, "count");
+ buffer_json_add_array_item_string(wb, "anomaly_count");
+ }
+ buffer_json_array_close(wb);
+ buffer_json_member_add_object(wb, "calculations");
+ buffer_json_member_add_string(wb, "anomaly rate", "anomaly_count * 100 / count");
+ buffer_json_object_close(wb);
+ }
+ buffer_json_object_close(wb);
+ }
+
+ buffer_json_array_close(wb); // items
+ buffer_json_object_close(wb); // schema
+}
+
+struct dict_unique_node {
+ bool existing;
+ bool exposed;
+ uint32_t i;
+ RRDHOST *host;
+ usec_t duration_ut;
+};
+
+struct dict_unique_name_units {
+ bool existing;
+ bool exposed;
+ uint32_t i;
+ const char *units;
+};
+
+struct dict_unique_id_name {
+ bool existing;
+ bool exposed;
+ uint32_t i;
+ const char *id;
+ const char *name;
+};
+
+static inline struct dict_unique_node *dict_unique_node_add(DICTIONARY *dict, RRDHOST *host, ssize_t *max_id) {
+ struct dict_unique_node *dun = dictionary_set(dict, host->machine_guid, NULL, sizeof(struct dict_unique_node));
+ if(!dun->existing) {
+ dun->existing = true;
+ dun->host = host;
+ dun->i = *max_id;
+ (*max_id)++;
+ }
+
+ return dun;
+}
+
+static inline struct dict_unique_name_units *dict_unique_name_units_add(DICTIONARY *dict, const char *name, const char *units, ssize_t *max_id) {
+ struct dict_unique_name_units *dun = dictionary_set(dict, name, NULL, sizeof(struct dict_unique_name_units));
+ if(!dun->existing) {
+ dun->units = units;
+ dun->existing = true;
+ dun->i = *max_id;
+ (*max_id)++;
+ }
+
+ return dun;
+}
+
+static inline struct dict_unique_id_name *dict_unique_id_name_add(DICTIONARY *dict, const char *id, const char *name, ssize_t *max_id) {
+ char key[1024 + 1];
+ snprintfz(key, sizeof(key) - 1, "%s:%s", id, name);
+ struct dict_unique_id_name *dun = dictionary_set(dict, key, NULL, sizeof(struct dict_unique_id_name));
+ if(!dun->existing) {
+ dun->existing = true;
+ dun->i = *max_id;
+ (*max_id)++;
+ dun->id = id;
+ dun->name = name;
+ }
+
+ return dun;
+}
+
+static size_t registered_results_to_json_multinode_no_group_by(
+ DICTIONARY *results, BUFFER *wb,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions, struct query_weights_data *qwd,
+ WEIGHTS_STATS *stats,
+ struct query_versions *versions) {
+ buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT);
+ buffer_json_member_add_uint64(wb, "api", 2);
+
+ results_header_to_json_v2(results, wb, qwd, after, before, baseline_after, baseline_before,
+ points, method, group, options, shifts, examined_dimensions,
+ qwd->timings.executed_ut - qwd->timings.received_ut, stats, false);
+
+ version_hashes_api_v2(wb, versions);
+
+ bool baseline = method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME;
+ multinode_data_schema(wb, options, "schema", baseline, false);
+
+ DICTIONARY *dict_nodes = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_node));
+ DICTIONARY *dict_contexts = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_name_units));
+ DICTIONARY *dict_instances = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_id_name));
+ DICTIONARY *dict_dimensions = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_id_name));
+
+ buffer_json_member_add_array(wb, "result");
+
+ struct aggregated_weight node_aw = AGGREGATED_WEIGHT_EMPTY, context_aw = AGGREGATED_WEIGHT_EMPTY, instance_aw = AGGREGATED_WEIGHT_EMPTY;
+ struct register_result *t;
+ RRDHOST *last_host = NULL;
+ RRDCONTEXT_ACQUIRED *last_rca = NULL;
+ RRDINSTANCE_ACQUIRED *last_ria = NULL;
+ struct dict_unique_name_units *context_dun = NULL;
+ struct dict_unique_node *node_dun = NULL;
+ struct dict_unique_id_name *instance_dun = NULL;
+ struct dict_unique_id_name *dimension_dun = NULL;
+ ssize_t di = -1, ii = -1, ci = -1, ni = -1;
+ ssize_t di_max = 0, ii_max = 0, ci_max = 0, ni_max = 0;
+ size_t total_dimensions = 0;
+ dfe_start_read(results, t) {
+
+ // close instance
+ if(t->ria != last_ria && last_ria) {
+ storage_point_to_json(wb, WPT_INSTANCE, di, ii, ci, ni, &instance_aw, options, baseline);
+ instance_dun->exposed = true;
+ last_ria = NULL;
+ instance_aw = AGGREGATED_WEIGHT_EMPTY;
+ }
+
+ // close context
+ if(t->rca != last_rca && last_rca) {
+ storage_point_to_json(wb, WPT_CONTEXT, di, ii, ci, ni, &context_aw, options, baseline);
+ context_dun->exposed = true;
+ last_rca = NULL;
+ context_aw = AGGREGATED_WEIGHT_EMPTY;
+ }
+
+ // close node
+ if(t->host != last_host && last_host) {
+ storage_point_to_json(wb, WPT_NODE, di, ii, ci, ni, &node_aw, options, baseline);
+ node_dun->exposed = true;
+ last_host = NULL;
+ node_aw = AGGREGATED_WEIGHT_EMPTY;
+ }
+
+ // open node
+ if(t->host != last_host) {
+ last_host = t->host;
+ node_dun = dict_unique_node_add(dict_nodes, t->host, &ni_max);
+ ni = node_dun->i;
+ }
+
+ // open context
+ if(t->rca != last_rca) {
+ last_rca = t->rca;
+ context_dun = dict_unique_name_units_add(dict_contexts, rrdcontext_acquired_id(t->rca),
+ rrdcontext_acquired_units(t->rca), &ci_max);
+ ci = context_dun->i;
+ }
+
+ // open instance
+ if(t->ria != last_ria) {
+ last_ria = t->ria;
+ instance_dun = dict_unique_id_name_add(dict_instances, rrdinstance_acquired_id(t->ria), rrdinstance_acquired_name(t->ria), &ii_max);
+ ii = instance_dun->i;
+ }
+
+ dimension_dun = dict_unique_id_name_add(dict_dimensions, rrdmetric_acquired_id(t->rma), rrdmetric_acquired_name(t->rma), &di_max);
+ di = dimension_dun->i;
+
+ struct aggregated_weight aw = {
+ .min = t->value,
+ .max = t->value,
+ .sum = t->value,
+ .count = 1,
+ .hsp = t->highlighted,
+ .bsp = t->baseline,
+ };
+
+ storage_point_to_json(wb, WPT_DIMENSION, di, ii, ci, ni, &aw, options, baseline);
+ node_dun->exposed = true;
+ context_dun->exposed = true;
+ instance_dun->exposed = true;
+ dimension_dun->exposed = true;
+
+ merge_into_aw(instance_aw, t);
+ merge_into_aw(context_aw, t);
+ merge_into_aw(node_aw, t);
+
+ node_dun->duration_ut += t->duration_ut;
+ total_dimensions++;
+ }
+ dfe_done(t);
+
+ // close instance
+ if(last_ria) {
+ storage_point_to_json(wb, WPT_INSTANCE, di, ii, ci, ni, &instance_aw, options, baseline);
+ instance_dun->exposed = true;
+ }
+
+ // close context
+ if(last_rca) {
+ storage_point_to_json(wb, WPT_CONTEXT, di, ii, ci, ni, &context_aw, options, baseline);
+ context_dun->exposed = true;
+ }
+
+ // close node
+ if(last_host) {
+ storage_point_to_json(wb, WPT_NODE, di, ii, ci, ni, &node_aw, options, baseline);
+ node_dun->exposed = true;
+ }
+
+ buffer_json_array_close(wb); // points
+
+ buffer_json_member_add_object(wb, "dictionaries");
+ buffer_json_member_add_array(wb, "nodes");
+ {
+ struct dict_unique_node *dun;
+ dfe_start_read(dict_nodes, dun) {
+ if(!dun->exposed)
+ continue;
+
+ buffer_json_add_array_item_object(wb);
+ buffer_json_node_add_v2(wb, dun->host, dun->i, dun->duration_ut, true);
+ buffer_json_object_close(wb);
+ }
+ dfe_done(dun);
+ }
+ buffer_json_array_close(wb);
+
+ buffer_json_member_add_array(wb, "contexts");
+ {
+ struct dict_unique_name_units *dun;
+ dfe_start_read(dict_contexts, dun) {
+ if(!dun->exposed)
+ continue;
+
+ buffer_json_add_array_item_object(wb);
+ buffer_json_member_add_string(wb, "id", dun_dfe.name);
+ buffer_json_member_add_string(wb, "units", dun->units);
+ buffer_json_member_add_int64(wb, "ci", dun->i);
+ buffer_json_object_close(wb);
+ }
+ dfe_done(dun);
+ }
+ buffer_json_array_close(wb);
+
+ buffer_json_member_add_array(wb, "instances");
+ {
+ struct dict_unique_id_name *dun;
+ dfe_start_read(dict_instances, dun) {
+ if(!dun->exposed)
+ continue;
+
+ buffer_json_add_array_item_object(wb);
+ buffer_json_member_add_string(wb, "id", dun->id);
+ if(dun->id != dun->name)
+ buffer_json_member_add_string(wb, "nm", dun->name);
+ buffer_json_member_add_int64(wb, "ii", dun->i);
+ buffer_json_object_close(wb);
+ }
+ dfe_done(dun);
+ }
+ buffer_json_array_close(wb);
+
+ buffer_json_member_add_array(wb, "dimensions");
+ {
+ struct dict_unique_id_name *dun;
+ dfe_start_read(dict_dimensions, dun) {
+ if(!dun->exposed)
+ continue;
+
+ buffer_json_add_array_item_object(wb);
+ buffer_json_member_add_string(wb, "id", dun->id);
+ if(dun->id != dun->name)
+ buffer_json_member_add_string(wb, "nm", dun->name);
+ buffer_json_member_add_int64(wb, "di", dun->i);
+ buffer_json_object_close(wb);
+ }
+ dfe_done(dun);
+ }
+ buffer_json_array_close(wb);
+
+ buffer_json_object_close(wb); //dictionaries
+
+ buffer_json_agents_v2(wb, &qwd->timings, 0, false, true);
+ buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions);
+ buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions);
+ buffer_json_finalize(wb);
+
+ dictionary_destroy(dict_nodes);
+ dictionary_destroy(dict_contexts);
+ dictionary_destroy(dict_instances);
+ dictionary_destroy(dict_dimensions);
+
+ return total_dimensions;
+}
+
+static size_t registered_results_to_json_multinode_group_by(
+ DICTIONARY *results, BUFFER *wb,
+ time_t after, time_t before,
+ time_t baseline_after, time_t baseline_before,
+ size_t points, WEIGHTS_METHOD method,
+ RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
+ size_t examined_dimensions, struct query_weights_data *qwd,
+ WEIGHTS_STATS *stats,
+ struct query_versions *versions) {
+ buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT);
+ buffer_json_member_add_uint64(wb, "api", 2);
+
+ results_header_to_json_v2(results, wb, qwd, after, before, baseline_after, baseline_before,
+ points, method, group, options, shifts, examined_dimensions,
+ qwd->timings.executed_ut - qwd->timings.received_ut, stats, true);
+
+ version_hashes_api_v2(wb, versions);
+
+ bool baseline = method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME;
+ multinode_data_schema(wb, options, "v_schema", baseline, true);
+
+ DICTIONARY *group_by = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE,
+ NULL, sizeof(struct aggregated_weight));
+
+ struct register_result *t;
+ size_t total_dimensions = 0;
+ BUFFER *key = buffer_create(0, NULL);
+ BUFFER *name = buffer_create(0, NULL);
+ dfe_start_read(results, t) {
+
+ buffer_flush(key);
+ buffer_flush(name);
+
+ if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_DIMENSION) {
+ buffer_strcat(key, rrdmetric_acquired_name(t->rma));
+ buffer_strcat(name, rrdmetric_acquired_name(t->rma));
+ }
+ if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_INSTANCE) {
+ if(buffer_strlen(key)) {
+ buffer_fast_strcat(key, ",", 1);
+ buffer_fast_strcat(name, ",", 1);
+ }
+
+ buffer_strcat(key, rrdinstance_acquired_id(t->ria));
+ buffer_strcat(name, rrdinstance_acquired_name(t->ria));
+
+ if(!(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_NODE)) {
+ buffer_fast_strcat(key, "@", 1);
+ buffer_fast_strcat(name, "@", 1);
+ buffer_strcat(key, t->host->machine_guid);
+ buffer_strcat(name, rrdhost_hostname(t->host));
+ }
+ }
+ if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_NODE) {
+ if(buffer_strlen(key)) {
+ buffer_fast_strcat(key, ",", 1);
+ buffer_fast_strcat(name, ",", 1);
+ }
+
+ buffer_strcat(key, t->host->machine_guid);
+ buffer_strcat(name, rrdhost_hostname(t->host));
+ }
+ if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_CONTEXT) {
+ if(buffer_strlen(key)) {
+ buffer_fast_strcat(key, ",", 1);
+ buffer_fast_strcat(name, ",", 1);
+ }
+
+ buffer_strcat(key, rrdcontext_acquired_id(t->rca));
+ buffer_strcat(name, rrdcontext_acquired_id(t->rca));
+ }
+ if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_UNITS) {
+ if(buffer_strlen(key)) {
+ buffer_fast_strcat(key, ",", 1);
+ buffer_fast_strcat(name, ",", 1);
+ }
+
+ buffer_strcat(key, rrdcontext_acquired_units(t->rca));
+ buffer_strcat(name, rrdcontext_acquired_units(t->rca));
+ }
+
+ struct aggregated_weight *aw = dictionary_set(group_by, buffer_tostring(key), NULL, sizeof(struct aggregated_weight));
+ if(!aw->name) {
+ aw->name = strdupz(buffer_tostring(name));
+ aw->min = aw->max = aw->sum = t->value;
+ aw->count = 1;
+ aw->hsp = t->highlighted;
+ aw->bsp = t->baseline;
+ }
+ else
+ merge_into_aw(*aw, t);
+
+ total_dimensions++;
+ }
+ dfe_done(t);
+ buffer_free(key); key = NULL;
+ buffer_free(name); name = NULL;
+
+ struct aggregated_weight *aw;
+ buffer_json_member_add_array(wb, "result");
+ dfe_start_read(group_by, aw) {
+ const char *k = aw_dfe.name;
+ const char *n = aw->name;
+
+ buffer_json_add_array_item_object(wb);
+ buffer_json_member_add_string(wb, "id", k);
+
+ if(strcmp(k, n) != 0)
+ buffer_json_member_add_string(wb, "nm", n);
+
+ storage_point_to_json(wb, WPT_GROUP, 0, 0, 0, 0, aw, options, baseline);
+ buffer_json_object_close(wb);
+
+ freez((void *)aw->name);
+ }
+ dfe_done(aw);
+ buffer_json_array_close(wb); // result
+
+ buffer_json_agents_v2(wb, &qwd->timings, 0, false, true);
+ buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions);
+ buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions);
+ buffer_json_finalize(wb);
+
+ dictionary_destroy(group_by);
+
+ return total_dimensions;
+}
+
+// ----------------------------------------------------------------------------
+// KS2 algorithm functions
+
+typedef long int DIFFS_NUMBERS;
+#define DOUBLE_TO_INT_MULTIPLIER 100000
+
+static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) {
+ // binary search to find the index the smallest index
+ // of the first value in the array that is greater than K
+
+ int right = size;
+ while(left < right) {
+ int middle = (int)(((unsigned int)(left + right)) >> 1);
+
+ if(arr[middle] > K)
+ right = middle;
+
+ else
+ left = middle + 1;
+ }
+
+ return left;
+}
+
+int compare_diffs(const void *left, const void *right) {
+ DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left;
+ DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right;
+
+ // https://stackoverflow.com/a/3886497/1114110
+ return (lt > rt) - (lt < rt);
+}
+
+static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) {
+ NETDATA_DOUBLE *last = &arr[size - 1];
+ size_t added = 0;
+
+ while(last > arr) {
+ NETDATA_DOUBLE second = *last--;
+ NETDATA_DOUBLE first = *last;
+ *diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER);
+ added++;
+ }
+
+ return added;
+}
+
+static double ks_2samp(
+ DIFFS_NUMBERS baseline_diffs[], int base_size,
+ DIFFS_NUMBERS highlight_diffs[], int high_size,
+ uint32_t base_shifts) {
+
+ qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs);
+ qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs);
+
+ // Now we should be calculating this:
+ //
+ // For each number in the diffs arrays, we should find the index of the
+ // number bigger than them in both arrays and calculate the % of this index
+ // vs the total array size. Once we have the 2 percentages, we should find
+ // the min and max across the delta of all of them.
+ //
+ // It should look like this:
+ //
+ // base_pcent = binary_search_bigger_than(...) / base_size;
+ // high_pcent = binary_search_bigger_than(...) / high_size;
+ // delta = base_pcent - high_pcent;
+ // if(delta < min) min = delta;
+ // if(delta > max) max = delta;
+ //
+ // This would require a lot of multiplications and divisions.
+ //
+ // To speed it up, we do the binary search to find the index of each number
+ // but, then we divide the base index by the power of two number (shifts) it
+ // is bigger than high index. So the 2 indexes are now comparable.
+ // We also keep track of the original indexes with min and max, to properly
+ // calculate their percentages once the loops finish.
+
+
+ // initialize min and max using the first number of baseline_diffs
+ DIFFS_NUMBERS K = baseline_diffs[0];
+ int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K);
+ int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
+ int delta = base_idx - (high_idx << base_shifts);
+ int min = delta, max = delta;
+ int base_min_idx = base_idx;
+ int base_max_idx = base_idx;
+ int high_min_idx = high_idx;
+ int high_max_idx = high_idx;
+
+ // do the baseline_diffs starting from 1 (we did position 0 above)
+ for(int i = 1; i < base_size; i++) {
+ K = baseline_diffs[i];
+ base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted
+ high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
+
+ delta = base_idx - (high_idx << base_shifts);
+ if(delta < min) {
+ min = delta;
+ base_min_idx = base_idx;
+ high_min_idx = high_idx;
+ }
+ else if(delta > max) {
+ max = delta;
+ base_max_idx = base_idx;
+ high_max_idx = high_idx;
+ }
+ }
+
+ // do the highlight_diffs starting from 0
+ for(int i = 0; i < high_size; i++) {
+ K = highlight_diffs[i];
+ base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K);
+ high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted
+
+ delta = base_idx - (high_idx << base_shifts);
+ if(delta < min) {
+ min = delta;
+ base_min_idx = base_idx;
+ high_min_idx = high_idx;
+ }
+ else if(delta > max) {
+ max = delta;
+ base_max_idx = base_idx;
+ high_max_idx = high_idx;
+ }
+ }
+
+ // now we have the min, max and their indexes
+ // properly calculate min and max as dmin and dmax
+ double dbase_size = (double)base_size;
+ double dhigh_size = (double)high_size;
+ double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size);
+ double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size);
+
+ dmin = -dmin;
+ if(islessequal(dmin, 0.0)) dmin = 0.0;
+ else if(isgreaterequal(dmin, 1.0)) dmin = 1.0;
+
+ double d;
+ if(isgreaterequal(dmin, dmax)) d = dmin;
+ else d = dmax;
+
+ double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size));
+
+ // under these conditions, KSfbar() crashes
+ if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d)))
+ return NAN;
+
+ return KSfbar((int)en, d);
+}
+
+static double kstwo(
+ NETDATA_DOUBLE baseline[], int baseline_points,
+ NETDATA_DOUBLE highlight[], int highlight_points,
+ uint32_t base_shifts) {
+
+ // -1 in size, since the calculate_pairs_diffs() returns one less point
+ DIFFS_NUMBERS baseline_diffs[baseline_points - 1];
+ DIFFS_NUMBERS highlight_diffs[highlight_points - 1];
+
+ int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points);
+ int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points);
+
+ if(unlikely(!base_size || !high_size))
+ return NAN;
+
+ if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) {
+ netdata_log_error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries");
+ return NAN;
+ }
+
+ return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts);
+}
+
+NETDATA_DOUBLE *rrd2rrdr_ks2(
+ ONEWAYALLOC *owa, RRDHOST *host,
+ RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
+ time_t after, time_t before, size_t points, RRDR_OPTIONS options,
+ RRDR_TIME_GROUPING time_group_method, const char *time_group_options, size_t tier,
+ WEIGHTS_STATS *stats,
+ size_t *entries,
+ STORAGE_POINT *sp
+ ) {
+
+ NETDATA_DOUBLE *ret = NULL;
+
+ QUERY_TARGET_REQUEST qtr = {
+ .version = 1,
+ .host = host,
+ .rca = rca,
+ .ria = ria,
+ .rma = rma,
+ .after = after,
+ .before = before,
+ .points = points,
+ .options = options,
+ .time_group_method = time_group_method,
+ .time_group_options = time_group_options,
+ .tier = tier,
+ .query_source = QUERY_SOURCE_API_WEIGHTS,
+ .priority = STORAGE_PRIORITY_SYNCHRONOUS,
+ };
+
+ QUERY_TARGET *qt = query_target_create(&qtr);
+ RRDR *r = rrd2rrdr(owa, qt);
+ if(!r)
+ goto cleanup;
+
+ stats->db_queries++;
+ stats->result_points += r->stats.result_points_generated;
+ stats->db_points += r->stats.db_points_read;
+ for(size_t tr = 0; tr < storage_tiers ; tr++)
+ stats->db_points_per_tier[tr] += r->internal.qt->db.tiers[tr].points;
+
+ if(r->d != 1 || r->internal.qt->query.used != 1) {
+ netdata_log_error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu r->d and %zu qt->query.used",
+ r->internal.qt->id, r->d, (size_t)r->internal.qt->query.used);
+ goto cleanup;
+ }
+
+ if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN))
+ goto cleanup;
+
+ if(unlikely(!(r->od[0] & RRDR_DIMENSION_QUERIED)))
+ goto cleanup;
+
+ if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO)))
+ goto cleanup;
+
+ if(rrdr_rows(r) < 2)
+ goto cleanup;
+
+ *entries = rrdr_rows(r);
+ ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r));
+
+ if(sp)
+ *sp = r->internal.qt->query.array[0].query_points;
+
+ // copy the points of the dimension to a contiguous array
+ // there is no need to check for empty values, since empty values are already zero
+ // https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43
+ memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE));
+
+cleanup:
+ rrdr_free(owa, r);
+ query_target_release(qt);
+ return ret;
+}
+
+static void rrdset_metric_correlations_ks2(
+ RRDHOST *host,
+ RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
+ DICTIONARY *results,
+ time_t baseline_after, time_t baseline_before,
+ time_t after, time_t before,
+ size_t points, RRDR_OPTIONS options,
+ RRDR_TIME_GROUPING time_group_method, const char *time_group_options, size_t tier,
+ uint32_t shifts,
+ WEIGHTS_STATS *stats, bool register_zero
+ ) {
+
+ options |= RRDR_OPTION_NATURAL_POINTS;
+
+ usec_t started_ut = now_monotonic_usec();
+ ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
+
+ size_t high_points = 0;
+ STORAGE_POINT highlighted_sp;
+ NETDATA_DOUBLE *highlight = rrd2rrdr_ks2(
+ owa, host, rca, ria, rma, after, before, points,
+ options, time_group_method, time_group_options, tier, stats, &high_points, &highlighted_sp);
+
+ if(!highlight)
+ goto cleanup;
+
+ size_t base_points = 0;
+ STORAGE_POINT baseline_sp;
+ NETDATA_DOUBLE *baseline = rrd2rrdr_ks2(
+ owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts,
+ options, time_group_method, time_group_options, tier, stats, &base_points, &baseline_sp);
+
+ if(!baseline)
+ goto cleanup;
+
+ stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1);
+
+ double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts);
+ if(!isnan(prob) && !isinf(prob)) {
+
+ // these conditions should never happen, but still let's check
+ if(unlikely(prob < 0.0)) {
+ netdata_log_error("Metric correlations: kstwo() returned a negative number: %f", prob);
+ prob = -prob;
+ }
+ if(unlikely(prob > 1.0)) {
+ netdata_log_error("Metric correlations: kstwo() returned a number above 1.0: %f", prob);
+ prob = 1.0;
+ }
+
+ usec_t ended_ut = now_monotonic_usec();
+
+ // to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated
+ // so, we flip the result of kstwo()
+ register_result(results, host, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, &highlighted_sp,
+ &baseline_sp, stats, register_zero, ended_ut - started_ut);
+ }
+
+cleanup:
+ onewayalloc_destroy(owa);
+}
+
+// ----------------------------------------------------------------------------
+// VOLUME algorithm functions
+
+static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats, size_t queries) {
+ stats->db_queries += queries;
+ stats->result_points += qv->result_points;
+ stats->db_points += qv->points_read;
+ for(size_t tier = 0; tier < storage_tiers ; tier++)
+ stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier];
+}
+
+static void rrdset_metric_correlations_volume(
+ RRDHOST *host,
+ RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
+ DICTIONARY *results,
+ time_t baseline_after, time_t baseline_before,
+ time_t after, time_t before,
+ RRDR_OPTIONS options, RRDR_TIME_GROUPING time_group_method, const char *time_group_options,
+ size_t tier,
+ WEIGHTS_STATS *stats, bool register_zero) {
+
+ options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS;
+
+ QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before,
+ options, time_group_method, time_group_options, tier, 0,
+ QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS);
+ merge_query_value_to_stats(&baseline_average, stats, 1);
+
+ if(!netdata_double_isnumber(baseline_average.value)) {
+ // this means no data for the baseline window, but we may have data for the highlighted one - assume zero
+ baseline_average.value = 0.0;
+ }
+
+ QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before,
+ options, time_group_method, time_group_options, tier, 0,
+ QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS);
+ merge_query_value_to_stats(&highlight_average, stats, 1);
+
+ if(!netdata_double_isnumber(highlight_average.value))
+ return;
+
+ if(baseline_average.value == highlight_average.value) {
+ // they are the same - let's move on
+ return;
+ }
+
+ if((options & RRDR_OPTION_ANOMALY_BIT) && highlight_average.value < baseline_average.value) {
+ // when working on anomaly bits, we are looking for an increase in the anomaly rate
+ return;
+ }
+
+ char highlight_countif_options[50 + 1];
+ snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value);
+ QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before,
+ options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0,
+ QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS);
+ merge_query_value_to_stats(&highlight_countif, stats, 1);
+
+ if(!netdata_double_isnumber(highlight_countif.value)) {
+ netdata_log_info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange...");
+ return;
+ }
+
+ // this represents the percentage of time
+ // the highlighted window was above/below the baseline window
+ // (above or below depending on their averages)
+ highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0
+
+ RESULT_FLAGS flags;
+ NETDATA_DOUBLE pcent = NAN;
+ if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) {
+ flags = RESULT_IS_BASE_HIGH_RATIO;
+ pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value;
+ }
+ else {
+ flags = RESULT_IS_PERCENTAGE_OF_TIME;
+ pcent = highlight_countif.value;
+ }
+
+ register_result(results, host, rca, ria, rma, pcent, flags, &highlight_average.sp, &baseline_average.sp, stats,
+ register_zero, baseline_average.duration_ut + highlight_average.duration_ut + highlight_countif.duration_ut);
+}
+
+// ----------------------------------------------------------------------------
+// VALUE / ANOMALY RATE algorithm functions
+
+static void rrdset_weights_value(
+ RRDHOST *host,
+ RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
+ DICTIONARY *results,
+ time_t after, time_t before,
+ RRDR_OPTIONS options, RRDR_TIME_GROUPING time_group_method, const char *time_group_options,
+ size_t tier,
+ WEIGHTS_STATS *stats, bool register_zero) {
+
+ options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_NATURAL_POINTS;
+
+ QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before,
+ options, time_group_method, time_group_options, tier, 0,
+ QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS);
+
+ merge_query_value_to_stats(&qv, stats, 1);
+
+ if(netdata_double_isnumber(qv.value))
+ register_result(results, host, rca, ria, rma, qv.value, 0, &qv.sp, NULL, stats, register_zero, qv.duration_ut);
+}
+
+static void rrdset_weights_multi_dimensional_value(struct query_weights_data *qwd) {
+ QUERY_TARGET_REQUEST qtr = {
+ .version = 1,
+ .scope_nodes = qwd->qwr->scope_nodes,
+ .scope_contexts = qwd->qwr->scope_contexts,
+ .nodes = qwd->qwr->nodes,
+ .contexts = qwd->qwr->contexts,
+ .instances = qwd->qwr->instances,
+ .dimensions = qwd->qwr->dimensions,
+ .labels = qwd->qwr->labels,
+ .alerts = qwd->qwr->alerts,
+ .after = qwd->qwr->after,
+ .before = qwd->qwr->before,
+ .points = 1,
+ .options = qwd->qwr->options | RRDR_OPTION_NATURAL_POINTS,
+ .time_group_method = qwd->qwr->time_group_method,
+ .time_group_options = qwd->qwr->time_group_options,
+ .tier = qwd->qwr->tier,
+ .timeout_ms = qwd->qwr->timeout_ms,
+ .query_source = QUERY_SOURCE_API_WEIGHTS,
+ .priority = STORAGE_PRIORITY_NORMAL,
+ };
+
+ ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
+ QUERY_TARGET *qt = query_target_create(&qtr);
+ RRDR *r = rrd2rrdr(owa, qt);
+
+ if(!r || rrdr_rows(r) != 1 || !r->d || r->d != r->internal.qt->query.used)
+ goto cleanup;
+
+ QUERY_VALUE qv = {
+ .after = r->view.after,
+ .before = r->view.before,
+ .points_read = r->stats.db_points_read,
+ .result_points = r->stats.result_points_generated,
+ };
+
+ size_t queries = 0;
+ for(size_t d = 0; d < r->d ;d++) {
+ if(!rrdr_dimension_should_be_exposed(r->od[d], qwd->qwr->options))
+ continue;
+
+ long i = 0; // only one row
+ NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
+ NETDATA_DOUBLE *ar = &r->ar[ i * r->d ];
+
+ qv.value = cn[d];
+ qv.anomaly_rate = ar[d];
+ storage_point_merge_to(qv.sp, r->internal.qt->query.array[d].query_points);
+
+ if(netdata_double_isnumber(qv.value)) {
+ QUERY_METRIC *qm = query_metric(r->internal.qt, d);
+ QUERY_DIMENSION *qd = query_dimension(r->internal.qt, qm->link.query_dimension_id);
+ QUERY_INSTANCE *qi = query_instance(r->internal.qt, qm->link.query_instance_id);
+ QUERY_CONTEXT *qc = query_context(r->internal.qt, qm->link.query_context_id);
+ QUERY_NODE *qn = query_node(r->internal.qt, qm->link.query_node_id);
+
+ register_result(qwd->results, qn->rrdhost, qc->rca, qi->ria, qd->rma, qv.value, 0, &qv.sp,
+ NULL, &qwd->stats, qwd->register_zero, qm->duration_ut);
+ }
+
+ queries++;
+ }
+
+ merge_query_value_to_stats(&qv, &qwd->stats, queries);
+
+cleanup:
+ rrdr_free(owa, r);
+ query_target_release(qt);
+ onewayalloc_destroy(owa);
+}
+
+// ----------------------------------------------------------------------------
+
+int compare_netdata_doubles(const void *left, const void *right) {
+ NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left;
+ NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right;
+
+ // https://stackoverflow.com/a/3886497/1114110
+ return (lt > rt) - (lt < rt);
+}
+
+static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) {
+ // binary search to find the index the smallest index
+ // of the first value in the array that is greater than K
+
+ int right = size;
+ while(left < right) {
+ int middle = (int)(((unsigned int)(left + right)) >> 1);
+
+ if(arr[middle] > K)
+ right = middle;
+
+ else
+ left = middle + 1;
+ }
+
+ return left;
+}
+
+// ----------------------------------------------------------------------------
+// spread the results evenly according to their value
+
+static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) {
+ struct register_result *t;
+
+ // count the dimensions
+ size_t dimensions = dictionary_entries(results);
+ if(!dimensions) return 0;
+
+ if(stats->max_base_high_ratio == 0.0)
+ stats->max_base_high_ratio = 1.0;
+
+ // create an array of the right size and copy all the values in it
+ NETDATA_DOUBLE slots[dimensions];
+ dimensions = 0;
+ dfe_start_read(results, t) {
+ if(t->flags & RESULT_IS_PERCENTAGE_OF_TIME)
+ t->value = t->value * stats->max_base_high_ratio;
+
+ slots[dimensions++] = t->value;
+ }
+ dfe_done(t);
+
+ if(!dimensions) return 0; // Coverity fix
+
+ // sort the array with the values of all dimensions
+ qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles);
+
+ // skip the duplicates in the sorted array
+ NETDATA_DOUBLE last_value = NAN;
+ size_t unique_values = 0;
+ for(size_t i = 0; i < dimensions ;i++) {
+ if(likely(slots[i] != last_value))
+ slots[unique_values++] = last_value = slots[i];
+ }
+
+ // this cannot happen, but coverity thinks otherwise...
+ if(!unique_values)
+ unique_values = dimensions;
+
+ // calculate the weight of each slot, using the number of unique values
+ NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values;
+
+ dfe_start_read(results, t) {
+ int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value);
+ NETDATA_DOUBLE v = slot * slot_weight;
+ if(unlikely(v > 1.0)) v = 1.0;
+ v = 1.0 - v;
+ t->value = v;
+ }
+ dfe_done(t);
+
+ return dimensions;
+}
+
+// ----------------------------------------------------------------------------
+// The main function
+
+static ssize_t weights_for_rrdmetric(void *data, RRDHOST *host, RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma) {
+ struct query_weights_data *qwd = data;
+ QUERY_WEIGHTS_REQUEST *qwr = qwd->qwr;
+
+ if(qwd->qwr->interrupt_callback && qwd->qwr->interrupt_callback(qwd->qwr->interrupt_callback_data)) {
+ qwd->interrupted = true;
+ return -1;
+ }
+
+ qwd->examined_dimensions++;
+
+ switch(qwr->method) {
+ case WEIGHTS_METHOD_VALUE:
+ rrdset_weights_value(
+ host, rca, ria, rma,
+ qwd->results,
+ qwr->after, qwr->before,
+ qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier,
+ &qwd->stats, qwd->register_zero
+ );
+ break;
+
+ case WEIGHTS_METHOD_ANOMALY_RATE:
+ qwr->options |= RRDR_OPTION_ANOMALY_BIT;
+ rrdset_weights_value(
+ host, rca, ria, rma,
+ qwd->results,
+ qwr->after, qwr->before,
+ qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier,
+ &qwd->stats, qwd->register_zero
+ );
+ break;
+
+ case WEIGHTS_METHOD_MC_VOLUME:
+ rrdset_metric_correlations_volume(
+ host, rca, ria, rma,
+ qwd->results,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->after, qwr->before,
+ qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier,
+ &qwd->stats, qwd->register_zero
+ );
+ break;
+
+ default:
+ case WEIGHTS_METHOD_MC_KS2:
+ rrdset_metric_correlations_ks2(
+ host, rca, ria, rma,
+ qwd->results,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->after, qwr->before, qwr->points,
+ qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier, qwd->shifts,
+ &qwd->stats, qwd->register_zero
+ );
+ break;
+ }
+
+ qwd->timings.executed_ut = now_monotonic_usec();
+ if(qwd->timings.executed_ut - qwd->timings.received_ut > qwd->timeout_us) {
+ qwd->timed_out = true;
+ return -1;
+ }
+
+ query_progress_done_step(qwr->transaction, 1);
+
+ return 1;
+}
+
+static ssize_t weights_do_context_callback(void *data, RRDCONTEXT_ACQUIRED *rca, bool queryable_context) {
+ if(!queryable_context)
+ return false;
+
+ struct query_weights_data *qwd = data;
+
+ bool has_retention = false;
+ switch(qwd->qwr->method) {
+ case WEIGHTS_METHOD_VALUE:
+ case WEIGHTS_METHOD_ANOMALY_RATE:
+ has_retention = rrdcontext_retention_match(rca, qwd->qwr->after, qwd->qwr->before);
+ break;
+
+ case WEIGHTS_METHOD_MC_KS2:
+ case WEIGHTS_METHOD_MC_VOLUME:
+ has_retention = rrdcontext_retention_match(rca, qwd->qwr->after, qwd->qwr->before);
+ if(has_retention)
+ has_retention = rrdcontext_retention_match(rca, qwd->qwr->baseline_after, qwd->qwr->baseline_before);
+ break;
+ }
+
+ if(!has_retention)
+ return 0;
+
+ ssize_t ret = weights_foreach_rrdmetric_in_context(rca,
+ qwd->instances_sp,
+ NULL,
+ qwd->labels_sp,
+ qwd->alerts_sp,
+ qwd->dimensions_sp,
+ true, true, qwd->qwr->version,
+ weights_for_rrdmetric, qwd);
+ return ret;
+}
+
+ssize_t weights_do_node_callback(void *data, RRDHOST *host, bool queryable) {
+ if(!queryable)
+ return 0;
+
+ struct query_weights_data *qwd = data;
+
+ ssize_t ret = query_scope_foreach_context(host, qwd->qwr->scope_contexts,
+ qwd->scope_contexts_sp, qwd->contexts_sp,
+ weights_do_context_callback, queryable, qwd);
+
+ return ret;
+}
+
+int web_api_v12_weights(BUFFER *wb, QUERY_WEIGHTS_REQUEST *qwr) {
+
+ char *error = NULL;
+ int resp = HTTP_RESP_OK;
+
+ // if the user didn't give a timeout
+ // assume 60 seconds
+ if(!qwr->timeout_ms)
+ qwr->timeout_ms = 5 * 60 * MSEC_PER_SEC;
+
+ // if the timeout is less than 1 second
+ // make it at least 1 second
+ if(qwr->timeout_ms < (long)(1 * MSEC_PER_SEC))
+ qwr->timeout_ms = 1 * MSEC_PER_SEC;
+
+ struct query_weights_data qwd = {
+ .qwr = qwr,
+
+ .scope_nodes_sp = string_to_simple_pattern(qwr->scope_nodes),
+ .scope_contexts_sp = string_to_simple_pattern(qwr->scope_contexts),
+ .nodes_sp = string_to_simple_pattern(qwr->nodes),
+ .contexts_sp = string_to_simple_pattern(qwr->contexts),
+ .instances_sp = string_to_simple_pattern(qwr->instances),
+ .dimensions_sp = string_to_simple_pattern(qwr->dimensions),
+ .labels_sp = string_to_simple_pattern(qwr->labels),
+ .alerts_sp = string_to_simple_pattern(qwr->alerts),
+ .timeout_us = qwr->timeout_ms * USEC_PER_MS,
+ .timed_out = false,
+ .examined_dimensions = 0,
+ .register_zero = true,
+ .results = register_result_init(),
+ .stats = {},
+ .shifts = 0,
+ .timings = {
+ .received_ut = now_monotonic_usec(),
+ }
+ };
+
+ if(!rrdr_relative_window_to_absolute_query(&qwr->after, &qwr->before, NULL, false))
+ buffer_no_cacheable(wb);
+ else
+ buffer_cacheable(wb);
+
+ if (qwr->before <= qwr->after) {
+ resp = HTTP_RESP_BAD_REQUEST;
+ error = "Invalid selected time-range.";
+ goto cleanup;
+ }
+
+ if(qwr->method == WEIGHTS_METHOD_MC_KS2 || qwr->method == WEIGHTS_METHOD_MC_VOLUME) {
+ if(!qwr->points) qwr->points = 500;
+
+ if(qwr->baseline_before <= API_RELATIVE_TIME_MAX)
+ qwr->baseline_before += qwr->after;
+
+ rrdr_relative_window_to_absolute_query(&qwr->baseline_after, &qwr->baseline_before, NULL, false);
+
+ if (qwr->baseline_before <= qwr->baseline_after) {
+ resp = HTTP_RESP_BAD_REQUEST;
+ error = "Invalid baseline time-range.";
+ goto cleanup;
+ }
+
+ // baseline should be a power of two multiple of highlight
+ long long base_delta = qwr->baseline_before - qwr->baseline_after;
+ long long high_delta = qwr->before - qwr->after;
+ uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta);
+
+ // check if the multiplier is a power of two
+ // https://stackoverflow.com/a/600306/1114110
+ if((multiplier & (multiplier - 1)) != 0) {
+ // it is not power of two
+ // let's find the closest power of two
+ // https://stackoverflow.com/a/466242/1114110
+ multiplier--;
+ multiplier |= multiplier >> 1;
+ multiplier |= multiplier >> 2;
+ multiplier |= multiplier >> 4;
+ multiplier |= multiplier >> 8;
+ multiplier |= multiplier >> 16;
+ multiplier++;
+ }
+
+ // convert the multiplier to the number of shifts
+ // we need to do, to divide baseline numbers to match
+ // the highlight ones
+ while(multiplier > 1) {
+ qwd.shifts++;
+ multiplier = multiplier >> 1;
+ }
+
+ // if the baseline size will not comply to MAX_POINTS
+ // lower the window of the baseline
+ while(qwd.shifts && (qwr->points << qwd.shifts) > MAX_POINTS)
+ qwd.shifts--;
+
+ // if the baseline size still does not comply to MAX_POINTS
+ // lower the resolution of the highlight and the baseline
+ while((qwr->points << qwd.shifts) > MAX_POINTS)
+ qwr->points = qwr->points >> 1;
+
+ if(qwr->points < 15) {
+ resp = HTTP_RESP_BAD_REQUEST;
+ error = "Too few points available, at least 15 are needed.";
+ goto cleanup;
+ }
+
+ // adjust the baseline to be multiplier times bigger than the highlight
+ qwr->baseline_after = qwr->baseline_before - (high_delta << qwd.shifts);
+ }
+
+ if(qwr->options & RRDR_OPTION_NONZERO) {
+ qwd.register_zero = false;
+
+ // remove it to run the queries without it
+ qwr->options &= ~RRDR_OPTION_NONZERO;
+ }
+
+ if(qwr->host && qwr->version == 1)
+ weights_do_node_callback(&qwd, qwr->host, true);
+ else {
+ if((qwd.qwr->method == WEIGHTS_METHOD_VALUE || qwd.qwr->method == WEIGHTS_METHOD_ANOMALY_RATE) && (qwd.contexts_sp || qwd.scope_contexts_sp)) {
+ rrdset_weights_multi_dimensional_value(&qwd);
+ }
+ else {
+ query_scope_foreach_host(qwd.scope_nodes_sp, qwd.nodes_sp,
+ weights_do_node_callback, &qwd,
+ &qwd.versions,
+ NULL);
+ }
+ }
+
+ if(!qwd.register_zero) {
+ // put it back, to show it in the response
+ qwr->options |= RRDR_OPTION_NONZERO;
+ }
+
+ if(qwd.timed_out) {
+ error = "timed out";
+ resp = HTTP_RESP_GATEWAY_TIMEOUT;
+ goto cleanup;
+ }
+
+ if(qwd.interrupted) {
+ error = "interrupted";
+ resp = HTTP_RESP_CLIENT_CLOSED_REQUEST;
+ goto cleanup;
+ }
+
+ if(!qwd.register_zero)
+ qwr->options |= RRDR_OPTION_NONZERO;
+
+ if(!(qwr->options & RRDR_OPTION_RETURN_RAW) && qwr->method != WEIGHTS_METHOD_VALUE)
+ spread_results_evenly(qwd.results, &qwd.stats);
+
+ usec_t ended_usec = qwd.timings.executed_ut = now_monotonic_usec();
+
+ // generate the json output we need
+ buffer_flush(wb);
+
+ size_t added_dimensions = 0;
+ switch(qwr->format) {
+ case WEIGHTS_FORMAT_CHARTS:
+ added_dimensions =
+ registered_results_to_json_charts(
+ qwd.results, wb,
+ qwr->after, qwr->before,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts,
+ qwd.examined_dimensions,
+ ended_usec - qwd.timings.received_ut, &qwd.stats);
+ break;
+
+ case WEIGHTS_FORMAT_CONTEXTS:
+ added_dimensions =
+ registered_results_to_json_contexts(
+ qwd.results, wb,
+ qwr->after, qwr->before,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts,
+ qwd.examined_dimensions,
+ ended_usec - qwd.timings.received_ut, &qwd.stats);
+ break;
+
+ default:
+ case WEIGHTS_FORMAT_MULTINODE:
+ // we don't support these groupings in weights
+ qwr->group_by.group_by &= ~(RRDR_GROUP_BY_LABEL|RRDR_GROUP_BY_SELECTED|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE);
+ if(qwr->group_by.group_by == RRDR_GROUP_BY_NONE) {
+ added_dimensions =
+ registered_results_to_json_multinode_no_group_by(
+ qwd.results, wb,
+ qwr->after, qwr->before,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts,
+ qwd.examined_dimensions,
+ &qwd, &qwd.stats, &qwd.versions);
+ }
+ else {
+ added_dimensions =
+ registered_results_to_json_multinode_group_by(
+ qwd.results, wb,
+ qwr->after, qwr->before,
+ qwr->baseline_after, qwr->baseline_before,
+ qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts,
+ qwd.examined_dimensions,
+ &qwd, &qwd.stats, &qwd.versions);
+ }
+ break;
+ }
+
+ if(!added_dimensions && qwr->version < 2) {
+ error = "no results produced.";
+ resp = HTTP_RESP_NOT_FOUND;
+ }
+
+cleanup:
+ simple_pattern_free(qwd.scope_nodes_sp);
+ simple_pattern_free(qwd.scope_contexts_sp);
+ simple_pattern_free(qwd.nodes_sp);
+ simple_pattern_free(qwd.contexts_sp);
+ simple_pattern_free(qwd.instances_sp);
+ simple_pattern_free(qwd.dimensions_sp);
+ simple_pattern_free(qwd.labels_sp);
+ simple_pattern_free(qwd.alerts_sp);
+
+ register_result_destroy(qwd.results);
+
+ if(error) {
+ buffer_flush(wb);
+ buffer_sprintf(wb, "{\"error\": \"%s\" }", error);
+ }
+
+ return resp;
+}
+
+// ----------------------------------------------------------------------------
+// unittest
+
+/*
+
+Unit tests against the output of this:
+
+https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449
+
+import matplotlib.pyplot as plt
+import pandas as pd
+import numpy as np
+import scipy as sp
+from scipy import stats
+
+data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ])
+data2 = np.array([365, -123, 0])
+data1 = np.sort(data1)
+data2 = np.sort(data2)
+n1 = data1.shape[0]
+n2 = data2.shape[0]
+data_all = np.concatenate([data1, data2])
+cdf1 = np.searchsorted(data1, data_all, side='right') / n1
+cdf2 = np.searchsorted(data2, data_all, side='right') / n2
+print(data_all)
+print("\ndata1", data1, cdf1)
+print("\ndata2", data2, cdf2)
+cddiffs = cdf1 - cdf2
+print("\ncddiffs", cddiffs)
+minS = np.clip(-np.min(cddiffs), 0, 1)
+maxS = np.max(cddiffs)
+print("\nmin", minS)
+print("max", maxS)
+m, n = sorted([float(n1), float(n2)], reverse=True)
+en = m * n / (m + n)
+d = max(minS, maxS)
+prob = stats.distributions.kstwo.sf(d, np.round(en))
+print("\nprob", prob)
+
+*/
+
+static int double_expect(double v, const char *str, const char *descr) {
+ char buf[100 + 1];
+ snprintfz(buf, sizeof(buf) - 1, "%0.6f", v);
+ int ret = strcmp(buf, str) ? 1 : 0;
+
+ fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf);
+ return ret;
+}
+
+static int mc_unittest1(void) {
+ int bs = 3, hs = 3;
+ DIFFS_NUMBERS base[3] = { 1, 2, 3 };
+ DIFFS_NUMBERS high[3] = { 3, 4, 6 };
+
+ double prob = ks_2samp(base, bs, high, hs, 0);
+ return double_expect(prob, "0.222222", "3x3");
+}
+
+static int mc_unittest2(void) {
+ int bs = 6, hs = 3;
+ DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 };
+ DIFFS_NUMBERS high[3] = { 3, 4, 6 };
+
+ double prob = ks_2samp(base, bs, high, hs, 1);
+ return double_expect(prob, "0.500000", "6x3");
+}
+
+static int mc_unittest3(void) {
+ int bs = 12, hs = 3;
+ DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 };
+ DIFFS_NUMBERS high[3] = { 3, 4, 6 };
+
+ double prob = ks_2samp(base, bs, high, hs, 2);
+ return double_expect(prob, "0.347222", "12x3");
+}
+
+static int mc_unittest4(void) {
+ int bs = 12, hs = 3;
+ DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 };
+ DIFFS_NUMBERS high[3] = { 365, -123, 0 };
+
+ double prob = ks_2samp(base, bs, high, hs, 2);
+ return double_expect(prob, "0.777778", "12x3");
+}
+
+int mc_unittest(void) {
+ int errors = 0;
+
+ errors += mc_unittest1();
+ errors += mc_unittest2();
+ errors += mc_unittest3();
+ errors += mc_unittest4();
+
+ return errors;
+}
+