summaryrefslogtreecommitdiffstats
path: root/docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md')
-rw-r--r--docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md8
1 files changed, 6 insertions, 2 deletions
diff --git a/docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md b/docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md
index 074051e3..f41089bb 100644
--- a/docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md
+++ b/docs/category-overview-pages/machine-learning-and-assisted-troubleshooting.md
@@ -1,3 +1,7 @@
-# Machine Learning and Assisted Troubleshooting Overview
+# Machine Learning and Anomaly Detection
-This section contains documentation regarding Netdata's troubleshooting and machine learning features. \ No newline at end of file
+Netdata provides advanced Machine Learning features to help you identify and troubleshoot anomalies and unexpected behavior in your infrastructure before they become critical issues:
+
+- K-means clustering [Machine Learning models](/src/ml/README.md) are trained to power the [Anomaly Advisor](/docs/dashboards-and-charts/anomaly-advisor-tab.md) on the dashboard, which allows you to identify Anomalies in your infrastructure.
+- [Metric Correlations](/docs/metric-correlations.md) are possible through the dashboard using the [Two-sample Kolmogorov Smirnov](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Two-sample_Kolmogorov%E2%80%93Smirnov_test) statistical test and Volume heuristic measures.
+- The [Netdata Assistant](/docs/netdata-assistant.md) is able to answer your prompts when it comes to troubleshooting Alerts and Anomalies.