diff options
Diffstat (limited to 'libnetdata/libjudy/src/JudyCommon/JudyPrivate.h')
-rw-r--r-- | libnetdata/libjudy/src/JudyCommon/JudyPrivate.h | 1613 |
1 files changed, 0 insertions, 1613 deletions
diff --git a/libnetdata/libjudy/src/JudyCommon/JudyPrivate.h b/libnetdata/libjudy/src/JudyCommon/JudyPrivate.h deleted file mode 100644 index 350631f01..000000000 --- a/libnetdata/libjudy/src/JudyCommon/JudyPrivate.h +++ /dev/null @@ -1,1613 +0,0 @@ -#ifndef _JUDYPRIVATE_INCLUDED -#define _JUDYPRIVATE_INCLUDED -// _________________ -// -// Copyright (C) 2000 - 2002 Hewlett-Packard Company -// -// This program is free software; you can redistribute it and/or modify it -// under the term of the GNU Lesser General Public License as published by the -// Free Software Foundation; either version 2 of the License, or (at your -// option) any later version. -// -// This program is distributed in the hope that it will be useful, but WITHOUT -// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License -// for more details. -// -// You should have received a copy of the GNU Lesser General Public License -// along with this program; if not, write to the Free Software Foundation, -// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -// _________________ - -// @(#) $Revision: 4.77 $ $Source: /judy/src/JudyCommon/JudyPrivate.h $ -// -// Header file for all Judy sources, for global but private (non-exported) -// declarations. - -#include "Judy.h" - -// **************************************************************************** -// A VERY BRIEF EXPLANATION OF A JUDY ARRAY -// -// A Judy array is, effectively, a digital tree (or Trie) with 256 element -// branches (nodes), and with "compression tricks" applied to low-population -// branches or leaves to save a lot of memory at the cost of relatively little -// CPU time or cache fills. -// -// In the actual implementation, a Judy array is level-less, and traversing the -// "tree" actually means following the states in a state machine (SM) as -// directed by the Index. A Judy array is referred to here as an "SM", rather -// than as a "tree"; having "states", rather than "levels". -// -// Each branch or leaf in the SM decodes a portion ("digit") of the original -// Index; with 256-way branches there are 8 bits per digit. There are 3 kinds -// of branches, called: Linear, Bitmap and Uncompressed, of which the first 2 -// are compressed to contain no NULL entries. -// -// An Uncompressed branch has a 1.0 cache line fill cost to decode 8 bits of -// (digit, part of an Index), but it might contain many NULL entries, and is -// therefore inefficient with memory if lightly populated. -// -// A Linear branch has a ~1.75 cache line fill cost when at maximum population. -// A Bitmap branch has ~2.0 cache line fills. Linear and Bitmap branches are -// converted to Uncompressed branches when the additional memory can be -// amortized with larger populations. Higher-state branches have higher -// priority to be converted. -// -// Linear branches can hold 28 elements (based on detailed analysis) -- thus 28 -// expanses. A Linear branch is converted to a Bitmap branch when the 29th -// expanse is required. -// -// A Bitmap branch could hold 256 expanses, but is forced to convert to an -// Uncompressed branch when 185 expanses are required. Hopefully, it is -// converted before that because of population growth (again, based on detailed -// analysis and heuristics in the code). -// -// A path through the SM terminates to a leaf when the Index (or key) -// population in the expanse below a pointer will fit into 1 or 2 cache lines -// (~31..255 Indexes). A maximum-population Leaf has ~1.5 cache line fill -// cost. -// -// Leaves are sorted arrays of Indexes, where the Index Sizes (IS) are: 0, 1, -// 8, 16, 24, 32, [40, 48, 56, 64] bits. The IS depends on the "density" -// (population/expanse) of the values in the Leaf. Zero bits are possible if -// population == expanse in the SM (that is, a full small expanse). -// -// Elements of a branches are called Judy Pointers (JPs). Each JP object -// points to the next object in the SM, plus, a JP can decode an additional -// 2[6] bytes of an Index, but at the cost of "narrowing" the expanse -// represented by the next object in the SM. A "narrow" JP (one which has -// decode bytes/digits) is a way of skipping states in the SM. -// -// Although counterintuitive, we think a Judy SM is optimal when the Leaves are -// stored at MINIMUM compression (narrowing, or use of Decode bytes). If more -// aggressive compression was used, decompression of a leaf be required to -// insert an index. Additional compression would save a little memory but not -// help performance significantly. - - -#ifdef A_PICTURE_IS_WORTH_1000_WORDS -******************************************************************************* - -JUDY 32-BIT STATE MACHINE (SM) EXAMPLE, FOR INDEX = 0x02040103 - -The Index used in this example is purposely chosen to allow small, simple -examples below; each 1-byte "digit" from the Index has a small numeric value -that fits in one column. In the drawing below: - - JRP == Judy Root Pointer; - - C == 1 byte of a 1..3 byte Population (count of Indexes) below this - pointer. Since this is shared with the Decode field, the combined - sizes must be 3[7], that is, 1 word less 1 byte for the JP Type. - - The 1-byte field jp_Type is represented as: - - 1..3 == Number of bytes in the population (Pop0) word of the Branch or Leaf - below the pointer (note: 1..7 on 64-bit); indicates: - - number of bytes in Decode field == 3 - this number; - - number of bytes remaining to decode. - Note: The maximum is 3, not 4, because the 1st byte of the Index is - always decoded digitally in the top branch. - -B- == JP points to a Branch (there are many kinds of Branches). - -L- == JP points to a Leaf (there are many kinds of Leaves). - - (2) == Digit of Index decoded by position offset in branch (really - 0..0xff). - - 4* == Digit of Index necessary for decoding a "narrow" pointer, in a - Decode field; replaces 1 missing branch (really 0..0xff). - - 4+ == Digit of Index NOT necessary for decoding a "narrow" pointer, but - used for fast traversal of the SM by Judy1Test() and JudyLGet() - (see the code) (really 0..0xff). - - 0 == Byte in a JPs Pop0 field that is always ignored, because a leaf - can never contain more than 256 Indexes (Pop0 <= 255). - - +----- == A Branch or Leaf; drawn open-ended to remind you that it could - | have up to 256 columns. - +----- - - | - | == Pointer to next Branch or Leaf. - V - - | - O == A state is skipped by using a "narrow" pointer. - | - - < 1 > == Digit (Index) shown as an example is not necessarily in the - position shown; is sorted in order with neighbor Indexes. - (Really 0..0xff.) - -Note that this example shows every possibly topology to reach a leaf in a -32-bit Judy SM, although this is a very subtle point! - - STATE or` - LEVEL - +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ - |RJP| |RJP| |RJP| |RJP| |RJP| |RJP| |RJP| |RJP| - L---+ B---+ B---+ B---+ B---+ B---+ B---+ B---+ - | | | | | | | | - | | | | | | | | - V V (2) V (2) V (2) V (2) V (2) V (2) V (2) - +------ +------ +------ +------ +------ +------ +------ +------ -Four |< 2 > | 0 | 4* | C | 4* | 4* | C | C -byte |< 4 > | 0 | 0 | C | 1* | C | C | C 4 -Index|< 1 > | C | C | C | C | C | C | C -Leaf |< 3 > | 3 | 2 | 3 | 1 | 2 | 3 | 3 - +------ +--L--- +--L--- +--B--- +--L--- +--B--- +--B--- +--B--- - | | | | | | | - / | / | | / / - / | / | | / / - | | | | | | | - V | V (4) | | V (4) V (4) - +------ | +------ | | +------ +------ - Three |< 4 > | | 4+ | | | 4+ | 4+ - byte Index|< 1 > O | 0 O O | 1* | C 3 - Leaf |< 3 > | | C | | | C | C - +------ | | 2 | | | 1 | 2 - / +----L- | | +----L- +----B- - / | | | | | - | / | / / / - | / | / / / - | / | | / / - | / | | / / - | | | | | | - V V | V(1) | V(1) - +------ +------ | +------ | +------ - Two byte |< 1 > |< 1 > | | 4+ | | 4+ - Index Leaf |< 3 > |< 3 > O | 1+ O | 1+ 2 - +------ +------ / | C | | C - / | 1 | | 1 - | +-L---- | +-L---- - | | | | - | / | / - | | | | - V V V V - +------ +------ +------ +------ - One byte Index Leaf |< 3 > |< 3 > |< 3 > |< 3 > 1 - +------ +------ +------ +------ - - -#endif // A_PICTURE_IS_WORTH_1000_WORDS - - -// **************************************************************************** -// MISCELLANEOUS GLOBALS: -// -// PLATFORM-SPECIFIC CONVENIENCE MACROS: -// -// These are derived from context (set by cc or in system header files) or -// based on JU_<PLATFORM> macros from make_includes/platform.*.mk. We decided -// on 011018 that any macro reliably derivable from context (cc or headers) for -// ALL platforms supported by Judy is based on that derivation, but ANY -// exception means to stop using the external macro completely and derive from -// JU_<PLATFORM> instead. - -// Other miscellaneous stuff: - -#ifndef _BOOL_T -#define _BOOL_T -typedef int bool_t; -#endif - -#define FUNCTION // null; easy to find functions. - -#ifndef TRUE -#define TRUE 1 -#endif - -#ifndef FALSE -#define FALSE 0 -#endif - -#ifdef TRACE // turn on all other tracing in the code: -#define TRACEJP 1 // JP traversals in JudyIns.c and JudyDel.c. -#define TRACEJPR 1 // JP traversals in retrieval code, JudyGet.c. -#define TRACECF 1 // cache fills in JudyGet.c. -#define TRACEMI 1 // malloc calls in JudyMallocIF.c. -#define TRACEMF 1 // malloc calls at a lower level in JudyMalloc.c. -#endif - - -// SUPPORT FOR DEBUG-ONLY CODE: -// -// By convention, use -DDEBUG to enable both debug-only code AND assertions in -// the Judy sources. -// -// Invert the sense of assertions, so they are off unless explicitly requested, -// in a uniform way. -// -// Note: It is NOT appropriate to put this in Judy.h; it would mess up -// application code. - -#ifndef DEBUG -#define NDEBUG 1 // must be 1 for "#if". -#endif - -// Shorthand notations to avoid #ifdefs for single-line conditional statements: -// -// Warning: These cannot be used around compiler directives, such as -// "#include", nor in the case where Code contains a comma other than nested -// within parentheses or quotes. - -#ifndef DEBUG -#define DBGCODE(Code) // null. -#else -#define DBGCODE(Code) Code -#endif - -#ifdef JUDY1 -#define JUDY1CODE(Code) Code -#define JUDYLCODE(Code) // null. -#endif - -#ifdef JUDYL -#define JUDYLCODE(Code) Code -#define JUDY1CODE(Code) // null. -#endif - -#include <assert.h> - -// **************************************************************************** -// FUNDAMENTAL CONSTANTS FOR MACHINE -// **************************************************************************** - -// Machine (CPU) cache line size: -// -// NOTE: A leaf size of 2 cache lines maximum is the target (optimal) for -// Judy. Its hard to obtain a machines cache line size at compile time, but -// if the machine has an unexpected cache line size, its not devastating if -// the following constants end up causing leaves that are 1 cache line in size, -// or even 4 cache lines in size. The assumed 32-bit system has 16-word = -// 64-byte cache lines, and the assumed 64-bit system has 16-word = 128-byte -// cache lines. - -#ifdef JU_64BIT -#define cJU_BYTESPERCL 128 // cache line size in bytes. -#else -#define cJU_BYTESPERCL 64 // cache line size in bytes. -#endif - -// Bits Per Byte: - -#define cJU_BITSPERBYTE 0x8 - -// Bytes Per Word and Bits Per Word, latter assuming sizeof(byte) is 8 bits: -// -// Expect 32 [64] bits per word. - -#define cJU_BYTESPERWORD (sizeof(Word_t)) -#define cJU_BITSPERWORD (sizeof(Word_t) * cJU_BITSPERBYTE) - -#define JU_BYTESTOWORDS(BYTES) \ - (((BYTES) + cJU_BYTESPERWORD - 1) / cJU_BYTESPERWORD) - -// A word that is all-ones, normally equal to -1UL, but safer with ~0: - -#define cJU_ALLONES (~0UL) - -// Note, these are forward references, but thats OK: - -#define cJU_FULLBITMAPB ((BITMAPB_t) cJU_ALLONES) -#define cJU_FULLBITMAPL ((BITMAPL_t) cJU_ALLONES) - - -// **************************************************************************** -// MISCELLANEOUS JUDY-SPECIFIC DECLARATIONS -// **************************************************************************** - -// ROOT STATE: -// -// State at the start of the Judy SM, based on 1 byte decoded per state; equal -// to the number of bytes per Index to decode. - -#define cJU_ROOTSTATE (sizeof(Word_t)) - - -// SUBEXPANSES PER STATE: -// -// Number of subexpanses per state traversed, which is the number of JPs in a -// branch (actual or theoretical) and the number of bits in a bitmap. - -#define cJU_SUBEXPPERSTATE 256 - - -// LEAF AND VALUE POINTERS: -// -// Some other basic object types are in declared in JudyPrivateBranch.h -// (Pjbl_t, Pjbb_t, Pjbu_t, Pjp_t) or are Judy1/L-specific (Pjlb_t). The -// few remaining types are declared below. -// -// Note: Leaf pointers are cast to different-sized objects depending on the -// leafs level, but are at least addresses (not just numbers), so use void * -// (Pvoid_t), not PWord_t or Word_t for them, except use Pjlw_t for whole-word -// (top-level, root-level) leaves. Value areas, however, are always whole -// words. -// -// Furthermore, use Pjll_t only for generic leaf pointers (for various size -// LeafLs). Use Pjlw_t for LeafWs. Use Pleaf (with type uint8_t *, uint16_t -// *, etc) when the leaf index size is known. - -typedef PWord_t Pjlw_t; // pointer to root-level leaf (whole-word indexes). -typedef Pvoid_t Pjll_t; // pointer to lower-level linear leaf. - -#ifdef JUDYL -typedef PWord_t Pjv_t; // pointer to JudyL value area. -#endif - - -// POINTER PREPARATION MACROS: -// -// These macros are used to strip malloc-namespace-type bits from a pointer + -// malloc-type word (which references any Judy mallocd object that might be -// obtained from other than a direct call of malloc()), prior to dereferencing -// the pointer as an address. The malloc-type bits allow Judy mallocd objects -// to come from different "malloc() namespaces". -// -// (root pointer) (JRP, see above) -// jp.jp_Addr generic pointer to next-level node, except when used -// as a JudyL Immed01 value area -// JU_JBB_PJP macro hides jbbs_Pjp (pointer to JP subarray) -// JL_JLB_PVALUE macro hides jLlbs_PValue (pointer to value subarray) -// -// When setting one of these fields or passing an address to j__udyFree*(), the -// "raw" memory address is used; otherwise the memory address must be passed -// through one of the macros below before its dereferenced. -// -// Note: After much study, the typecasts below appear in the macros rather -// than at the point of use, which is both simpler and allows the compiler to -// do type-checking. - - -#define P_JLW( ADDR) ((Pjlw_t) (ADDR)) // root leaf. -#define P_JPM( ADDR) ((Pjpm_t) (ADDR)) // root JPM. -#define P_JBL( ADDR) ((Pjbl_t) (ADDR)) // BranchL. -#define P_JBB( ADDR) ((Pjbb_t) (ADDR)) // BranchB. -#define P_JBU( ADDR) ((Pjbu_t) (ADDR)) // BranchU. -#define P_JLL( ADDR) ((Pjll_t) (ADDR)) // LeafL. -#define P_JLB( ADDR) ((Pjlb_t) (ADDR)) // LeafB1. -#define P_JP( ADDR) ((Pjp_t) (ADDR)) // JP. - -#ifdef JUDYL -#define P_JV( ADDR) ((Pjv_t) (ADDR)) // &value. -#endif - - -// LEAST BYTES: -// -// Mask for least bytes of a word, and a macro to perform this mask on an -// Index. -// -// Note: This macro has been problematic in the past to get right and to make -// portable. Its not OK on all systems to shift by the full word size. This -// macro should allow shifting by 1..N bytes, where N is the word size, but -// should produce a compiler warning if the macro is called with Bytes == 0. -// -// Warning: JU_LEASTBYTESMASK() is not a constant macro unless Bytes is a -// constant; otherwise it is a variable shift, which is expensive on some -// processors. - -#define JU_LEASTBYTESMASK(BYTES) \ - ((0x100UL << (cJU_BITSPERBYTE * ((BYTES) - 1))) - 1) - -#define JU_LEASTBYTES(INDEX,BYTES) ((INDEX) & JU_LEASTBYTESMASK(BYTES)) - - -// BITS IN EACH BITMAP SUBEXPANSE FOR BITMAP BRANCH AND LEAF: -// -// The bits per bitmap subexpanse times the number of subexpanses equals a -// constant (cJU_SUBEXPPERSTATE). You can also think of this as a compile-time -// choice of "aspect ratio" for bitmap branches and leaves (which can be set -// independently for each). -// -// A default aspect ratio is hardwired here if not overridden at compile time, -// such as by "EXTCCOPTS=-DBITMAP_BRANCH16x16 make". - -#if (! (defined(BITMAP_BRANCH8x32) || defined(BITMAP_BRANCH16x16) || defined(BITMAP_BRANCH32x8))) -#define BITMAP_BRANCH32x8 1 // 32 bits per subexpanse, 8 subexpanses. -#endif - -#ifdef BITMAP_BRANCH8x32 -#define BITMAPB_t uint8_t -#endif - -#ifdef BITMAP_BRANCH16x16 -#define BITMAPB_t uint16_t -#endif - -#ifdef BITMAP_BRANCH32x8 -#define BITMAPB_t uint32_t -#endif - -// Note: For bitmap leaves, BITMAP_LEAF64x4 is only valid for 64 bit: -// -// Note: Choice of aspect ratio mostly matters for JudyL bitmap leaves. For -// Judy1 the choice doesnt matter much -- the code generated for different -// BITMAP_LEAF* values choices varies, but correctness and performance are the -// same. - -#ifndef JU_64BIT - -#if (! (defined(BITMAP_LEAF8x32) || defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8))) -#define BITMAP_LEAF32x8 // 32 bits per subexpanse, 8 subexpanses. -#endif - -#else // 32BIT - -#if (! (defined(BITMAP_LEAF8x32) || defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4))) -#define BITMAP_LEAF64x4 // 64 bits per subexpanse, 4 subexpanses. - -#endif -#endif // JU_64BIT - -#ifdef BITMAP_LEAF8x32 -#define BITMAPL_t uint8_t -#endif - -#ifdef BITMAP_LEAF16x16 -#define BITMAPL_t uint16_t -#endif - -#ifdef BITMAP_LEAF32x8 -#define BITMAPL_t uint32_t -#endif - -#ifdef BITMAP_LEAF64x4 -#define BITMAPL_t uint64_t -#endif - - -// EXPORTED DATA AND FUNCTIONS: - -#ifdef JUDY1 -extern const uint8_t j__1_BranchBJPPopToWords[]; -#endif - -#ifdef JUDYL -extern const uint8_t j__L_BranchBJPPopToWords[]; -#endif - -// Fast LeafL search routine used for inlined code: - -#if (! defined(SEARCH_BINARY)) || (! defined(SEARCH_LINEAR)) -// default a binary search leaf method -#define SEARCH_BINARY 1 -//#define SEARCH_LINEAR 1 -#endif - -#ifdef SEARCH_LINEAR - -#define SEARCHLEAFNATIVE(LEAFTYPE,ADDR,POP1,INDEX) \ - LEAFTYPE *P_leaf = (LEAFTYPE *)(ADDR); \ - LEAFTYPE I_ndex = (INDEX); /* with masking */ \ - if (I_ndex > P_leaf[(POP1) - 1]) return(~(POP1)); \ - while(I_ndex > *P_leaf) P_leaf++; \ - if (I_ndex == *P_leaf) return(P_leaf - (LEAFTYPE *)(ADDR)); \ - return(~(P_leaf - (LEAFTYPE *)(ADDR))); - - -#define SEARCHLEAFNONNAT(ADDR,POP1,INDEX,LFBTS,COPYINDEX) \ -{ \ - uint8_t *P_leaf, *P_leafEnd; \ - Word_t i_ndex; \ - Word_t I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \ - Word_t p_op1; \ - \ - P_leaf = (uint8_t *)(ADDR); \ - P_leafEnd = P_leaf + ((POP1) * (LFBTS)); \ - \ - do { \ - JU_COPY3_PINDEX_TO_LONG(i_ndex, P_leaf); \ - if (I_ndex <= i_ndex) break; \ - P_leaf += (LFBTS); \ - } while (P_leaf < P_leafEnd); \ - \ - p_op1 = (P_leaf - (uint8_t *) (ADDR)) / (LFBTS); \ - if (I_ndex == i_ndex) return(p_op1); \ - return(~p_op1); \ -} -#endif // SEARCH_LINEAR - -#ifdef SEARCH_BINARY - -#define SEARCHLEAFNATIVE(LEAFTYPE,ADDR,POP1,INDEX) \ - LEAFTYPE *P_leaf = (LEAFTYPE *)(ADDR); \ - LEAFTYPE I_ndex = (LEAFTYPE)INDEX; /* truncate hi bits */ \ - Word_t l_ow = cJU_ALLONES; \ - Word_t m_id; \ - Word_t h_igh = POP1; \ - \ - while ((h_igh - l_ow) > 1UL) \ - { \ - m_id = (h_igh + l_ow) / 2; \ - if (P_leaf[m_id] > I_ndex) \ - h_igh = m_id; \ - else \ - l_ow = m_id; \ - } \ - if (l_ow == cJU_ALLONES || P_leaf[l_ow] != I_ndex) \ - return(~h_igh); \ - return(l_ow) - - -#define SEARCHLEAFNONNAT(ADDR,POP1,INDEX,LFBTS,COPYINDEX) \ - uint8_t *P_leaf = (uint8_t *)(ADDR); \ - Word_t l_ow = cJU_ALLONES; \ - Word_t m_id; \ - Word_t h_igh = POP1; \ - Word_t I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \ - Word_t i_ndex; \ - \ - I_ndex = JU_LEASTBYTES((INDEX), (LFBTS)); \ - \ - while ((h_igh - l_ow) > 1UL) \ - { \ - m_id = (h_igh + l_ow) / 2; \ - COPYINDEX(i_ndex, &P_leaf[m_id * (LFBTS)]); \ - if (i_ndex > I_ndex) \ - h_igh = m_id; \ - else \ - l_ow = m_id; \ - } \ - if (l_ow == cJU_ALLONES) return(~h_igh); \ - \ - COPYINDEX(i_ndex, &P_leaf[l_ow * (LFBTS)]); \ - if (i_ndex != I_ndex) return(~h_igh); \ - return(l_ow) - -#endif // SEARCH_BINARY - -// Fast way to count bits set in 8..32[64]-bit int: -// -// For performance, j__udyCountBits*() are written to take advantage of -// platform-specific features where available. -// - -#ifdef JU_NOINLINE - -extern BITMAPB_t j__udyCountBitsB(BITMAPB_t word); -extern BITMAPL_t j__udyCountBitsL(BITMAPL_t word); - -// Compiler supports inline - -#elif defined(JU_HPUX_IPF) - -#define j__udyCountBitsB(WORD) _Asm_popcnt(WORD) -#define j__udyCountBitsL(WORD) _Asm_popcnt(WORD) - -#elif defined(JU_LINUX_IPF) - -static inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word) -{ - BITMAPB_t result; - __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (word)); - return(result); -} - -static inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word) -{ - BITMAPL_t result; - __asm__ ("popcnt %0=%1" : "=r" (result) : "r" (word)); - return(result); -} - - -#else // No instructions available, use inline code - -// **************************************************************************** -// __ J U D Y C O U N T B I T S B -// -// Return the number of bits set in "Word", for a bitmap branch. -// -// Note: Bitmap branches have maximum bitmap size = 32 bits. - -#ifdef JU_WIN -static __inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word) -#else -static inline BITMAPB_t j__udyCountBitsB(BITMAPB_t word) -#endif -{ - word = (word & 0x55555555) + ((word & 0xAAAAAAAA) >> 1); - word = (word & 0x33333333) + ((word & 0xCCCCCCCC) >> 2); - word = (word & 0x0F0F0F0F) + ((word & 0xF0F0F0F0) >> 4); // >= 8 bits. -#if defined(BITMAP_BRANCH16x16) || defined(BITMAP_BRANCH32x8) - word = (word & 0x00FF00FF) + ((word & 0xFF00FF00) >> 8); // >= 16 bits. -#endif - -#ifdef BITMAP_BRANCH32x8 - word = (word & 0x0000FFFF) + ((word & 0xFFFF0000) >> 16); // >= 32 bits. -#endif - return(word); - -} // j__udyCountBitsB() - - -// **************************************************************************** -// __ J U D Y C O U N T B I T S L -// -// Return the number of bits set in "Word", for a bitmap leaf. -// -// Note: Bitmap branches have maximum bitmap size = 32 bits. - -// Note: Need both 32-bit and 64-bit versions of j__udyCountBitsL() because -// bitmap leaves can have 64-bit bitmaps. - -#ifdef JU_WIN -static __inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word) -#else -static inline BITMAPL_t j__udyCountBitsL(BITMAPL_t word) -#endif -{ -#ifndef JU_64BIT - - word = (word & 0x55555555) + ((word & 0xAAAAAAAA) >> 1); - word = (word & 0x33333333) + ((word & 0xCCCCCCCC) >> 2); - word = (word & 0x0F0F0F0F) + ((word & 0xF0F0F0F0) >> 4); // >= 8 bits. -#if defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8) - word = (word & 0x00FF00FF) + ((word & 0xFF00FF00) >> 8); // >= 16 bits. -#endif -#ifdef BITMAP_LEAF32x8 - word = (word & 0x0000FFFF) + ((word & 0xFFFF0000) >> 16); // >= 32 bits. -#endif - -#else // JU_64BIT - - word = (word & 0x5555555555555555) + ((word & 0xAAAAAAAAAAAAAAAA) >> 1); - word = (word & 0x3333333333333333) + ((word & 0xCCCCCCCCCCCCCCCC) >> 2); - word = (word & 0x0F0F0F0F0F0F0F0F) + ((word & 0xF0F0F0F0F0F0F0F0) >> 4); -#if defined(BITMAP_LEAF16x16) || defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4) - word = (word & 0x00FF00FF00FF00FF) + ((word & 0xFF00FF00FF00FF00) >> 8); -#endif -#if defined(BITMAP_LEAF32x8) || defined(BITMAP_LEAF64x4) - word = (word & 0x0000FFFF0000FFFF) + ((word & 0xFFFF0000FFFF0000) >>16); -#endif -#ifdef BITMAP_LEAF64x4 - word = (word & 0x00000000FFFFFFFF) + ((word & 0xFFFFFFFF00000000) >>32); -#endif -#endif // JU_64BIT - - return(word); - -} // j__udyCountBitsL() - -#endif // Compiler supports inline - -// GET POP0: -// -// Get from jp_DcdPopO the Pop0 for various JP Types. -// -// Notes: -// -// - Different macros require different parameters... -// -// - There are no simple macros for cJU_BRANCH* Types because their -// populations must be added up and dont reside in an already-calculated -// place. (TBD: This is no longer true, now its in the JPM.) -// -// - cJU_JPIMM_POP0() is not defined because it would be redundant because the -// Pop1 is already encoded in each enum name. -// -// - A linear or bitmap leaf Pop0 cannot exceed cJU_SUBEXPPERSTATE - 1 (Pop0 = -// 0..255), so use a simpler, faster macro for it than for other JP Types. -// -// - Avoid any complex calculations that would slow down the compiled code. -// Assume these macros are only called for the appropriate JP Types. -// Unfortunately theres no way to trigger an assertion here if the JP type -// is incorrect for the macro, because these are merely expressions, not -// statements. - -#define JU_LEAFW_POP0(JRP) (*P_JLW(JRP)) -#define cJU_JPFULLPOPU1_POP0 (cJU_SUBEXPPERSTATE - 1) - -// GET JP Type: -// Since bit fields greater than 32 bits are not supported in some compilers -// the jp_DcdPopO field is expanded to include the jp_Type in the high 8 bits -// of the Word_t. -// First the read macro: - -#define JU_JPTYPE(PJP) ((PJP)->jp_Type) - -#define JU_JPLEAF_POP0(PJP) ((PJP)->jp_DcdP0[sizeof(Word_t) - 2]) - -#ifdef JU_64BIT - -#define JU_JPDCDPOP0(PJP) \ - ((Word_t)(PJP)->jp_DcdP0[0] << 48 | \ - (Word_t)(PJP)->jp_DcdP0[1] << 40 | \ - (Word_t)(PJP)->jp_DcdP0[2] << 32 | \ - (Word_t)(PJP)->jp_DcdP0[3] << 24 | \ - (Word_t)(PJP)->jp_DcdP0[4] << 16 | \ - (Word_t)(PJP)->jp_DcdP0[5] << 8 | \ - (Word_t)(PJP)->jp_DcdP0[6]) - - -#define JU_JPSETADT(PJP,ADDR,DCDPOP0,TYPE) \ -{ \ - (PJP)->jp_Addr = (ADDR); \ - (PJP)->jp_DcdP0[0] = (uint8_t)((Word_t)(DCDPOP0) >> 48); \ - (PJP)->jp_DcdP0[1] = (uint8_t)((Word_t)(DCDPOP0) >> 40); \ - (PJP)->jp_DcdP0[2] = (uint8_t)((Word_t)(DCDPOP0) >> 32); \ - (PJP)->jp_DcdP0[3] = (uint8_t)((Word_t)(DCDPOP0) >> 24); \ - (PJP)->jp_DcdP0[4] = (uint8_t)((Word_t)(DCDPOP0) >> 16); \ - (PJP)->jp_DcdP0[5] = (uint8_t)((Word_t)(DCDPOP0) >> 8); \ - (PJP)->jp_DcdP0[6] = (uint8_t)((Word_t)(DCDPOP0)); \ - (PJP)->jp_Type = (TYPE); \ -} - -#else // 32 Bit - -#define JU_JPDCDPOP0(PJP) \ - ((Word_t)(PJP)->jp_DcdP0[0] << 16 | \ - (Word_t)(PJP)->jp_DcdP0[1] << 8 | \ - (Word_t)(PJP)->jp_DcdP0[2]) - - -#define JU_JPSETADT(PJP,ADDR,DCDPOP0,TYPE) \ -{ \ - (PJP)->jp_Addr = (ADDR); \ - (PJP)->jp_DcdP0[0] = (uint8_t)((Word_t)(DCDPOP0) >> 16); \ - (PJP)->jp_DcdP0[1] = (uint8_t)((Word_t)(DCDPOP0) >> 8); \ - (PJP)->jp_DcdP0[2] = (uint8_t)((Word_t)(DCDPOP0)); \ - (PJP)->jp_Type = (TYPE); \ -} - -#endif // 32 Bit - -// NUMBER OF BITS IN A BRANCH OR LEAF BITMAP AND SUBEXPANSE: -// -// Note: cJU_BITSPERBITMAP must be the same as the number of JPs in a branch. - -#define cJU_BITSPERBITMAP cJU_SUBEXPPERSTATE - -// Bitmaps are accessed in units of "subexpanses": - -#define cJU_BITSPERSUBEXPB (sizeof(BITMAPB_t) * cJU_BITSPERBYTE) -#define cJU_NUMSUBEXPB (cJU_BITSPERBITMAP / cJU_BITSPERSUBEXPB) - -#define cJU_BITSPERSUBEXPL (sizeof(BITMAPL_t) * cJU_BITSPERBYTE) -#define cJU_NUMSUBEXPL (cJU_BITSPERBITMAP / cJU_BITSPERSUBEXPL) - - -// MASK FOR A SPECIFIED BIT IN A BITMAP: -// -// Warning: If BitNum is a variable, this results in a variable shift that is -// expensive, at least on some processors. Use with caution. -// -// Warning: BitNum must be less than cJU_BITSPERWORD, that is, 0 .. -// cJU_BITSPERWORD - 1, to avoid a truncated shift on some machines. -// -// TBD: Perhaps use an array[32] of masks instead of calculating them. - -#define JU_BITPOSMASKB(BITNUM) (1L << ((BITNUM) % cJU_BITSPERSUBEXPB)) -#define JU_BITPOSMASKL(BITNUM) (1L << ((BITNUM) % cJU_BITSPERSUBEXPL)) - - -// TEST/SET/CLEAR A BIT IN A BITMAP LEAF: -// -// Test if a byte-sized Digit (portion of Index) has a corresponding bit set in -// a bitmap, or set a byte-sized Digits bit into a bitmap, by looking up the -// correct subexpanse and then checking/setting the correct bit. -// -// Note: Mask higher bits, if any, for the convenience of the user of this -// macro, in case they pass a full Index, not just a digit. If the caller has -// a true 8-bit digit, make it of type uint8_t and the compiler should skip the -// unnecessary mask step. - -#define JU_SUBEXPL(DIGIT) (((DIGIT) / cJU_BITSPERSUBEXPL) & (cJU_NUMSUBEXPL-1)) - -#define JU_BITMAPTESTL(PJLB, INDEX) \ - (JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) & JU_BITPOSMASKL(INDEX)) - -#define JU_BITMAPSETL(PJLB, INDEX) \ - (JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) |= JU_BITPOSMASKL(INDEX)) - -#define JU_BITMAPCLEARL(PJLB, INDEX) \ - (JU_JLB_BITMAP(PJLB, JU_SUBEXPL(INDEX)) ^= JU_BITPOSMASKL(INDEX)) - - -// MAP BITMAP BIT OFFSET TO DIGIT: -// -// Given a digit variable to set, a bitmap branch or leaf subexpanse (base 0), -// the bitmap (BITMAP*_t) for that subexpanse, and an offset (Nth set bit in -// the bitmap, base 0), compute the digit (also base 0) corresponding to the -// subexpanse and offset by counting all bits in the bitmap until offset+1 set -// bits are seen. Avoid expensive variable shifts. Offset should be less than -// the number of set bits in the bitmap; assert this. -// -// If theres a better way to do this, I dont know what it is. - -#define JU_BITMAPDIGITB(DIGIT,SUBEXP,BITMAP,OFFSET) \ - { \ - BITMAPB_t bitmap = (BITMAP); int remain = (OFFSET); \ - (DIGIT) = (SUBEXP) * cJU_BITSPERSUBEXPB; \ - \ - while ((remain -= (bitmap & 1)) >= 0) \ - { \ - bitmap >>= 1; ++(DIGIT); \ - assert((DIGIT) < ((SUBEXP) + 1) * cJU_BITSPERSUBEXPB); \ - } \ - } - -#define JU_BITMAPDIGITL(DIGIT,SUBEXP,BITMAP,OFFSET) \ - { \ - BITMAPL_t bitmap = (BITMAP); int remain = (OFFSET); \ - (DIGIT) = (SUBEXP) * cJU_BITSPERSUBEXPL; \ - \ - while ((remain -= (bitmap & 1)) >= 0) \ - { \ - bitmap >>= 1; ++(DIGIT); \ - assert((DIGIT) < ((SUBEXP) + 1) * cJU_BITSPERSUBEXPL); \ - } \ - } - - -// MASKS FOR PORTIONS OF 32-BIT WORDS: -// -// These are useful for bitmap subexpanses. -// -// "LOWER"/"HIGHER" means bits representing lower/higher-valued Indexes. The -// exact order of bits in the word is explicit here but is hidden from the -// caller. -// -// "EXC" means exclusive of the specified bit; "INC" means inclusive. -// -// In each case, BitPos is either "JU_BITPOSMASK*(BitNum)", or a variable saved -// from an earlier call of that macro; either way, it must be a 32-bit word -// with a single bit set. In the first case, assume the compiler is smart -// enough to optimize out common subexpressions. -// -// The expressions depend on unsigned decimal math that should be universal. - -#define JU_MASKLOWEREXC( BITPOS) ((BITPOS) - 1) -#define JU_MASKLOWERINC( BITPOS) (JU_MASKLOWEREXC(BITPOS) | (BITPOS)) -#define JU_MASKHIGHERINC(BITPOS) (-(BITPOS)) -#define JU_MASKHIGHEREXC(BITPOS) (JU_MASKHIGHERINC(BITPOS) ^ (BITPOS)) - - -// **************************************************************************** -// SUPPORT FOR NATIVE INDEX SIZES -// **************************************************************************** -// -// Copy a series of generic objects (uint8_t, uint16_t, uint32_t, Word_t) from -// one place to another. - -#define JU_COPYMEM(PDST,PSRC,POP1) \ - { \ - Word_t i_ndex = 0; \ - assert((POP1) > 0); \ - do { (PDST)[i_ndex] = (PSRC)[i_ndex]; } \ - while (++i_ndex < (POP1)); \ - } - - -// **************************************************************************** -// SUPPORT FOR NON-NATIVE INDEX SIZES -// **************************************************************************** -// -// Copy a 3-byte Index pointed by a uint8_t * to a Word_t: -// -#define JU_COPY3_PINDEX_TO_LONG(DESTLONG,PINDEX) \ - DESTLONG = (Word_t)(PINDEX)[0] << 16; \ - DESTLONG += (Word_t)(PINDEX)[1] << 8; \ - DESTLONG += (Word_t)(PINDEX)[2] - -// Copy a Word_t to a 3-byte Index pointed at by a uint8_t *: - -#define JU_COPY3_LONG_TO_PINDEX(PINDEX,SOURCELONG) \ - (PINDEX)[0] = (uint8_t)((SOURCELONG) >> 16); \ - (PINDEX)[1] = (uint8_t)((SOURCELONG) >> 8); \ - (PINDEX)[2] = (uint8_t)((SOURCELONG)) - -#ifdef JU_64BIT - -// Copy a 5-byte Index pointed by a uint8_t * to a Word_t: -// -#define JU_COPY5_PINDEX_TO_LONG(DESTLONG,PINDEX) \ - DESTLONG = (Word_t)(PINDEX)[0] << 32; \ - DESTLONG += (Word_t)(PINDEX)[1] << 24; \ - DESTLONG += (Word_t)(PINDEX)[2] << 16; \ - DESTLONG += (Word_t)(PINDEX)[3] << 8; \ - DESTLONG += (Word_t)(PINDEX)[4] - -// Copy a Word_t to a 5-byte Index pointed at by a uint8_t *: - -#define JU_COPY5_LONG_TO_PINDEX(PINDEX,SOURCELONG) \ - (PINDEX)[0] = (uint8_t)((SOURCELONG) >> 32); \ - (PINDEX)[1] = (uint8_t)((SOURCELONG) >> 24); \ - (PINDEX)[2] = (uint8_t)((SOURCELONG) >> 16); \ - (PINDEX)[3] = (uint8_t)((SOURCELONG) >> 8); \ - (PINDEX)[4] = (uint8_t)((SOURCELONG)) - -// Copy a 6-byte Index pointed by a uint8_t * to a Word_t: -// -#define JU_COPY6_PINDEX_TO_LONG(DESTLONG,PINDEX) \ - DESTLONG = (Word_t)(PINDEX)[0] << 40; \ - DESTLONG += (Word_t)(PINDEX)[1] << 32; \ - DESTLONG += (Word_t)(PINDEX)[2] << 24; \ - DESTLONG += (Word_t)(PINDEX)[3] << 16; \ - DESTLONG += (Word_t)(PINDEX)[4] << 8; \ - DESTLONG += (Word_t)(PINDEX)[5] - -// Copy a Word_t to a 6-byte Index pointed at by a uint8_t *: - -#define JU_COPY6_LONG_TO_PINDEX(PINDEX,SOURCELONG) \ - (PINDEX)[0] = (uint8_t)((SOURCELONG) >> 40); \ - (PINDEX)[1] = (uint8_t)((SOURCELONG) >> 32); \ - (PINDEX)[2] = (uint8_t)((SOURCELONG) >> 24); \ - (PINDEX)[3] = (uint8_t)((SOURCELONG) >> 16); \ - (PINDEX)[4] = (uint8_t)((SOURCELONG) >> 8); \ - (PINDEX)[5] = (uint8_t)((SOURCELONG)) - -// Copy a 7-byte Index pointed by a uint8_t * to a Word_t: -// -#define JU_COPY7_PINDEX_TO_LONG(DESTLONG,PINDEX) \ - DESTLONG = (Word_t)(PINDEX)[0] << 48; \ - DESTLONG += (Word_t)(PINDEX)[1] << 40; \ - DESTLONG += (Word_t)(PINDEX)[2] << 32; \ - DESTLONG += (Word_t)(PINDEX)[3] << 24; \ - DESTLONG += (Word_t)(PINDEX)[4] << 16; \ - DESTLONG += (Word_t)(PINDEX)[5] << 8; \ - DESTLONG += (Word_t)(PINDEX)[6] - -// Copy a Word_t to a 7-byte Index pointed at by a uint8_t *: - -#define JU_COPY7_LONG_TO_PINDEX(PINDEX,SOURCELONG) \ - (PINDEX)[0] = (uint8_t)((SOURCELONG) >> 48); \ - (PINDEX)[1] = (uint8_t)((SOURCELONG) >> 40); \ - (PINDEX)[2] = (uint8_t)((SOURCELONG) >> 32); \ - (PINDEX)[3] = (uint8_t)((SOURCELONG) >> 24); \ - (PINDEX)[4] = (uint8_t)((SOURCELONG) >> 16); \ - (PINDEX)[5] = (uint8_t)((SOURCELONG) >> 8); \ - (PINDEX)[6] = (uint8_t)((SOURCELONG)) - -#endif // JU_64BIT - -// **************************************************************************** -// COMMON CODE FRAGMENTS (MACROS) -// **************************************************************************** -// -// These code chunks are shared between various source files. - - -// SET (REPLACE) ONE DIGIT IN AN INDEX: -// -// To avoid endian issues, use masking and ORing, which operates in a -// big-endian register, rather than treating the Index as an array of bytes, -// though that would be simpler, but would operate in endian-specific memory. -// -// TBD: This contains two variable shifts, is that bad? - -#define JU_SETDIGIT(INDEX,DIGIT,STATE) \ - (INDEX) = ((INDEX) & (~cJU_MASKATSTATE(STATE))) \ - | (((Word_t) (DIGIT)) \ - << (((STATE) - 1) * cJU_BITSPERBYTE)) - -// Fast version for single LSB: - -#define JU_SETDIGIT1(INDEX,DIGIT) (INDEX) = ((INDEX) & ~0xff) | (DIGIT) - - -// SET (REPLACE) "N" LEAST DIGITS IN AN INDEX: - -#define JU_SETDIGITS(INDEX,INDEX2,cSTATE) \ - (INDEX) = ((INDEX ) & (~JU_LEASTBYTESMASK(cSTATE))) \ - | ((INDEX2) & ( JU_LEASTBYTESMASK(cSTATE))) - -// COPY DECODE BYTES FROM JP TO INDEX: -// -// Modify Index digit(s) to match the bytes in jp_DcdPopO in case one or more -// branches are skipped and the digits are significant. Its probably faster -// to just do this unconditionally than to check if its necessary. -// -// To avoid endian issues, use masking and ORing, which operates in a -// big-endian register, rather than treating the Index as an array of bytes, -// though that would be simpler, but would operate in endian-specific memory. -// -// WARNING: Must not call JU_LEASTBYTESMASK (via cJU_DCDMASK) with Bytes = -// cJU_ROOTSTATE or a bad mask is generated, but there are no Dcd bytes to copy -// in this case anyway. In fact there are no Dcd bytes unless State < -// cJU_ROOTSTATE - 1, so dont call this macro except in those cases. -// -// TBD: It would be nice to validate jp_DcdPopO against known digits to ensure -// no corruption, but this is non-trivial. - -#define JU_SETDCD(INDEX,PJP,cSTATE) \ - (INDEX) = ((INDEX) & ~cJU_DCDMASK(cSTATE)) \ - | (JU_JPDCDPOP0(PJP) & cJU_DCDMASK(cSTATE)) - -// INSERT/DELETE AN INDEX IN-PLACE IN MEMORY: -// -// Given a pointer to an array of "even" (native), same-sized objects -// (indexes), the current population of the array, an offset in the array, and -// a new Index to insert, "shift up" the array elements (Indexes) above the -// insertion point and insert the new Index. Assume there is sufficient memory -// to do this. -// -// In these macros, "i_offset" is an index offset, and "b_off" is a byte -// offset for odd Index sizes. -// -// Note: Endian issues only arise fro insertion, not deletion, and even for -// insertion, they are transparent when native (even) objects are used, and -// handled explicitly for odd (non-native) Index sizes. -// -// Note: The following macros are tricky enough that there is some test code -// for them appended to this file. - -#define JU_INSERTINPLACE(PARRAY,POP1,OFFSET,INDEX) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ - { \ - Word_t i_offset = (POP1); \ - \ - while (i_offset-- > (OFFSET)) \ - (PARRAY)[i_offset + 1] = (PARRAY)[i_offset]; \ - \ - (PARRAY)[OFFSET] = (INDEX); \ - } - - -// Variation for non-native Indexes, where cIS = Index Size -// and PByte must point to a uint8_t (byte); shift byte-by-byte: -// - -#define JU_INSERTINPLACE3(PBYTE,POP1,OFFSET,INDEX) \ -{ \ - Word_t i_off = POP1; \ - \ - while (i_off-- > (OFFSET)) \ - { \ - Word_t i_dx = i_off * 3; \ - (PBYTE)[i_dx + 0 + 3] = (PBYTE)[i_dx + 0]; \ - (PBYTE)[i_dx + 1 + 3] = (PBYTE)[i_dx + 1]; \ - (PBYTE)[i_dx + 2 + 3] = (PBYTE)[i_dx + 2]; \ - } \ - JU_COPY3_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 3]), INDEX); \ -} - -#ifdef JU_64BIT - -#define JU_INSERTINPLACE5(PBYTE,POP1,OFFSET,INDEX) \ -{ \ - Word_t i_off = POP1; \ - \ - while (i_off-- > (OFFSET)) \ - { \ - Word_t i_dx = i_off * 5; \ - (PBYTE)[i_dx + 0 + 5] = (PBYTE)[i_dx + 0]; \ - (PBYTE)[i_dx + 1 + 5] = (PBYTE)[i_dx + 1]; \ - (PBYTE)[i_dx + 2 + 5] = (PBYTE)[i_dx + 2]; \ - (PBYTE)[i_dx + 3 + 5] = (PBYTE)[i_dx + 3]; \ - (PBYTE)[i_dx + 4 + 5] = (PBYTE)[i_dx + 4]; \ - } \ - JU_COPY5_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 5]), INDEX); \ -} - -#define JU_INSERTINPLACE6(PBYTE,POP1,OFFSET,INDEX) \ -{ \ - Word_t i_off = POP1; \ - \ - while (i_off-- > (OFFSET)) \ - { \ - Word_t i_dx = i_off * 6; \ - (PBYTE)[i_dx + 0 + 6] = (PBYTE)[i_dx + 0]; \ - (PBYTE)[i_dx + 1 + 6] = (PBYTE)[i_dx + 1]; \ - (PBYTE)[i_dx + 2 + 6] = (PBYTE)[i_dx + 2]; \ - (PBYTE)[i_dx + 3 + 6] = (PBYTE)[i_dx + 3]; \ - (PBYTE)[i_dx + 4 + 6] = (PBYTE)[i_dx + 4]; \ - (PBYTE)[i_dx + 5 + 6] = (PBYTE)[i_dx + 5]; \ - } \ - JU_COPY6_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 6]), INDEX); \ -} - -#define JU_INSERTINPLACE7(PBYTE,POP1,OFFSET,INDEX) \ -{ \ - Word_t i_off = POP1; \ - \ - while (i_off-- > (OFFSET)) \ - { \ - Word_t i_dx = i_off * 7; \ - (PBYTE)[i_dx + 0 + 7] = (PBYTE)[i_dx + 0]; \ - (PBYTE)[i_dx + 1 + 7] = (PBYTE)[i_dx + 1]; \ - (PBYTE)[i_dx + 2 + 7] = (PBYTE)[i_dx + 2]; \ - (PBYTE)[i_dx + 3 + 7] = (PBYTE)[i_dx + 3]; \ - (PBYTE)[i_dx + 4 + 7] = (PBYTE)[i_dx + 4]; \ - (PBYTE)[i_dx + 5 + 7] = (PBYTE)[i_dx + 5]; \ - (PBYTE)[i_dx + 6 + 7] = (PBYTE)[i_dx + 6]; \ - } \ - JU_COPY7_LONG_TO_PINDEX(&((PBYTE)[(OFFSET) * 7]), INDEX); \ -} -#endif // JU_64BIT - -// Counterparts to the above for deleting an Index: -// -// "Shift down" the array elements starting at the Index to be deleted. - -#define JU_DELETEINPLACE(PARRAY,POP1,OFFSET,IGNORE) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) < (Word_t) (POP1)); \ - { \ - Word_t i_offset = (OFFSET); \ - \ - while (++i_offset < (POP1)) \ - (PARRAY)[i_offset - 1] = (PARRAY)[i_offset]; \ - } - -// Variation for odd-byte-sized (non-native) Indexes, where cIS = Index Size -// and PByte must point to a uint8_t (byte); copy byte-by-byte: -// -// Note: If cIS == 1, JU_DELETEINPLACE_ODD == JU_DELETEINPLACE. -// -// Note: There are no endian issues here because bytes are just shifted as-is, -// not converted to/from an Index. - -#define JU_DELETEINPLACE_ODD(PBYTE,POP1,OFFSET,cIS) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) < (Word_t) (POP1)); \ - { \ - Word_t b_off = (((OFFSET) + 1) * (cIS)) - 1; \ - \ - while (++b_off < ((POP1) * (cIS))) \ - (PBYTE)[b_off - (cIS)] = (PBYTE)[b_off]; \ - } - - -// INSERT/DELETE AN INDEX WHILE COPYING OTHERS: -// -// Copy PSource[] to PDest[], where PSource[] has Pop1 elements (Indexes), -// inserting Index at PDest[Offset]. Unlike JU_*INPLACE*() above, these macros -// are used when moving Indexes from one memory object to another. - -#define JU_INSERTCOPY(PDEST,PSOURCE,POP1,OFFSET,INDEX) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ - { \ - Word_t i_offset; \ - \ - for (i_offset = 0; i_offset < (OFFSET); ++i_offset) \ - (PDEST)[i_offset] = (PSOURCE)[i_offset]; \ - \ - (PDEST)[i_offset] = (INDEX); \ - \ - for (/* null */; i_offset < (POP1); ++i_offset) \ - (PDEST)[i_offset + 1] = (PSOURCE)[i_offset]; \ - } - -#define JU_INSERTCOPY3(PDEST,PSOURCE,POP1,OFFSET,INDEX) \ -assert((long) (POP1) > 0); \ -assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ -{ \ - Word_t o_ff; \ - \ - for (o_ff = 0; o_ff < (OFFSET); o_ff++) \ - { \ - Word_t i_dx = o_ff * 3; \ - (PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \ - } \ - JU_COPY3_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 3]), INDEX); \ - \ - for (/* null */; o_ff < (POP1); o_ff++) \ - { \ - Word_t i_dx = o_ff * 3; \ - (PDEST)[i_dx + 0 + 3] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1 + 3] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2 + 3] = (PSOURCE)[i_dx + 2]; \ - } \ -} - -#ifdef JU_64BIT - -#define JU_INSERTCOPY5(PDEST,PSOURCE,POP1,OFFSET,INDEX) \ -assert((long) (POP1) > 0); \ -assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ -{ \ - Word_t o_ff; \ - \ - for (o_ff = 0; o_ff < (OFFSET); o_ff++) \ - { \ - Word_t i_dx = o_ff * 5; \ - (PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \ - } \ - JU_COPY5_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 5]), INDEX); \ - \ - for (/* null */; o_ff < (POP1); o_ff++) \ - { \ - Word_t i_dx = o_ff * 5; \ - (PDEST)[i_dx + 0 + 5] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1 + 5] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2 + 5] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3 + 5] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4 + 5] = (PSOURCE)[i_dx + 4]; \ - } \ -} - -#define JU_INSERTCOPY6(PDEST,PSOURCE,POP1,OFFSET,INDEX) \ -assert((long) (POP1) > 0); \ -assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ -{ \ - Word_t o_ff; \ - \ - for (o_ff = 0; o_ff < (OFFSET); o_ff++) \ - { \ - Word_t i_dx = o_ff * 6; \ - (PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \ - (PDEST)[i_dx + 5] = (PSOURCE)[i_dx + 5]; \ - } \ - JU_COPY6_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 6]), INDEX); \ - \ - for (/* null */; o_ff < (POP1); o_ff++) \ - { \ - Word_t i_dx = o_ff * 6; \ - (PDEST)[i_dx + 0 + 6] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1 + 6] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2 + 6] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3 + 6] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4 + 6] = (PSOURCE)[i_dx + 4]; \ - (PDEST)[i_dx + 5 + 6] = (PSOURCE)[i_dx + 5]; \ - } \ -} - -#define JU_INSERTCOPY7(PDEST,PSOURCE,POP1,OFFSET,INDEX) \ -assert((long) (POP1) > 0); \ -assert((Word_t) (OFFSET) <= (Word_t) (POP1)); \ -{ \ - Word_t o_ff; \ - \ - for (o_ff = 0; o_ff < (OFFSET); o_ff++) \ - { \ - Word_t i_dx = o_ff * 7; \ - (PDEST)[i_dx + 0] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4] = (PSOURCE)[i_dx + 4]; \ - (PDEST)[i_dx + 5] = (PSOURCE)[i_dx + 5]; \ - (PDEST)[i_dx + 6] = (PSOURCE)[i_dx + 6]; \ - } \ - JU_COPY7_LONG_TO_PINDEX(&((PDEST)[(OFFSET) * 7]), INDEX); \ - \ - for (/* null */; o_ff < (POP1); o_ff++) \ - { \ - Word_t i_dx = o_ff * 7; \ - (PDEST)[i_dx + 0 + 7] = (PSOURCE)[i_dx + 0]; \ - (PDEST)[i_dx + 1 + 7] = (PSOURCE)[i_dx + 1]; \ - (PDEST)[i_dx + 2 + 7] = (PSOURCE)[i_dx + 2]; \ - (PDEST)[i_dx + 3 + 7] = (PSOURCE)[i_dx + 3]; \ - (PDEST)[i_dx + 4 + 7] = (PSOURCE)[i_dx + 4]; \ - (PDEST)[i_dx + 5 + 7] = (PSOURCE)[i_dx + 5]; \ - (PDEST)[i_dx + 6 + 7] = (PSOURCE)[i_dx + 6]; \ - } \ -} - -#endif // JU_64BIT - -// Counterparts to the above for deleting an Index: - -#define JU_DELETECOPY(PDEST,PSOURCE,POP1,OFFSET,IGNORE) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) < (Word_t) (POP1)); \ - { \ - Word_t i_offset; \ - \ - for (i_offset = 0; i_offset < (OFFSET); ++i_offset) \ - (PDEST)[i_offset] = (PSOURCE)[i_offset]; \ - \ - for (++i_offset; i_offset < (POP1); ++i_offset) \ - (PDEST)[i_offset - 1] = (PSOURCE)[i_offset]; \ - } - -// Variation for odd-byte-sized (non-native) Indexes, where cIS = Index Size; -// copy byte-by-byte: -// -// Note: There are no endian issues here because bytes are just shifted as-is, -// not converted to/from an Index. -// -// Note: If cIS == 1, JU_DELETECOPY_ODD == JU_DELETECOPY, at least in concept. - -#define JU_DELETECOPY_ODD(PDEST,PSOURCE,POP1,OFFSET,cIS) \ - assert((long) (POP1) > 0); \ - assert((Word_t) (OFFSET) < (Word_t) (POP1)); \ - { \ - uint8_t *_Pdest = (uint8_t *) (PDEST); \ - uint8_t *_Psource = (uint8_t *) (PSOURCE); \ - Word_t b_off; \ - \ - for (b_off = 0; b_off < ((OFFSET) * (cIS)); ++b_off) \ - *_Pdest++ = *_Psource++; \ - \ - _Psource += (cIS); \ - \ - for (b_off += (cIS); b_off < ((POP1) * (cIS)); ++b_off) \ - *_Pdest++ = *_Psource++; \ - } - - -// GENERIC RETURN CODE HANDLING FOR JUDY1 (NO VALUE AREAS) AND JUDYL (VALUE -// AREAS): -// -// This common code hides Judy1 versus JudyL details of how to return various -// conditions, including a pointer to a value area for JudyL. -// -// First, define an internal variation of JERR called JERRI (I = int) to make -// lint happy. We accidentally shipped to 11.11 OEUR with all functions that -// return int or Word_t using JERR, which is type Word_t, for errors. Lint -// complains about this for functions that return int. So, internally use -// JERRI for error returns from the int functions. Experiments show that -// callers which compare int Foo() to (Word_t) JERR (~0UL) are OK, since JERRI -// sign-extends to match JERR. - -#define JERRI ((int) ~0) // see above. - -#ifdef JUDY1 - -#define JU_RET_FOUND return(1) -#define JU_RET_NOTFOUND return(0) - -// For Judy1, these all "fall through" to simply JU_RET_FOUND, since there is no -// value area pointer to return: - -#define JU_RET_FOUND_LEAFW(PJLW,POP1,OFFSET) JU_RET_FOUND - -#define JU_RET_FOUND_JPM(Pjpm) JU_RET_FOUND -#define JU_RET_FOUND_PVALUE(Pjv,OFFSET) JU_RET_FOUND -#ifndef JU_64BIT -#define JU_RET_FOUND_LEAF1(Pjll,POP1,OFFSET) JU_RET_FOUND -#endif -#define JU_RET_FOUND_LEAF2(Pjll,POP1,OFFSET) JU_RET_FOUND -#define JU_RET_FOUND_LEAF3(Pjll,POP1,OFFSET) JU_RET_FOUND -#ifdef JU_64BIT -#define JU_RET_FOUND_LEAF4(Pjll,POP1,OFFSET) JU_RET_FOUND -#define JU_RET_FOUND_LEAF5(Pjll,POP1,OFFSET) JU_RET_FOUND -#define JU_RET_FOUND_LEAF6(Pjll,POP1,OFFSET) JU_RET_FOUND -#define JU_RET_FOUND_LEAF7(Pjll,POP1,OFFSET) JU_RET_FOUND -#endif -#define JU_RET_FOUND_IMM_01(Pjp) JU_RET_FOUND -#define JU_RET_FOUND_IMM(Pjp,OFFSET) JU_RET_FOUND - -// Note: No JudyL equivalent: - -#define JU_RET_FOUND_FULLPOPU1 JU_RET_FOUND -#define JU_RET_FOUND_LEAF_B1(PJLB,SUBEXP,OFFSET) JU_RET_FOUND - -#else // JUDYL - -// JU_RET_FOUND // see below; must NOT be defined for JudyL. -#define JU_RET_NOTFOUND return((PPvoid_t) NULL) - -// For JudyL, the location of the value area depends on the JP type and other -// factors: -// -// TBD: The value areas should be accessed via data structures, here and in -// Dougs code, not by hard-coded address calculations. -// -// This is useful in insert/delete code when the value area is returned from -// lower levels in the JPM: - -#define JU_RET_FOUND_JPM(Pjpm) return((PPvoid_t) ((Pjpm)->jpm_PValue)) - -// This is useful in insert/delete code when the value area location is already -// computed: - -#define JU_RET_FOUND_PVALUE(Pjv,OFFSET) return((PPvoid_t) ((Pjv) + OFFSET)) - -#define JU_RET_FOUND_LEAFW(PJLW,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAFWVALUEAREA(PJLW, POP1) + (OFFSET))) - -#define JU_RET_FOUND_LEAF1(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF1VALUEAREA(Pjll, POP1) + (OFFSET))) -#define JU_RET_FOUND_LEAF2(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF2VALUEAREA(Pjll, POP1) + (OFFSET))) -#define JU_RET_FOUND_LEAF3(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF3VALUEAREA(Pjll, POP1) + (OFFSET))) -#ifdef JU_64BIT -#define JU_RET_FOUND_LEAF4(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF4VALUEAREA(Pjll, POP1) + (OFFSET))) -#define JU_RET_FOUND_LEAF5(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF5VALUEAREA(Pjll, POP1) + (OFFSET))) -#define JU_RET_FOUND_LEAF6(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF6VALUEAREA(Pjll, POP1) + (OFFSET))) -#define JU_RET_FOUND_LEAF7(Pjll,POP1,OFFSET) \ - return((PPvoid_t) (JL_LEAF7VALUEAREA(Pjll, POP1) + (OFFSET))) -#endif - -// Note: Here jp_Addr is a value area itself and not an address, so P_JV() is -// not needed: - -#define JU_RET_FOUND_IMM_01(PJP) return((PPvoid_t) (&((PJP)->jp_Addr))) - -// Note: Here jp_Addr is a pointer to a separately-mallocd value area, so -// P_JV() is required; likewise for JL_JLB_PVALUE: - -#define JU_RET_FOUND_IMM(PJP,OFFSET) \ - return((PPvoid_t) (P_JV((PJP)->jp_Addr) + (OFFSET))) - -#define JU_RET_FOUND_LEAF_B1(PJLB,SUBEXP,OFFSET) \ - return((PPvoid_t) (P_JV(JL_JLB_PVALUE(PJLB, SUBEXP)) + (OFFSET))) - -#endif // JUDYL - - -// GENERIC ERROR HANDLING: -// -// This is complicated by variations in the needs of the callers of these -// macros. Only use JU_SET_ERRNO() for PJError, because it can be null; use -// JU_SET_ERRNO_NONNULL() for Pjpm, which is never null, and also in other -// cases where the pointer is known not to be null (to save dead branches). -// -// Note: Most cases of JU_ERRNO_OVERRUN or JU_ERRNO_CORRUPT should result in -// an assertion failure in debug code, so they are more likely to be caught, so -// do that here in each macro. - -#define JU_SET_ERRNO(PJError, JErrno) \ - { \ - assert((JErrno) != JU_ERRNO_OVERRUN); \ - assert((JErrno) != JU_ERRNO_CORRUPT); \ - \ - if (PJError != (PJError_t) NULL) \ - { \ - JU_ERRNO(PJError) = (JErrno); \ - JU_ERRID(PJError) = __LINE__; \ - } \ - } - -// Variation for callers who know already that PJError is non-null; and, it can -// also be Pjpm (both PJError_t and Pjpm_t have je_* fields), so only assert it -// for null, not cast to any specific pointer type: - -#define JU_SET_ERRNO_NONNULL(PJError, JErrno) \ - { \ - assert((JErrno) != JU_ERRNO_OVERRUN); \ - assert((JErrno) != JU_ERRNO_CORRUPT); \ - assert(PJError); \ - \ - JU_ERRNO(PJError) = (JErrno); \ - JU_ERRID(PJError) = __LINE__; \ - } - -// Variation to copy error info from a (required) JPM to an (optional) -// PJError_t: -// -// Note: The assertions above about JU_ERRNO_OVERRUN and JU_ERRNO_CORRUPT -// should have already popped, so they are not needed here. - -#define JU_COPY_ERRNO(PJError, Pjpm) \ - { \ - if (PJError) \ - { \ - JU_ERRNO(PJError) = (uint8_t)JU_ERRNO(Pjpm); \ - JU_ERRID(PJError) = JU_ERRID(Pjpm); \ - } \ - } - -// For JErrno parameter to previous macros upon return from Judy*Alloc*(): -// -// The memory allocator returns an address of 0 for out of memory, -// 1..sizeof(Word_t)-1 for corruption (an invalid pointer), otherwise a valid -// pointer. - -#define JU_ALLOC_ERRNO(ADDR) \ - (((void *) (ADDR) != (void *) NULL) ? JU_ERRNO_OVERRUN : JU_ERRNO_NOMEM) - -#define JU_CHECKALLOC(Type,Ptr,Retval) \ - if ((Ptr) < (Type) sizeof(Word_t)) \ - { \ - JU_SET_ERRNO(PJError, JU_ALLOC_ERRNO(Ptr)); \ - return(Retval); \ - } - -// Leaf search routines - -#ifdef JU_NOINLINE - -int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); -int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); -int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); - -#ifdef JU_64BIT - -int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); -int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); -int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); -int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index); - -#endif // JU_64BIT - -int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index); - -#else // complier support for inline - -#ifdef JU_WIN -static __inline int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf1(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNATIVE(uint8_t, Pjll, LeafPop1, Index); } - -#ifdef JU_WIN -static __inline int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf2(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNATIVE(uint16_t, Pjll, LeafPop1, Index); } - -#ifdef JU_WIN -static __inline int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf3(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 3, JU_COPY3_PINDEX_TO_LONG); } - -#ifdef JU_64BIT - -#ifdef JU_WIN -static __inline int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf4(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNATIVE(uint32_t, Pjll, LeafPop1, Index); } - -#ifdef JU_WIN -static __inline int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf5(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 5, JU_COPY5_PINDEX_TO_LONG); } - -#ifdef JU_WIN -static __inline int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf6(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 6, JU_COPY6_PINDEX_TO_LONG); } - -#ifdef JU_WIN -static __inline int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeaf7(Pjll_t Pjll, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNONNAT(Pjll, LeafPop1, Index, 7, JU_COPY7_PINDEX_TO_LONG); } - -#endif // JU_64BIT - -#ifdef JU_WIN -static __inline int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index) -#else -static inline int j__udySearchLeafW(Pjlw_t Pjlw, Word_t LeafPop1, Word_t Index) -#endif -{ SEARCHLEAFNATIVE(Word_t, Pjlw, LeafPop1, Index); } - -#endif // compiler support for inline - -#endif // ! _JUDYPRIVATE_INCLUDED |