summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/matrix/matrix_utilities.h
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/dlib/matrix/matrix_utilities.h')
-rw-r--r--ml/dlib/dlib/matrix/matrix_utilities.h4544
1 files changed, 4544 insertions, 0 deletions
diff --git a/ml/dlib/dlib/matrix/matrix_utilities.h b/ml/dlib/dlib/matrix/matrix_utilities.h
new file mode 100644
index 000000000..0c5091a4b
--- /dev/null
+++ b/ml/dlib/dlib/matrix/matrix_utilities.h
@@ -0,0 +1,4544 @@
+// Copyright (C) 2006 Davis E. King (davis@dlib.net)
+// License: Boost Software License See LICENSE.txt for the full license.
+#ifndef DLIB_MATRIx_UTILITIES_
+#define DLIB_MATRIx_UTILITIES_
+
+#include "matrix_utilities_abstract.h"
+#include "matrix.h"
+#include <cmath>
+#include <complex>
+#include <limits>
+#include "../pixel.h"
+#include "../stl_checked.h"
+#include <vector>
+#include <algorithm>
+#include "../std_allocator.h"
+#include "matrix_expressions.h"
+#include "matrix_math_functions.h"
+#include "matrix_op.h"
+#include "../general_hash/random_hashing.h"
+#include "matrix_mat.h"
+
+
+namespace dlib
+{
+
+// ----------------------------------------------------------------------------------------
+
+ /*!A is_complex
+ This is a template that can be used to determine if a type is a specialization
+ of the std::complex template class.
+
+ For example:
+ is_complex<float>::value == false
+ is_complex<std::complex<float> >::value == true
+ !*/
+
+ template <typename T>
+ struct is_complex { static const bool value = false; };
+
+ template <typename T>
+ struct is_complex<std::complex<T> > { static const bool value = true; };
+ template <typename T>
+ struct is_complex<std::complex<T>& > { static const bool value = true; };
+ template <typename T>
+ struct is_complex<const std::complex<T>& > { static const bool value = true; };
+ template <typename T>
+ struct is_complex<const std::complex<T> > { static const bool value = true; };
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename EXP>
+ inline bool is_row_vector (
+ const matrix_exp<EXP>& m
+ ) { return m.nr() == 1; }
+
+ template <typename EXP>
+ inline bool is_col_vector (
+ const matrix_exp<EXP>& m
+ ) { return m.nc() == 1; }
+
+ template <typename EXP>
+ inline bool is_vector (
+ const matrix_exp<EXP>& m
+ ) { return is_row_vector(m) || is_col_vector(m); }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename EXP>
+ inline bool is_finite (
+ const matrix_exp<EXP>& m
+ )
+ {
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ if (!is_finite(m(r,c)))
+ return false;
+ }
+ }
+ return true;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename T>
+ const T& magnitude (const T& item) { return item; }
+ template <typename T>
+ T magnitude (const std::complex<T>& item) { return std::norm(item); }
+ }
+
+ template <
+ typename EXP
+ >
+ void find_min_and_max (
+ const matrix_exp<EXP>& m,
+ typename EXP::type& min_val,
+ typename EXP::type& max_val
+ )
+ {
+ DLIB_ASSERT(m.size() > 0,
+ "\ttype find_min_and_max(const matrix_exp& m, min_val, max_val)"
+ << "\n\tYou can't ask for the min and max of an empty matrix"
+ << "\n\tm.size(): " << m.size()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ min_val = m(0,0);
+ max_val = min_val;
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ type temp = m(r,c);
+ if (dlib::impl::magnitude(temp) > dlib::impl::magnitude(max_val))
+ max_val = temp;
+ if (dlib::impl::magnitude(temp) < dlib::impl::magnitude(min_val))
+ min_val = temp;
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ point max_point (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0,
+ "\tpoint max_point(const matrix_exp& m)"
+ << "\n\tm can't be empty"
+ << "\n\tm.size(): " << m.size()
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ point best_point(0,0);
+ type val = m(0,0);
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ type temp = m(r,c);
+ if (dlib::impl::magnitude(temp) > dlib::impl::magnitude(val))
+ {
+ val = temp;
+ best_point = point(c,r);
+ }
+ }
+ }
+ return best_point;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ point min_point (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0,
+ "\tpoint min_point(const matrix_exp& m)"
+ << "\n\tm can't be empty"
+ << "\n\tm.size(): " << m.size()
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ point best_point(0,0);
+ type val = m(0,0);
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ type temp = m(r,c);
+ if (dlib::impl::magnitude(temp) < dlib::impl::magnitude(val))
+ {
+ val = temp;
+ best_point = point(c,r);
+ }
+ }
+ }
+ return best_point;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ long index_of_max (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0 && is_vector(m) == true,
+ "\tlong index_of_max(const matrix_exp& m)"
+ << "\n\tm must be a row or column matrix"
+ << "\n\tm.size(): " << m.size()
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = m(0);
+ long best_idx = 0;
+ for (long i = 1; i < m.size(); ++i)
+ {
+ type temp = m(i);
+ if (dlib::impl::magnitude(temp) > dlib::impl::magnitude(val))
+ {
+ val = temp;
+ best_idx = i;
+ }
+ }
+ return best_idx;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ long index_of_min (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0 && is_vector(m),
+ "\tlong index_of_min(const matrix_exp& m)"
+ << "\n\tm must be a row or column matrix"
+ << "\n\tm.size(): " << m.size()
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = m(0);
+ long best_idx = 0;
+ for (long i = 1; i < m.size(); ++i)
+ {
+ type temp = m(i);
+ if (dlib::impl::magnitude(temp) < dlib::impl::magnitude(val))
+ {
+ val = temp;
+ best_idx = i;
+ }
+ }
+ return best_idx;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type max (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0,
+ "\ttype max(const matrix_exp& m)"
+ << "\n\tYou can't ask for the max() of an empty matrix"
+ << "\n\tm.size(): " << m.size()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = m(0,0);
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ type temp = m(r,c);
+ if (dlib::impl::magnitude(temp) > dlib::impl::magnitude(val))
+ val = temp;
+ }
+ }
+ return val;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type min (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0,
+ "\ttype min(const matrix_exp& m)"
+ << "\n\tYou can't ask for the min() of an empty matrix"
+ << "\n\tm.size(): " << m.size()
+ );
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = m(0,0);
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ type temp = m(r,c);
+ if (dlib::impl::magnitude(temp) < dlib::impl::magnitude(val))
+ val = temp;
+ }
+ }
+ return val;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_binary_min : basic_op_mm<M1,M2>
+ {
+ op_binary_min( const M1& m1_, const M2& m2_) : basic_op_mm<M1,M2>(m1_,m2_){}
+
+ typedef typename M1::type type;
+ typedef const type const_ret_type;
+ const static long cost = M1::cost + M2::cost + 1;
+
+ const_ret_type apply ( long r, long c) const
+ { return std::min(this->m1(r,c),this->m2(r,c)); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_binary_min<EXP1,EXP2> > min_pointwise (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NC == 0 || EXP2::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc(),
+ "\t const matrix_exp min_pointwise(const matrix_exp& a, const matrix_exp& b)"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ );
+ typedef op_binary_min<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2, typename M3>
+ struct op_min_pointwise3 : basic_op_mmm<M1,M2,M3>
+ {
+ op_min_pointwise3( const M1& m1_, const M2& m2_, const M3& m3_) :
+ basic_op_mmm<M1,M2,M3>(m1_,m2_,m3_){}
+
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ const static long cost = M1::cost + M2::cost + M3::cost + 2;
+
+ const_ret_type apply (long r, long c) const
+ { return std::min(this->m1(r,c),std::min(this->m2(r,c),this->m3(r,c))); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ inline const matrix_op<op_min_pointwise3<EXP1,EXP2,EXP3> >
+ min_pointwise (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const matrix_exp<EXP3>& c
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP2::type,typename EXP3::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NR == 0 || EXP2::NC == 0);
+ COMPILE_TIME_ASSERT(EXP2::NR == EXP3::NR || EXP2::NR == 0 || EXP3::NR == 0);
+ COMPILE_TIME_ASSERT(EXP2::NC == EXP3::NC || EXP2::NC == 0 || EXP3::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc() &&
+ b.nr() == c.nr() &&
+ b.nc() == c.nc(),
+ "\tconst matrix_exp min_pointwise(a,b,c)"
+ << "\n\tYou can only make a do a pointwise min between equally sized matrices"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ << "\n\tc.nr(): " << c.nr()
+ << "\n\tc.nc(): " << c.nc()
+ );
+
+ typedef op_min_pointwise3<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(a.ref(),b.ref(),c.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_binary_max : basic_op_mm<M1,M2>
+ {
+ op_binary_max( const M1& m1_, const M2& m2_) : basic_op_mm<M1,M2>(m1_,m2_){}
+
+ typedef typename M1::type type;
+ typedef const type const_ret_type;
+ const static long cost = M1::cost + M2::cost + 1;
+
+ const_ret_type apply ( long r, long c) const
+ { return std::max(this->m1(r,c),this->m2(r,c)); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_binary_max<EXP1,EXP2> > max_pointwise (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NC == 0 || EXP2::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc(),
+ "\t const matrix_exp max_pointwise(const matrix_exp& a, const matrix_exp& b)"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ );
+ typedef op_binary_max<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2, typename M3>
+ struct op_max_pointwise3 : basic_op_mmm<M1,M2,M3>
+ {
+ op_max_pointwise3( const M1& m1_, const M2& m2_, const M3& m3_) :
+ basic_op_mmm<M1,M2,M3>(m1_,m2_,m3_){}
+
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ const static long cost = M1::cost + M2::cost + M3::cost + 2;
+
+ const_ret_type apply (long r, long c) const
+ { return std::max(this->m1(r,c),std::max(this->m2(r,c),this->m3(r,c))); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ inline const matrix_op<op_max_pointwise3<EXP1,EXP2,EXP3> >
+ max_pointwise (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const matrix_exp<EXP3>& c
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP2::type,typename EXP3::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NR == 0 || EXP2::NC == 0);
+ COMPILE_TIME_ASSERT(EXP2::NR == EXP3::NR || EXP2::NR == 0 || EXP3::NR == 0);
+ COMPILE_TIME_ASSERT(EXP2::NC == EXP3::NC || EXP2::NC == 0 || EXP3::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc() &&
+ b.nr() == c.nr() &&
+ b.nc() == c.nc(),
+ "\tconst matrix_exp max_pointwise(a,b,c)"
+ << "\n\tYou can only make a do a pointwise max between equally sized matrices"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ << "\n\tc.nr(): " << c.nr()
+ << "\n\tc.nc(): " << c.nc()
+ );
+
+ typedef op_max_pointwise3<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(a.ref(),b.ref(),c.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ typename enable_if_c<std::numeric_limits<typename EXP::type>::is_integer, double>::type length (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(is_vector(m) == true,
+ "\ttype length(const matrix_exp& m)"
+ << "\n\tm must be a row or column vector"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+
+ return std::sqrt(static_cast<double>(sum(squared(m))));
+ }
+
+ template <
+ typename EXP
+ >
+ typename disable_if_c<std::numeric_limits<typename EXP::type>::is_integer, const typename EXP::type>::type length (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(is_vector(m) == true,
+ "\ttype length(const matrix_exp& m)"
+ << "\n\tm must be a row or column vector"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ return std::sqrt(sum(squared(m)));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type length_squared (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(is_vector(m) == true,
+ "\ttype length_squared(const matrix_exp& m)"
+ << "\n\tm must be a row or column vector"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ return sum(squared(m));
+ }
+
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_trans
+ {
+ op_trans( const M& m_) : m(m_){}
+
+ const M& m;
+
+ const static long cost = M::cost;
+ const static long NR = M::NC;
+ const static long NC = M::NR;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply (long r, long c) const { return m(c,r); }
+
+ long nr () const { return m.nc(); }
+ long nc () const { return m.nr(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+
+ };
+
+ template <
+ typename M
+ >
+ const matrix_op<op_trans<M> > trans (
+ const matrix_exp<M>& m
+ )
+ {
+ typedef op_trans<M> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+// don't to anything at all for diagonal matrices
+ template <
+ typename M
+ >
+ const matrix_diag_exp<M>& trans (
+ const matrix_diag_exp<M>& m
+ )
+ {
+ return m;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+// I introduced this struct because it avoids an inane compiler warning from gcc
+ template <typename EXP>
+ struct is_not_ct_vector{ static const bool value = (EXP::NR != 1 && EXP::NC != 1); };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ typename enable_if_c<(is_not_ct_vector<EXP1>::value) || (is_not_ct_vector<EXP2>::value),
+ typename EXP1::type>::type
+ dot (
+ const matrix_exp<EXP1>& m1,
+ const matrix_exp<EXP2>& m2
+ )
+ {
+ // You are getting an error on this line because you are trying to
+ // compute the dot product between two matrices that aren't both vectors (i.e.
+ // they aren't column or row matrices).
+ COMPILE_TIME_ASSERT(EXP1::NR*EXP1::NC == 0 ||
+ EXP2::NR*EXP2::NC == 0);
+
+ DLIB_ASSERT(is_vector(m1) && is_vector(m2) && m1.size() == m2.size() &&
+ m1.size() > 0,
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between non-empty vectors of equal length."
+ << "\n\t is_vector(m1): " << is_vector(m1)
+ << "\n\t is_vector(m2): " << is_vector(m2)
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ if (is_col_vector(m1) && is_col_vector(m2)) return (trans(m1)*m2)(0);
+ if (is_col_vector(m1) && is_row_vector(m2)) return (m2*m1)(0);
+ if (is_row_vector(m1) && is_col_vector(m2)) return (m1*m2)(0);
+
+ //if (is_row_vector(m1) && is_row_vector(m2))
+ return (m1*trans(m2))(0);
+ }
+
+ template < typename EXP1, typename EXP2 >
+ typename enable_if_c<EXP1::NR == 1 && EXP2::NR == 1 && EXP1::NC != 1 && EXP2::NC != 1, typename EXP1::type>::type
+ dot ( const matrix_exp<EXP1>& m1, const matrix_exp<EXP2>& m2)
+ {
+ DLIB_ASSERT(m1.size() == m2.size(),
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between vectors of equal length"
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ return m1*trans(m2);
+ }
+
+ template < typename EXP1, typename EXP2 >
+ typename enable_if_c<EXP1::NR == 1 && EXP2::NC == 1 && EXP1::NC != 1 && EXP2::NR != 1, typename EXP1::type>::type
+ dot ( const matrix_exp<EXP1>& m1, const matrix_exp<EXP2>& m2)
+ {
+ DLIB_ASSERT(m1.size() == m2.size(),
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between vectors of equal length"
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ return m1*m2;
+ }
+
+ template < typename EXP1, typename EXP2 >
+ typename enable_if_c<EXP1::NC == 1 && EXP2::NR == 1 && EXP1::NR != 1 && EXP2::NC != 1, typename EXP1::type>::type
+ dot ( const matrix_exp<EXP1>& m1, const matrix_exp<EXP2>& m2)
+ {
+ DLIB_ASSERT(m1.size() == m2.size(),
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between vectors of equal length"
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ return m2*m1;
+ }
+
+ template < typename EXP1, typename EXP2 >
+ typename enable_if_c<EXP1::NC == 1 && EXP2::NC == 1 && EXP1::NR != 1 && EXP2::NR != 1, typename EXP1::type>::type
+ dot ( const matrix_exp<EXP1>& m1, const matrix_exp<EXP2>& m2)
+ {
+ DLIB_ASSERT(m1.size() == m2.size(),
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between vectors of equal length"
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ return trans(m1)*m2;
+ }
+
+ template < typename EXP1, typename EXP2 >
+ typename enable_if_c<(EXP1::NC*EXP1::NR == 1) || (EXP2::NC*EXP2::NR == 1), typename EXP1::type>::type
+ dot ( const matrix_exp<EXP1>& m1, const matrix_exp<EXP2>& m2)
+ {
+ DLIB_ASSERT(m1.size() == m2.size(),
+ "\t type dot(const matrix_exp& m1, const matrix_exp& m2)"
+ << "\n\t You can only compute the dot product between vectors of equal length"
+ << "\n\t m1.size(): " << m1.size()
+ << "\n\t m2.size(): " << m2.size()
+ );
+
+ return m1(0)*m2(0);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, long R, long C>
+ struct op_removerc
+ {
+ op_removerc( const M& m_) : m(m_){}
+
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = (M::NR==0) ? 0 : (M::NR - 1);
+ const static long NC = (M::NC==0) ? 0 : (M::NC - 1);
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply (long r, long c) const
+ {
+ if (r < R)
+ {
+ if (c < C)
+ return m(r,c);
+ else
+ return m(r,c+1);
+ }
+ else
+ {
+ if (c < C)
+ return m(r+1,c);
+ else
+ return m(r+1,c+1);
+ }
+ }
+
+ long nr () const { return m.nr() - 1; }
+ long nc () const { return m.nc() - 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <typename M>
+ struct op_removerc2
+ {
+ op_removerc2( const M& m_, const long R_, const long C_) : m(m_), R(R_), C(C_){}
+ const M& m;
+ const long R;
+ const long C;
+
+ const static long cost = M::cost+2;
+ const static long NR = (M::NR==0) ? 0 : (M::NR - 1);
+ const static long NC = (M::NC==0) ? 0 : (M::NC - 1);
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply (long r, long c) const
+ {
+ if (r < R)
+ {
+ if (c < C)
+ return m(r,c);
+ else
+ return m(r,c+1);
+ }
+ else
+ {
+ if (c < C)
+ return m(r+1,c);
+ else
+ return m(r+1,c+1);
+ }
+ }
+
+ long nr () const { return m.nr() - 1; }
+ long nc () const { return m.nc() - 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ long R,
+ long C,
+ typename EXP
+ >
+ const matrix_op<op_removerc<EXP,R,C> > removerc (
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can't remove a row from a matrix with only one row
+ COMPILE_TIME_ASSERT((EXP::NR > R && R >= 0) || EXP::NR == 0);
+ // you can't remove a column from a matrix with only one column
+ COMPILE_TIME_ASSERT((EXP::NC > C && C >= 0) || EXP::NR == 0);
+ DLIB_ASSERT(m.nr() > R && R >= 0 && m.nc() > C && C >= 0,
+ "\tconst matrix_exp removerc<R,C>(const matrix_exp& m)"
+ << "\n\tYou can't remove a row/column from a matrix if it doesn't have that row/column"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tR: " << R
+ << "\n\tC: " << C
+ );
+ typedef op_removerc<EXP,R,C> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_removerc2<EXP> > removerc (
+ const matrix_exp<EXP>& m,
+ long R,
+ long C
+ )
+ {
+ DLIB_ASSERT(m.nr() > R && R >= 0 && m.nc() > C && C >= 0,
+ "\tconst matrix_exp removerc(const matrix_exp& m,R,C)"
+ << "\n\tYou can't remove a row/column from a matrix if it doesn't have that row/column"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tR: " << R
+ << "\n\tC: " << C
+ );
+ typedef op_removerc2<EXP> op;
+ return matrix_op<op>(op(m.ref(),R,C));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, long C>
+ struct op_remove_col
+ {
+ op_remove_col( const M& m_) : m(m_){}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = M::NR;
+ const static long NC = (M::NC==0) ? 0 : (M::NC - 1);
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (c < C)
+ {
+ return m(r,c);
+ }
+ else
+ {
+ return m(r,c+1);
+ }
+ }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc() - 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <typename M>
+ struct op_remove_col2
+ {
+ op_remove_col2( const M& m_, const long C_) : m(m_), C(C_){}
+ const M& m;
+ const long C;
+
+ const static long cost = M::cost+2;
+ const static long NR = M::NR;
+ const static long NC = (M::NC==0) ? 0 : (M::NC - 1);
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (c < C)
+ {
+ return m(r,c);
+ }
+ else
+ {
+ return m(r,c+1);
+ }
+ }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc() - 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ long C,
+ typename EXP
+ >
+ const matrix_op<op_remove_col<EXP, C> > remove_col (
+ const matrix_exp<EXP>& m
+ )
+ {
+ // You can't remove the given column from the matrix because the matrix doesn't
+ // have a column with that index.
+ COMPILE_TIME_ASSERT((EXP::NC > C && C >= 0) || EXP::NC == 0);
+ DLIB_ASSERT(m.nc() > C && C >= 0 ,
+ "\tconst matrix_exp remove_col<C>(const matrix_exp& m)"
+ << "\n\tYou can't remove a col from a matrix if it doesn't have it"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tC: " << C
+ );
+ typedef op_remove_col<EXP,C> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_remove_col2<EXP> > remove_col (
+ const matrix_exp<EXP>& m,
+ long C
+ )
+ {
+ DLIB_ASSERT(m.nc() > C && C >= 0 ,
+ "\tconst matrix_exp remove_col(const matrix_exp& m,C)"
+ << "\n\tYou can't remove a col from a matrix if it doesn't have it"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tC: " << C
+ );
+ typedef op_remove_col2<EXP> op;
+ return matrix_op<op>(op(m.ref(),C));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, long R>
+ struct op_remove_row
+ {
+ op_remove_row( const M& m_) : m(m_){}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = (M::NR==0) ? 0 : (M::NR - 1);
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r < R)
+ {
+ return m(r,c);
+ }
+ else
+ {
+ return m(r+1,c);
+ }
+ }
+
+ long nr () const { return m.nr() - 1; }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <typename M>
+ struct op_remove_row2
+ {
+ op_remove_row2( const M& m_, const long R_) : m(m_), R(R_){}
+ const M& m;
+ const long R;
+
+ const static long cost = M::cost+2;
+ const static long NR = (M::NR==0) ? 0 : (M::NR - 1);
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r < R)
+ {
+ return m(r,c);
+ }
+ else
+ {
+ return m(r+1,c);
+ }
+ }
+
+ long nr () const { return m.nr() - 1; }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ long R,
+ typename EXP
+ >
+ const matrix_op<op_remove_row<EXP,R> > remove_row (
+ const matrix_exp<EXP>& m
+ )
+ {
+ // You can't remove the given row from the matrix because the matrix doesn't
+ // have a row with that index.
+ COMPILE_TIME_ASSERT((EXP::NR > R && R >= 0) || EXP::NR == 0);
+ DLIB_ASSERT(m.nr() > R && R >= 0,
+ "\tconst matrix_exp remove_row<R>(const matrix_exp& m)"
+ << "\n\tYou can't remove a row from a matrix if it doesn't have it"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tR: " << R
+ );
+ typedef op_remove_row<EXP,R> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_remove_row2<EXP> > remove_row (
+ const matrix_exp<EXP>& m,
+ long R
+ )
+ {
+ DLIB_ASSERT(m.nr() > R && R >= 0,
+ "\tconst matrix_exp remove_row(const matrix_exp& m, long R)"
+ << "\n\tYou can't remove a row from a matrix if it doesn't have it"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tR: " << R
+ );
+ typedef op_remove_row2<EXP> op;
+ return matrix_op<op>(op(m.ref(),R));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_diagm
+ {
+ op_diagm( const M& m_) : m(m_){}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long N = M::NC*M::NR;
+ const static long NR = N;
+ const static long NC = N;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r==c)
+ return m(r);
+ else
+ return 0;
+ }
+
+ long nr () const { return (m.nr()>m.nc())? m.nr():m.nc(); }
+ long nc () const { return (m.nr()>m.nc())? m.nr():m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_diag_op<op_diagm<EXP> > diagm (
+ const matrix_exp<EXP>& m
+ )
+ {
+ // You can only make a diagonal matrix out of a row or column vector
+ COMPILE_TIME_ASSERT(EXP::NR == 0 || EXP::NR == 1 || EXP::NC == 1 || EXP::NC == 0);
+ DLIB_ASSERT(is_vector(m),
+ "\tconst matrix_exp diagm(const matrix_exp& m)"
+ << "\n\tYou can only apply diagm() to a row or column matrix"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef op_diagm<EXP> op;
+ return matrix_diag_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_diagm_mult : basic_op_mm<M1,M2>
+ {
+ op_diagm_mult( const M1& m1_, const M2& m2_) : basic_op_mm<M1,M2>(m1_,m2_){}
+
+ typedef typename M1::type type;
+ typedef const type const_ret_type;
+ const static long cost = M1::cost + M2::cost + 1;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r == c)
+ return this->m1(r,c)*this->m2(r,c);
+ else
+ return 0;
+ }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_diag_op<op_diagm_mult<EXP1,EXP2> > operator* (
+ const matrix_diag_exp<EXP1>& a,
+ const matrix_diag_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type, typename EXP2::type>::value));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NC == 0 || EXP2::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc(),
+ "\tconst matrix_exp operator(const matrix_diag_exp& a, const matrix_diag_exp& b)"
+ << "\n\tYou can only multiply diagonal matrices together if they are the same size"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ );
+ typedef op_diagm_mult<EXP1,EXP2> op;
+ return matrix_diag_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_diag
+ {
+ op_diag( const M& m_) : m(m_){}
+ const M& m;
+
+ const static long cost = M::cost;
+ const static long NR = tmin<M::NR,M::NC>::value;
+ const static long NC = 1;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long ) const { return m(r,r); }
+
+ long nr () const { return std::min(m.nc(),m.nr()); }
+ long nc () const { return 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_diag<EXP> > diag (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_diag<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <typename EXP>
+ struct diag_exp
+ {
+ typedef matrix_op<op_diag<EXP> > type;
+ };
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, typename target_type>
+ struct op_cast
+ {
+ op_cast( const M& m_) : m(m_){}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef target_type type;
+ typedef const target_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const { return static_cast<target_type>(m(r,c)); }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.destructively_aliases(item); }
+ };
+
+ template <
+ typename target_type,
+ typename EXP
+ >
+ const matrix_op<op_cast<EXP, target_type> > matrix_cast (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_cast<EXP, target_type> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type lessthan(const type& val, const S& s)
+ {
+ if (val < s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_lessthan, impl::lessthan, 1);
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_lessthan<EXP,S> > >::type operator< (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_lessthan<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_lessthan<EXP,S> > >::type operator> (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_lessthan<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type lessthan_eq(const type& val, const S& s)
+ {
+ if (val <= s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_lessthan_eq, impl::lessthan_eq, 1);
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_lessthan_eq<EXP,S> > >::type operator<= (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_lessthan_eq<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_lessthan_eq<EXP,S> > >::type operator>= (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_lessthan_eq<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type greaterthan(const type& val, const S& s)
+ {
+ if (val > s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_greaterthan, impl::greaterthan, 1);
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_greaterthan<EXP,S> > >::type operator> (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_greaterthan<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_greaterthan<EXP,S> > >::type operator< (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_greaterthan<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type greaterthan_eq(const type& val, const S& s)
+ {
+ if (val >= s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_greaterthan_eq, impl::greaterthan_eq, 1);
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_greaterthan_eq<EXP,S> > >::type operator>= (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_greaterthan_eq<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_greaterthan_eq<EXP,S> > >::type operator<= (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_greaterthan_eq<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type equal_to(const type& val, const S& s)
+ {
+ if (val == s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_equal_to, impl::equal_to, 1);
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_equal_to<EXP,S> > >::type operator== (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT( is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_equal_to<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_equal_to<EXP,S> > >::type operator== (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT( is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_equal_to<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ template <typename type, typename S>
+ inline type not_equal_to(const type& val, const S& s)
+ {
+ if (val != s)
+ return 1;
+ else
+ return 0;
+ }
+
+ }
+ DLIB_DEFINE_OP_MS(op_not_equal_to, impl::not_equal_to, 1);
+
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_not_equal_to<EXP,S> > >::type operator!= (
+ const matrix_exp<EXP>& m,
+ const S& s
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_not_equal_to<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+ template <
+ typename EXP,
+ typename S
+ >
+ const typename enable_if<is_built_in_scalar_type<S>, matrix_op<op_not_equal_to<EXP,S> > >::type operator!= (
+ const S& s,
+ const matrix_exp<EXP>& m
+ )
+ {
+ // you can only use this relational operator with the built in scalar types like
+ // long, float, etc.
+ COMPILE_TIME_ASSERT(is_built_in_scalar_type<typename EXP::type>::value);
+
+ typedef op_not_equal_to<EXP,S> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long NR,
+ long NC,
+ typename MM,
+ typename U,
+ typename L
+ >
+ typename disable_if<is_matrix<U>,void>::type set_all_elements (
+ matrix<T,NR,NC,MM,L>& m,
+ const U& value
+ )
+ {
+ // The value you are trying to assign to each element of the m matrix
+ // doesn't have the appropriate type.
+ COMPILE_TIME_ASSERT(is_matrix<T>::value == is_matrix<U>::value);
+
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ m(r,c) = static_cast<T>(value);
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long NR,
+ long NC,
+ typename MM,
+ typename U,
+ typename L
+ >
+ typename enable_if<is_matrix<U>,void>::type set_all_elements (
+ matrix<T,NR,NC,MM,L>& m,
+ const U& value
+ )
+ {
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ m(r,c) = value;
+ }
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ inline const typename matrix_exp<EXP>::matrix_type tmp (
+ const matrix_exp<EXP>& m
+ )
+ {
+ return typename matrix_exp<EXP>::matrix_type (m);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename EXP>
+ constexpr bool is_row_major (
+ const matrix_exp<EXP>&
+ )
+ {
+ return is_same_type<typename EXP::layout_type,row_major_layout>::value;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename lazy_disable_if<is_matrix<typename EXP::type>, EXP>::type sum (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = 0;
+ if (is_row_major(m))
+ {
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ val += m(r,c);
+ }
+ }
+ }
+ else
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ val += m(r,c);
+ }
+ }
+ }
+ return val;
+ }
+
+ template <
+ typename EXP
+ >
+ const typename lazy_enable_if<is_matrix<typename EXP::type>, EXP>::type sum (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val;
+ if (m.size() > 0)
+ val.set_size(m(0,0).nr(),m(0,0).nc());
+ set_all_elements(val,0);
+
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ val += m(r,c);
+ }
+ }
+ return val;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_sumr
+ {
+ op_sumr(const M& m_) : m(m_) {}
+ const M& m;
+
+ const static long cost = M::cost+10;
+ const static long NR = 1;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long , long c) const
+ {
+ type temp = m(0,c);
+ for (long r = 1; r < m.nr(); ++r)
+ temp += m(r,c);
+ return temp;
+ }
+
+ long nr () const { return 1; }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_sumr<EXP> > sum_rows (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0 ,
+ "\tconst matrix_exp sum_rows(m)"
+ << "\n\t The matrix can't be empty"
+ << "\n\t m.size(): " << m.size()
+ );
+ typedef op_sumr<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_sumc
+ {
+ op_sumc(const M& m_) : m(m_) {}
+ const M& m;
+
+ const static long cost = M::cost + 10;
+ const static long NR = M::NR;
+ const static long NC = 1;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long ) const
+ {
+ type temp = m(r,0);
+ for (long c = 1; c < m.nc(); ++c)
+ temp += m(r,c);
+ return temp;
+ }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_sumc<EXP> > sum_cols (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.size() > 0 ,
+ "\tconst matrix_exp sum_cols(m)"
+ << "\n\t The matrix can't be empty"
+ << "\n\t m.size(): " << m.size()
+ );
+ typedef op_sumc<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ inline const typename disable_if<is_complex<typename EXP::type>, typename matrix_exp<EXP>::type>::type mean (
+ const matrix_exp<EXP>& m
+ )
+ {
+ return sum(m)/(m.nr()*m.nc());
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ inline const typename enable_if<is_complex<typename EXP::type>, typename matrix_exp<EXP>::type>::type mean (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef typename EXP::type::value_type type;
+ return sum(m)/(type)(m.nr()*m.nc());
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type variance (
+ const matrix_exp<EXP>& m
+ )
+ {
+ using std::pow;
+ using dlib::pow;
+ const typename matrix_exp<EXP>::type avg = mean(m);
+
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val;
+ val = 0;
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ val += pow(m(r,c) - avg,2);
+ }
+ }
+
+ if (m.nr() * m.nc() <= 1)
+ {
+ return val;
+ }
+ else
+ {
+ // Note, for some reason, in gcc 4.1 performing this division using a
+ // double instead of a long value avoids a segmentation fault. That is,
+ // using 1.0 instead of 1 does the trick.
+ return val/(m.nr()*m.nc() - 1.0);
+ }
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type stddev (
+ const matrix_exp<EXP>& m
+ )
+ {
+ using std::sqrt;
+ using dlib::sqrt;
+ return sqrt(variance(m));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+// this is a workaround for a bug in visual studio 7.1
+ template <typename EXP>
+ struct visual_studio_sucks_cov_helper
+ {
+ typedef typename EXP::type inner_type;
+ typedef matrix<typename inner_type::type, inner_type::NR, inner_type::NR, typename EXP::mem_manager_type> type;
+ };
+
+ template <
+ typename EXP
+ >
+ const typename visual_studio_sucks_cov_helper<EXP>::type covariance (
+ const matrix_exp<EXP>& m
+ )
+ {
+ // perform static checks to make sure m is a column vector
+ COMPILE_TIME_ASSERT(EXP::NR == 0 || EXP::NR > 1);
+ COMPILE_TIME_ASSERT(EXP::NC == 1 || EXP::NC == 0);
+
+ // perform static checks to make sure the matrices contained in m are column vectors
+ COMPILE_TIME_ASSERT(EXP::type::NC == 1 || EXP::type::NC == 0 );
+
+ DLIB_ASSERT(m.size() > 1 && is_col_vector(m),
+ "\tconst matrix covariance(const matrix_exp& m)"
+ << "\n\tYou can only apply covariance() to a column matrix"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+#ifdef ENABLE_ASSERTS
+ for (long i = 0; i < m.nr(); ++i)
+ {
+ DLIB_ASSERT(m(0).size() == m(i).size() && m(i).size() > 0 && is_col_vector(m(i)),
+ "\tconst matrix covariance(const matrix_exp& m)"
+ << "\n\tYou can only apply covariance() to a column matrix of column matrices"
+ << "\n\tm(0).size(): " << m(0).size()
+ << "\n\tm(i).size(): " << m(i).size()
+ << "\n\tis_col_vector(m(i)): " << (is_col_vector(m(i)) ? "true" : "false")
+ << "\n\ti: " << i
+ );
+ }
+#endif
+
+ // now perform the actual calculation of the covariance matrix.
+ typename visual_studio_sucks_cov_helper<EXP>::type cov(m(0).nr(),m(0).nr());
+ set_all_elements(cov,0);
+
+ const typename EXP::type avg = mean(m);
+
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ cov += (m(r) - avg)*trans(m(r) - avg);
+ }
+
+ cov *= 1.0 / (m.nr() - 1.0);
+ return cov;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const typename matrix_exp<EXP>::type prod (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef typename matrix_exp<EXP>::type type;
+
+ type val = 1;
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ val *= m(r,c);
+ }
+ }
+ return val;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T
+ >
+ struct op_uniform_matrix_3 : does_not_alias
+ {
+ op_uniform_matrix_3(const long& rows_, const long& cols_, const T& val_ ) :
+ rows(rows_), cols(cols_), val(val_) {}
+
+ const long rows;
+ const long cols;
+ const T val;
+
+ const static long cost = 1;
+ const static long NR = 0;
+ const static long NC = 0;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T& const_ret_type;
+ const_ret_type apply (long, long ) const { return val; }
+
+ long nr() const { return rows; }
+ long nc() const { return cols; }
+ };
+
+ template <
+ typename T
+ >
+ const matrix_op<op_uniform_matrix_3<T> > uniform_matrix (
+ long nr,
+ long nc,
+ const T& val
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tconst matrix_exp uniform_matrix<T>(nr, nc, val)"
+ << "\n\tnr and nc have to be bigger than 0"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+ typedef op_uniform_matrix_3<T> op;
+ return matrix_op<op>(op(nr, nc, val));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T
+ >
+ const matrix_op<op_uniform_matrix_3<T> > zeros_matrix (
+ long nr,
+ long nc
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tconst matrix_exp zeros_matrix<T>(nr, nc)"
+ << "\n\tnr and nc have to be >= 0"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+ typedef op_uniform_matrix_3<T> op;
+ return matrix_op<op>(op(nr, nc, 0));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_uniform_matrix_3<typename EXP::type> > zeros_matrix (
+ const matrix_exp<EXP>& mat
+ )
+ {
+ DLIB_ASSERT(mat.nr() >= 0 && mat.nc() >= 0,
+ "\tconst matrix_exp zeros_matrix(mat)"
+ << "\n\t nr and nc have to be >= 0"
+ << "\n\t mat.nr(): " << mat.nr()
+ << "\n\t mat.nc(): " << mat.nc()
+ );
+ typedef typename EXP::type T;
+ typedef op_uniform_matrix_3<T> op;
+ return matrix_op<op>(op(mat.nr(), mat.nc(), 0));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T
+ >
+ const matrix_op<op_uniform_matrix_3<T> > ones_matrix (
+ long nr,
+ long nc
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tconst matrix_exp ones_matrix<T>(nr, nc)"
+ << "\n\tnr and nc have to be >= 0"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+ typedef op_uniform_matrix_3<T> op;
+ return matrix_op<op>(op(nr, nc, 1));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_uniform_matrix_3<typename EXP::type> > ones_matrix (
+ const matrix_exp<EXP>& mat
+ )
+ {
+ DLIB_ASSERT(mat.nr() >= 0 && mat.nc() >= 0,
+ "\tconst matrix_exp ones_matrix(mat)"
+ << "\n\t nr and nc have to be >= 0"
+ << "\n\t mat.nr(): " << mat.nr()
+ << "\n\t mat.nc(): " << mat.nc()
+ );
+ typedef typename EXP::type T;
+ typedef op_uniform_matrix_3<T> op;
+ return matrix_op<op>(op(mat.nr(), mat.nc(), 1));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long NR_,
+ long NC_
+ >
+ struct op_uniform_matrix_2 : does_not_alias
+ {
+ op_uniform_matrix_2( const T& val_ ) : val(val_) {}
+ const T val;
+
+ const static long cost = 1;
+ const static long NR = NR_;
+ const static long NC = NC_;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T& const_ret_type;
+
+ const_ret_type apply (long , long ) const { return val; }
+
+ long nr() const { return NR; }
+ long nc() const { return NC; }
+ };
+
+ template <
+ typename T,
+ long NR,
+ long NC
+ >
+ const matrix_op<op_uniform_matrix_2<T,NR,NC> > uniform_matrix (
+ const T& val
+ )
+ {
+ COMPILE_TIME_ASSERT(NR > 0 && NC > 0);
+
+ typedef op_uniform_matrix_2<T,NR,NC> op;
+ return matrix_op<op>(op(val));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long NR_,
+ long NC_,
+ T val
+ >
+ struct op_uniform_matrix : does_not_alias
+ {
+ const static long cost = 1;
+ const static long NR = NR_;
+ const static long NC = NC_;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T const_ret_type;
+ const_ret_type apply ( long , long ) const { return val; }
+
+ long nr() const { return NR; }
+ long nc() const { return NC; }
+ };
+
+ template <
+ typename T,
+ long NR,
+ long NC,
+ T val
+ >
+ const matrix_op<op_uniform_matrix<T,NR,NC,val> > uniform_matrix (
+ )
+ {
+ COMPILE_TIME_ASSERT(NR > 0 && NC > 0);
+ typedef op_uniform_matrix<T,NR,NC,val> op;
+ return matrix_op<op>(op());
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ struct op_gaussian_randm : does_not_alias
+ {
+ op_gaussian_randm (
+ long nr_,
+ long nc_,
+ unsigned long seed_
+ ) :_nr(nr_), _nc(nc_), seed(seed_){}
+
+ const long _nr;
+ const long _nc;
+ const unsigned long seed;
+
+ const static long cost = 100;
+ const static long NR = 0;
+ const static long NC = 0;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef double type;
+ typedef double const_ret_type;
+ const_ret_type apply ( long r, long c) const { return gaussian_random_hash(r,c,seed); }
+
+ long nr() const { return _nr; }
+ long nc() const { return _nc; }
+ };
+
+ inline const matrix_op<op_gaussian_randm> gaussian_randm (
+ long nr,
+ long nc,
+ unsigned long seed = 0
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tmatrix_exp gaussian_randm(nr, nc, seed)"
+ << "\n\tInvalid inputs to this function"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+
+ typedef op_gaussian_randm op;
+ return matrix_op<op>(op(nr,nc,seed));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_add_diag
+ {
+ op_add_diag( const M& m_, const typename M::type& value_) : m(m_), value(value_){}
+ const M& m;
+ const typename M::type value;
+
+ const static long cost = M::cost+1;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r==c)
+ return m(r,c)+value;
+ else
+ return m(r,c);
+ }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.destructively_aliases(item); }
+ };
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T
+ >
+ struct op_identity_matrix_2 : does_not_alias
+ {
+ op_identity_matrix_2(const long& size_) : size(size_) {}
+
+ const long size;
+
+ const static long cost = 1;
+ const static long NR = 0;
+ const static long NC = 0;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T const_ret_type;
+ const_ret_type apply (long r, long c) const { return static_cast<type>(r == c); }
+
+ long nr() const { return size; }
+ long nc() const { return size; }
+ };
+
+ template <
+ typename T,
+ typename U
+ >
+ const matrix_diag_op<op_identity_matrix_2<T> > identity_matrix (
+ const U& size
+ )
+ {
+ // the size argument must be some scalar value, not a matrix!
+ COMPILE_TIME_ASSERT(is_matrix<U>::value == false);
+
+ DLIB_ASSERT(size > 0,
+ "\tconst matrix_exp identity_matrix<T>(size)"
+ << "\n\tsize must be bigger than 0"
+ << "\n\tsize: " << size
+ );
+ typedef op_identity_matrix_2<T> op;
+ return matrix_diag_op<op>(op(size));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_diag_op<op_identity_matrix_2<typename EXP::type> > identity_matrix (
+ const matrix_exp<EXP>& mat
+ )
+ {
+ DLIB_ASSERT(mat.nr() == mat.nc(),
+ "\tconst matrix_exp identity_matrix(mat)"
+ << "\n\t mat must be a square matrix."
+ << "\n\t mat.nr(): " << mat.nr()
+ << "\n\t mat.nc(): " << mat.nc()
+ );
+ typedef typename EXP::type T;
+ typedef op_identity_matrix_2<T> op;
+ return matrix_diag_op<op>(op(mat.nr()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP,
+ typename T
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<EXP>& lhs,
+ const matrix_exp<matrix_diag_op<op_identity_matrix_2<T> > >& DLIB_IF_ASSERT(rhs)
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(lhs.ref(),1));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP,
+ typename T
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<matrix_diag_op<op_identity_matrix_2<T> > >& DLIB_IF_ASSERT(lhs),
+ const matrix_exp<EXP>& rhs
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(rhs.ref(),1));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long N
+ >
+ struct op_const_diag_matrix : does_not_alias
+ {
+ op_const_diag_matrix(const long& size_, const T& value_) : size(size_),value(value_) {}
+
+ const long size;
+ const T value;
+
+ const static long cost = 1;
+ const static long NR = N;
+ const static long NC = N;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T const_ret_type;
+ const_ret_type apply (long r, long c) const
+ {
+ if (r == c)
+ return value;
+ else
+ return 0;
+ }
+
+ long nr() const { return size; }
+ long nc() const { return size; }
+ };
+
+ template <
+ typename T,
+ typename U
+ >
+ const typename disable_if<is_matrix<U>, matrix_diag_op<op_const_diag_matrix<T,0> > >::type operator* (
+ const matrix_exp<matrix_diag_op<op_identity_matrix_2<T> > >& m,
+ const U& value
+ )
+ {
+ typedef op_const_diag_matrix<T,0> op;
+ return matrix_diag_op<op>(op(m.nr(), value));
+ }
+
+ template <
+ typename T,
+ typename U
+ >
+ const typename disable_if<is_matrix<U>, matrix_diag_op<op_const_diag_matrix<T,0> > >::type operator* (
+ const U& value,
+ const matrix_exp<matrix_diag_op<op_identity_matrix_2<T> > >& m
+ )
+ {
+ typedef op_const_diag_matrix<T,0> op;
+ return matrix_diag_op<op>(op(m.nr(), value));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP,
+ typename T,
+ long N
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<EXP>& lhs,
+ const matrix_exp<matrix_diag_op<op_const_diag_matrix<T,N> > >& rhs
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(lhs.ref(),rhs.ref().op.value));
+ }
+
+ template <
+ typename EXP,
+ typename T,
+ long N
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<matrix_diag_op<op_const_diag_matrix<T,N> > >& lhs,
+ const matrix_exp<EXP>& rhs
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(rhs.ref(),lhs.ref().op.value));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long N
+ >
+ struct op_identity_matrix : does_not_alias
+ {
+ const static long cost = 1;
+ const static long NR = N;
+ const static long NC = N;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+ typedef T type;
+ typedef const T const_ret_type;
+ const_ret_type apply ( long r, long c) const { return static_cast<type>(r == c); }
+
+ long nr () const { return NR; }
+ long nc () const { return NC; }
+ };
+
+ template <
+ typename T,
+ long N
+ >
+ const matrix_diag_op<op_identity_matrix<T,N> > identity_matrix (
+ )
+ {
+ COMPILE_TIME_ASSERT(N > 0);
+
+ typedef op_identity_matrix<T,N> op;
+ return matrix_diag_op<op>(op());
+ }
+
+ template <
+ typename T,
+ typename U,
+ long N
+ >
+ const typename disable_if<is_matrix<U>, matrix_diag_op<op_const_diag_matrix<T,N> > >::type operator* (
+ const matrix_exp<matrix_diag_op<op_identity_matrix<T,N> > >& m,
+ const U& value
+ )
+ {
+ typedef op_const_diag_matrix<T,N> op;
+ return matrix_diag_op<op>(op(m.nr(), value));
+ }
+
+ template <
+ typename T,
+ typename U,
+ long N
+ >
+ const typename disable_if<is_matrix<U>, matrix_diag_op<op_const_diag_matrix<T,N> > >::type operator* (
+ const U& value,
+ const matrix_exp<matrix_diag_op<op_identity_matrix<T,N> > >& m
+ )
+ {
+ typedef op_const_diag_matrix<T,N> op;
+ return matrix_diag_op<op>(op(m.nr(), value));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP,
+ typename T,
+ long N
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<matrix_diag_op<op_identity_matrix<T,N> > >& DLIB_IF_ASSERT(lhs),
+ const matrix_exp<EXP>& rhs
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(rhs.ref(),1));
+ }
+
+ template <
+ typename EXP,
+ typename T,
+ long N
+ >
+ const matrix_op<op_add_diag<EXP> > operator+ (
+ const matrix_exp<EXP>& lhs,
+ const matrix_exp<matrix_diag_op<op_identity_matrix<T,N> > >& DLIB_IF_ASSERT(rhs)
+ )
+ {
+ // both matrices must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<T,typename EXP::type>::value == true));
+
+ // You can only add matrices together if they both have the same number of rows and columns.
+ DLIB_ASSERT(lhs.nc() == rhs.nc() &&
+ lhs.nr() == rhs.nr(),
+ "\tconst matrix_exp operator+(const matrix_exp& lhs, const matrix_exp& rhs)"
+ << "\n\tYou are trying to add two incompatible matrices together"
+ << "\n\tlhs.nr(): " << lhs.nr()
+ << "\n\tlhs.nc(): " << lhs.nc()
+ << "\n\trhs.nr(): " << rhs.nr()
+ << "\n\trhs.nc(): " << rhs.nc()
+ << "\n\t&lhs: " << &lhs
+ << "\n\t&rhs: " << &rhs
+ );
+
+
+ typedef op_add_diag<EXP> op;
+ return matrix_op<op>(op(lhs.ref(),1));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, long R, long C>
+ struct op_rotate
+ {
+ op_rotate(const M& m_) : m(m_) {}
+ const M& m;
+
+ const static long cost = M::cost + 2;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+ const_ret_type apply ( long r, long c) const { return m((r+R)%m.nr(),(c+C)%m.nc()); }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ long R,
+ long C,
+ typename EXP
+ >
+ const matrix_op<op_rotate<EXP,R,C> > rotate (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_rotate<EXP,R,C> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ namespace impl
+ {
+ // A template to tell me if two types can be multiplied together in a sensible way. Here
+ // I'm saying it is ok if they are both the same type or one is the complex version of the other.
+ template <typename T, typename U> struct compatible { static const bool value = false; typedef T type; };
+ template <typename T> struct compatible<T,T> { static const bool value = true; typedef T type; };
+ template <typename T> struct compatible<std::complex<T>,T> { static const bool value = true; typedef std::complex<T> type; };
+ template <typename T> struct compatible<T,std::complex<T> > { static const bool value = true; typedef std::complex<T> type; };
+ }
+
+
+ template <typename M1, typename M2>
+ struct op_pointwise_multiply : basic_op_mm<M1,M2>
+ {
+ op_pointwise_multiply( const M1& m1_, const M2& m2_) : basic_op_mm<M1,M2>(m1_,m2_){}
+
+ typedef typename impl::compatible<typename M1::type, typename M2::type>::type type;
+ typedef const type const_ret_type;
+ const static long cost = M1::cost + M2::cost + 1;
+
+ const_ret_type apply ( long r, long c) const
+ { return this->m1(r,c)*this->m2(r,c); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_pointwise_multiply<EXP1,EXP2> > pointwise_multiply (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((impl::compatible<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NC == 0 || EXP2::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc(),
+ "\tconst matrix_exp pointwise_multiply(const matrix_exp& a, const matrix_exp& b)"
+ << "\n\tYou can only make a do a pointwise multiply with two equally sized matrices"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ );
+ typedef op_pointwise_multiply<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2, typename M3>
+ struct op_pointwise_multiply3 : basic_op_mmm<M1,M2,M3>
+ {
+ op_pointwise_multiply3( const M1& m1_, const M2& m2_, const M3& m3_) :
+ basic_op_mmm<M1,M2,M3>(m1_,m2_,m3_){}
+
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ const static long cost = M1::cost + M2::cost + M3::cost + 2;
+
+ const_ret_type apply (long r, long c) const
+ { return this->m1(r,c)*this->m2(r,c)*this->m3(r,c); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ inline const matrix_op<op_pointwise_multiply3<EXP1,EXP2,EXP3> >
+ pointwise_multiply (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const matrix_exp<EXP3>& c
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP2::type,typename EXP3::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NR == 0 || EXP2::NC == 0);
+ COMPILE_TIME_ASSERT(EXP2::NR == EXP3::NR || EXP2::NR == 0 || EXP3::NR == 0);
+ COMPILE_TIME_ASSERT(EXP2::NC == EXP3::NC || EXP2::NC == 0 || EXP3::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc() &&
+ b.nr() == c.nr() &&
+ b.nc() == c.nc(),
+ "\tconst matrix_exp pointwise_multiply(a,b,c)"
+ << "\n\tYou can only make a do a pointwise multiply between equally sized matrices"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ << "\n\tc.nr(): " << c.nr()
+ << "\n\tc.nc(): " << c.nc()
+ );
+
+ typedef op_pointwise_multiply3<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(a.ref(),b.ref(),c.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2, typename M3, typename M4>
+ struct op_pointwise_multiply4 : basic_op_mmmm<M1,M2,M3,M4>
+ {
+ op_pointwise_multiply4( const M1& m1_, const M2& m2_, const M3& m3_, const M4& m4_) :
+ basic_op_mmmm<M1,M2,M3,M4>(m1_,m2_,m3_,m4_){}
+
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ const static long cost = M1::cost + M2::cost + M3::cost + M4::cost + 3;
+
+ const_ret_type apply (long r, long c) const
+ { return this->m1(r,c)*this->m2(r,c)*this->m3(r,c)*this->m4(r,c); }
+ };
+
+
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3,
+ typename EXP4
+ >
+ inline const matrix_op<op_pointwise_multiply4<EXP1,EXP2,EXP3,EXP4> > pointwise_multiply (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const matrix_exp<EXP3>& c,
+ const matrix_exp<EXP4>& d
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP2::type,typename EXP3::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP3::type,typename EXP4::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NC == 0 || EXP2::NC == 0 );
+ COMPILE_TIME_ASSERT(EXP2::NR == EXP3::NR || EXP2::NR == 0 || EXP3::NR == 0);
+ COMPILE_TIME_ASSERT(EXP2::NC == EXP3::NC || EXP2::NC == 0 || EXP3::NC == 0);
+ COMPILE_TIME_ASSERT(EXP3::NR == EXP4::NR || EXP3::NR == 0 || EXP4::NR == 0);
+ COMPILE_TIME_ASSERT(EXP3::NC == EXP4::NC || EXP3::NC == 0 || EXP4::NC == 0);
+ DLIB_ASSERT(a.nr() == b.nr() &&
+ a.nc() == b.nc() &&
+ b.nr() == c.nr() &&
+ b.nc() == c.nc() &&
+ c.nr() == d.nr() &&
+ c.nc() == d.nc(),
+ "\tconst matrix_exp pointwise_multiply(a,b,c,d)"
+ << "\n\tYou can only make a do a pointwise multiply between equally sized matrices"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\tb.nc(): " << b.nc()
+ << "\n\tc.nr(): " << c.nr()
+ << "\n\tc.nc(): " << c.nc()
+ << "\n\td.nr(): " << d.nr()
+ << "\n\td.nc(): " << d.nc()
+ );
+
+ typedef op_pointwise_multiply4<EXP1,EXP2,EXP3,EXP4> op;
+ return matrix_op<op>(op(a.ref(),b.ref(),c.ref(),d.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename P,
+ int type = static_switch<
+ pixel_traits<P>::grayscale,
+ pixel_traits<P>::rgb,
+ pixel_traits<P>::hsi,
+ pixel_traits<P>::rgb_alpha,
+ pixel_traits<P>::lab
+ >::value
+ >
+ struct pixel_to_vector_helper;
+
+ template <typename P>
+ struct pixel_to_vector_helper<P,1>
+ {
+ template <typename M>
+ static void assign (
+ M& m,
+ const P& pixel
+ )
+ {
+ m(0) = static_cast<typename M::type>(pixel);
+ }
+ };
+
+ template <typename P>
+ struct pixel_to_vector_helper<P,2>
+ {
+ template <typename M>
+ static void assign (
+ M& m,
+ const P& pixel
+ )
+ {
+ m(0) = static_cast<typename M::type>(pixel.red);
+ m(1) = static_cast<typename M::type>(pixel.green);
+ m(2) = static_cast<typename M::type>(pixel.blue);
+ }
+ };
+
+ template <typename P>
+ struct pixel_to_vector_helper<P,3>
+ {
+ template <typename M>
+ static void assign (
+ M& m,
+ const P& pixel
+ )
+ {
+ m(0) = static_cast<typename M::type>(pixel.h);
+ m(1) = static_cast<typename M::type>(pixel.s);
+ m(2) = static_cast<typename M::type>(pixel.i);
+ }
+ };
+
+ template <typename P>
+ struct pixel_to_vector_helper<P,4>
+ {
+ template <typename M>
+ static void assign (
+ M& m,
+ const P& pixel
+ )
+ {
+ m(0) = static_cast<typename M::type>(pixel.red);
+ m(1) = static_cast<typename M::type>(pixel.green);
+ m(2) = static_cast<typename M::type>(pixel.blue);
+ m(3) = static_cast<typename M::type>(pixel.alpha);
+ }
+ };
+
+ template <typename P>
+ struct pixel_to_vector_helper<P,5>
+ {
+ template <typename M>
+ static void assign (
+ M& m,
+ const P& pixel
+ )
+ {
+ m(0) = static_cast<typename M::type>(pixel.l);
+ m(1) = static_cast<typename M::type>(pixel.a);
+ m(2) = static_cast<typename M::type>(pixel.b);
+ }
+ };
+
+
+ template <
+ typename T,
+ typename P
+ >
+ inline const matrix<T,pixel_traits<P>::num,1> pixel_to_vector (
+ const P& pixel
+ )
+ {
+ COMPILE_TIME_ASSERT(pixel_traits<P>::num > 0);
+ matrix<T,pixel_traits<P>::num,1> m;
+ pixel_to_vector_helper<P>::assign(m,pixel);
+ return m;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename P,
+ int type = static_switch<
+ pixel_traits<P>::grayscale,
+ pixel_traits<P>::rgb,
+ pixel_traits<P>::hsi,
+ pixel_traits<P>::rgb_alpha,
+ pixel_traits<P>::lab
+ >::value
+ >
+ struct vector_to_pixel_helper;
+
+ template <typename P>
+ struct vector_to_pixel_helper<P,1>
+ {
+ template <typename M>
+ static void assign (
+ P& pixel,
+ const M& m
+ )
+ {
+ pixel = static_cast<unsigned char>(m(0));
+ }
+ };
+
+ template <typename P>
+ struct vector_to_pixel_helper<P,2>
+ {
+ template <typename M>
+ static void assign (
+ P& pixel,
+ const M& m
+ )
+ {
+ pixel.red = static_cast<unsigned char>(m(0));
+ pixel.green = static_cast<unsigned char>(m(1));
+ pixel.blue = static_cast<unsigned char>(m(2));
+ }
+ };
+
+ template <typename P>
+ struct vector_to_pixel_helper<P,3>
+ {
+ template <typename M>
+ static void assign (
+ P& pixel,
+ const M& m
+ )
+ {
+ pixel.h = static_cast<unsigned char>(m(0));
+ pixel.s = static_cast<unsigned char>(m(1));
+ pixel.i = static_cast<unsigned char>(m(2));
+ }
+ };
+
+ template <typename P>
+ struct vector_to_pixel_helper<P,4>
+ {
+ template <typename M>
+ static void assign (
+ P& pixel,
+ const M& m
+ )
+ {
+ pixel.red = static_cast<unsigned char>(m(0));
+ pixel.green = static_cast<unsigned char>(m(1));
+ pixel.blue = static_cast<unsigned char>(m(2));
+ pixel.alpha = static_cast<unsigned char>(m(3));
+ }
+ };
+
+ template <typename P>
+ struct vector_to_pixel_helper<P,5>
+ {
+ template <typename M>
+ static void assign (
+ P& pixel,
+ const M& m
+ )
+ {
+ pixel.l = static_cast<unsigned char>(m(0));
+ pixel.a = static_cast<unsigned char>(m(1));
+ pixel.b = static_cast<unsigned char>(m(2));
+ }
+ };
+
+ template <
+ typename P,
+ typename EXP
+ >
+ inline void vector_to_pixel (
+ P& pixel,
+ const matrix_exp<EXP>& vector
+ )
+ {
+ COMPILE_TIME_ASSERT(pixel_traits<P>::num == matrix_exp<EXP>::NR);
+ COMPILE_TIME_ASSERT(matrix_exp<EXP>::NC == 1);
+ vector_to_pixel_helper<P>::assign(pixel,vector);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M, long lower, long upper>
+ struct op_clamp : basic_op_m<M>
+ {
+ op_clamp( const M& m_) : basic_op_m<M>(m_){}
+
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ const static long cost = M::cost + 2;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ const type temp = this->m(r,c);
+ if (temp > static_cast<type>(upper))
+ return static_cast<type>(upper);
+ else if (temp < static_cast<type>(lower))
+ return static_cast<type>(lower);
+ else
+ return temp;
+ }
+ };
+
+ template <
+ long l,
+ long u,
+ typename EXP
+ >
+ const matrix_op<op_clamp<EXP,l,u> > clamp (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_clamp<EXP,l,u> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_clamp2 : basic_op_m<M>
+ {
+ typedef typename M::type type;
+
+ op_clamp2( const M& m_, const type& l, const type& u) :
+ basic_op_m<M>(m_), lower(l), upper(u){}
+
+ const type& lower;
+ const type& upper;
+
+ typedef const typename M::type const_ret_type;
+ const static long cost = M::cost + 2;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ const type temp = this->m(r,c);
+ if (temp > upper)
+ return upper;
+ else if (temp < lower)
+ return lower;
+ else
+ return temp;
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_clamp2<EXP> > clamp (
+ const matrix_exp<EXP>& m,
+ const typename EXP::type& lower,
+ const typename EXP::type& upper
+ )
+ {
+ typedef op_clamp2<EXP> op;
+ return matrix_op<op>(op(m.ref(),lower, upper));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2, typename M3>
+ struct op_clamp_m : basic_op_mmm<M1,M2,M3>
+ {
+ op_clamp_m( const M1& m1_, const M2& m2_, const M3& m3_) :
+ basic_op_mmm<M1,M2,M3>(m1_,m2_,m3_){}
+
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ const static long cost = M1::cost + M2::cost + M3::cost + 2;
+
+ const_ret_type apply (long r, long c) const
+ {
+ const type val = this->m1(r,c);
+ const type lower = this->m2(r,c);
+ const type upper = this->m3(r,c);
+ if (val <= upper)
+ {
+ if (lower <= val)
+ return val;
+ else
+ return lower;
+ }
+ else
+ {
+ return upper;
+ }
+ }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ const matrix_op<op_clamp_m<EXP1,EXP2,EXP3> >
+ clamp (
+ const matrix_exp<EXP1>& m,
+ const matrix_exp<EXP2>& lower,
+ const matrix_exp<EXP3>& upper
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP2::type,typename EXP3::type>::value == true));
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || EXP1::NR == 0 || EXP2::NR == 0);
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || EXP1::NR == 0 || EXP2::NC == 0);
+ COMPILE_TIME_ASSERT(EXP2::NR == EXP3::NR || EXP2::NR == 0 || EXP3::NR == 0);
+ COMPILE_TIME_ASSERT(EXP2::NC == EXP3::NC || EXP2::NC == 0 || EXP3::NC == 0);
+ DLIB_ASSERT(m.nr() == lower.nr() &&
+ m.nc() == lower.nc() &&
+ m.nr() == upper.nr() &&
+ m.nc() == upper.nc(),
+ "\tconst matrix_exp clamp(m,lower,upper)"
+ << "\n\t Invalid inputs were given to this function."
+ << "\n\t m.nr(): " << m.nr()
+ << "\n\t m.nc(): " << m.nc()
+ << "\n\t lower.nr(): " << lower.nr()
+ << "\n\t lower.nc(): " << lower.nc()
+ << "\n\t upper.nr(): " << upper.nr()
+ << "\n\t upper.nc(): " << upper.nc()
+ );
+
+ typedef op_clamp_m<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(m.ref(),lower.ref(),upper.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_lowerbound : basic_op_m<M>
+ {
+ typedef typename M::type type;
+
+ op_lowerbound( const M& m_, const type& thresh_) :
+ basic_op_m<M>(m_), thresh(thresh_){}
+
+ const type& thresh;
+
+ typedef const typename M::type const_ret_type;
+ const static long cost = M::cost + 2;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ const type temp = this->m(r,c);
+ if (temp >= thresh)
+ return temp;
+ else
+ return thresh;
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_lowerbound<EXP> > lowerbound (
+ const matrix_exp<EXP>& m,
+ const typename EXP::type& thresh
+ )
+ {
+ typedef op_lowerbound<EXP> op;
+ return matrix_op<op>(op(m.ref(), thresh));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_upperbound : basic_op_m<M>
+ {
+ typedef typename M::type type;
+
+ op_upperbound( const M& m_, const type& thresh_) :
+ basic_op_m<M>(m_), thresh(thresh_){}
+
+ const type& thresh;
+
+ typedef const typename M::type const_ret_type;
+ const static long cost = M::cost + 2;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ const type temp = this->m(r,c);
+ if (temp <= thresh)
+ return temp;
+ else
+ return thresh;
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_upperbound<EXP> > upperbound (
+ const matrix_exp<EXP>& m,
+ const typename EXP::type& thresh
+ )
+ {
+ typedef op_upperbound<EXP> op;
+ return matrix_op<op>(op(m.ref(), thresh));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_reshape
+ {
+ op_reshape(const M& m_, const long& rows_, const long& cols_) : m(m_),rows(rows_),cols(cols_) {}
+ const M& m;
+ const long rows;
+ const long cols;
+
+ const static long cost = M::cost+2;
+ const static long NR = 0;
+ const static long NC = 0;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ const long idx = r*cols + c;
+ return m(idx/m.nc(), idx%m.nc());
+ }
+
+ long nr () const { return rows; }
+ long nc () const { return cols; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_reshape<EXP> > reshape (
+ const matrix_exp<EXP>& m,
+ const long& rows,
+ const long& cols
+ )
+ {
+ DLIB_ASSERT(m.size() == rows*cols && rows > 0 && cols > 0,
+ "\tconst matrix_exp reshape(m, rows, cols)"
+ << "\n\t The size of m must match the dimensions you want to reshape it into."
+ << "\n\t m.size(): " << m.size()
+ << "\n\t rows*cols: " << rows*cols
+ << "\n\t rows: " << rows
+ << "\n\t cols: " << cols
+ );
+
+ typedef op_reshape<EXP> op;
+ return matrix_op<op>(op(m.ref(), rows, cols));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ typename disable_if<is_complex<typename EXP1::type>,bool>::type equal (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const typename EXP1::type eps = 100*std::numeric_limits<typename EXP1::type>::epsilon()
+ )
+ {
+ // check if the dimensions don't match
+ if (a.nr() != b.nr() || a.nc() != b.nc())
+ return false;
+
+ for (long r = 0; r < a.nr(); ++r)
+ {
+ for (long c = 0; c < a.nc(); ++c)
+ {
+ if (std::abs(a(r,c)-b(r,c)) > eps)
+ return false;
+ }
+ }
+
+ // no non-equal points found so we return true
+ return true;
+ }
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ typename enable_if<is_complex<typename EXP1::type>,bool>::type equal (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b,
+ const typename EXP1::type::value_type eps = 100*std::numeric_limits<typename EXP1::type::value_type>::epsilon()
+ )
+ {
+ // check if the dimensions don't match
+ if (a.nr() != b.nr() || a.nc() != b.nc())
+ return false;
+
+ for (long r = 0; r < a.nr(); ++r)
+ {
+ for (long c = 0; c < a.nc(); ++c)
+ {
+ if (std::abs(real(a(r,c)-b(r,c))) > eps ||
+ std::abs(imag(a(r,c)-b(r,c))) > eps)
+ return false;
+ }
+ }
+
+ // no non-equal points found so we return true
+ return true;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_scale_columns
+ {
+ op_scale_columns(const M1& m1_, const M2& m2_) : m1(m1_), m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+ const static long NR = M1::NR;
+ const static long NC = M1::NC;
+
+ const_ret_type apply ( long r, long c) const { return m1(r,c)*m2(c); }
+
+ long nr () const { return m1.nr(); }
+ long nc () const { return m1.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item) ; }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.destructively_aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ const matrix_op<op_scale_columns<EXP1,EXP2> > scale_columns (
+ const matrix_exp<EXP1>& m,
+ const matrix_exp<EXP2>& v
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ // The v argument must be a row or column vector.
+ COMPILE_TIME_ASSERT((EXP2::NC == 1 || EXP2::NC == 0) || (EXP2::NR == 1 || EXP2::NR == 0));
+
+ // figure out the compile time known length of v
+ const long v_len = ((EXP2::NR)*(EXP2::NC) == 0)? 0 : (tmax<EXP2::NR,EXP2::NC>::value);
+
+ // the length of v must match the number of columns in m
+ COMPILE_TIME_ASSERT(EXP1::NC == v_len || EXP1::NC == 0 || v_len == 0);
+
+ DLIB_ASSERT(is_vector(v) == true && v.size() == m.nc(),
+ "\tconst matrix_exp scale_columns(m, v)"
+ << "\n\tv must be a row or column vector and its length must match the number of columns in m"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tv.nr(): " << v.nr()
+ << "\n\tv.nc(): " << v.nc()
+ );
+ typedef op_scale_columns<EXP1,EXP2> op;
+ return matrix_op<op>(op(m.ref(),v.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_scale_columns_diag
+ {
+ op_scale_columns_diag(const M1& m1_, const M2& m2_) : m1(m1_), m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+ const static long NR = M1::NR;
+ const static long NC = M1::NC;
+
+ const_ret_type apply ( long r, long c) const { return m1(r,c)*m2(c,c); }
+
+ long nr () const { return m1.nr(); }
+ long nc () const { return m1.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item) ; }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.destructively_aliases(item) || m2.aliases(item); }
+ };
+
+// turn expressions of the form mat*diagonal_matrix into scale_columns(mat, d)
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ const matrix_op<op_scale_columns_diag<EXP1,EXP2> > operator* (
+ const matrix_exp<EXP1>& m,
+ const matrix_diag_exp<EXP2>& d
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+
+ // figure out the compile time known length of d
+ const long v_len = ((EXP2::NR)*(EXP2::NC) == 0)? 0 : (tmax<EXP2::NR,EXP2::NC>::value);
+
+ // the length of d must match the number of columns in m
+ COMPILE_TIME_ASSERT(EXP1::NC == v_len || EXP1::NC == 0 || v_len == 0);
+
+ DLIB_ASSERT(m.nc() == d.nr(),
+ "\tconst matrix_exp operator*(m, d)"
+ << "\n\tmatrix dimensions don't match"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\td.nr(): " << d.nr()
+ << "\n\td.nc(): " << d.nc()
+ );
+ typedef op_scale_columns_diag<EXP1,EXP2> op;
+ return matrix_op<op>(op(m.ref(),d.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_scale_rows
+ {
+ op_scale_rows(const M1& m1_, const M2& m2_) : m1(m1_), m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+ const static long NR = M1::NR;
+ const static long NC = M1::NC;
+
+ const_ret_type apply ( long r, long c) const { return m1(r,c)*m2(r); }
+
+ long nr () const { return m1.nr(); }
+ long nc () const { return m1.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item) ; }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.destructively_aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ const matrix_op<op_scale_rows<EXP1,EXP2> > scale_rows (
+ const matrix_exp<EXP1>& m,
+ const matrix_exp<EXP2>& v
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ // The v argument must be a row or column vector.
+ COMPILE_TIME_ASSERT((EXP2::NC == 1 || EXP2::NC == 0) || (EXP2::NR == 1 || EXP2::NR == 0));
+
+ // figure out the compile time known length of v
+ const long v_len = ((EXP2::NR)*(EXP2::NC) == 0)? 0 : (tmax<EXP2::NR,EXP2::NC>::value);
+
+ // the length of v must match the number of rows in m
+ COMPILE_TIME_ASSERT(EXP1::NR == v_len || EXP1::NR == 0 || v_len == 0);
+
+ DLIB_ASSERT(is_vector(v) == true && v.size() == m.nr(),
+ "\tconst matrix_exp scale_rows(m, v)"
+ << "\n\tv must be a row or column vector and its length must match the number of rows in m"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tv.nr(): " << v.nr()
+ << "\n\tv.nc(): " << v.nc()
+ );
+ typedef op_scale_rows<EXP1,EXP2> op;
+ return matrix_op<op>(op(m.ref(),v.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_scale_rows_diag
+ {
+ op_scale_rows_diag(const M1& m1_, const M2& m2_) : m1(m1_), m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+ const static long NR = M1::NR;
+ const static long NC = M1::NC;
+
+ const_ret_type apply ( long r, long c) const { return m1(r,c)*m2(r,r); }
+
+ long nr () const { return m1.nr(); }
+ long nc () const { return m1.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item) ; }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.destructively_aliases(item) || m2.aliases(item); }
+ };
+
+// turn expressions of the form diagonal_matrix*mat into scale_rows(mat, d)
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ const matrix_op<op_scale_rows_diag<EXP1,EXP2> > operator* (
+ const matrix_diag_exp<EXP2>& d,
+ const matrix_exp<EXP1>& m
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+
+ // figure out the compile time known length of d
+ const long v_len = ((EXP2::NR)*(EXP2::NC) == 0)? 0 : (tmax<EXP2::NR,EXP2::NC>::value);
+
+ // the length of d must match the number of rows in m
+ COMPILE_TIME_ASSERT(EXP1::NR == v_len || EXP1::NR == 0 || v_len == 0);
+
+ DLIB_ASSERT(d.nc() == m.nr(),
+ "\tconst matrix_exp operator*(d, m)"
+ << "\n\tThe dimensions of the d and m matrices don't match."
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\td.nr(): " << d.nr()
+ << "\n\td.nc(): " << d.nc()
+ );
+ typedef op_scale_rows_diag<EXP1,EXP2> op;
+ return matrix_op<op>(op(m.ref(),d.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+
+ /*
+ The idea here is to catch expressions of the form d*M*d where d is diagonal and M
+ is some square matrix and turn them into something equivalent to
+ pointwise_multiply(diag(d)*trans(diag(d)), M).
+
+ The reason for this is that doing it this way is more numerically stable. In particular,
+ doing 2 matrix multiplies as suggested by d*M*d could result in an asymmetric matrix even
+ if M is symmetric to begin with.
+ */
+
+ template <typename M1, typename M2, typename M3>
+ struct op_diag_m_diag
+ {
+ // This operator represents M1*M2*M3 where M1 and M3 are diagonal
+
+ op_diag_m_diag(const M1& m1_, const M2& m2_, const M3& m3_) : m1(m1_), m2(m2_), m3(m3_) {}
+ const M1& m1;
+ const M2& m2;
+ const M3& m3;
+
+ const static long cost = M1::cost + M2::cost + M3::cost + 1;
+ typedef typename M2::type type;
+ typedef const typename M2::type const_ret_type;
+ typedef typename M2::mem_manager_type mem_manager_type;
+ typedef typename M2::layout_type layout_type;
+ const static long NR = M2::NR;
+ const static long NC = M2::NC;
+
+ const_ret_type apply ( long r, long c) const { return (m1(r,r)*m3(c,c))*m2(r,c); }
+
+ long nr () const { return m2.nr(); }
+ long nc () const { return m2.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item) || m3.aliases(item) ; }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m2.destructively_aliases(item) || m1.aliases(item) || m3.aliases(item) ; }
+ };
+
+ // catch d*(M*d) = EXP1*EXP2*EXP3
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ const matrix_op<op_diag_m_diag<EXP1,EXP2,EXP3> > operator* (
+ const matrix_diag_exp<EXP1>& d,
+ const matrix_exp<matrix_op<op_scale_columns_diag<EXP2,EXP3> > >& m
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+
+ // figure out the compile time known length of d
+ const long v_len = ((EXP1::NR)*(EXP1::NC) == 0)? 0 : (tmax<EXP1::NR,EXP1::NC>::value);
+
+ // the length of d must match the number of rows in m
+ COMPILE_TIME_ASSERT(EXP2::NR == v_len || EXP2::NR == 0 || v_len == 0);
+
+ DLIB_ASSERT(d.nc() == m.nr(),
+ "\tconst matrix_exp operator*(d, m)"
+ << "\n\tmatrix dimensions don't match"
+ << "\n\td.nr(): " << d.nr()
+ << "\n\td.nc(): " << d.nc()
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ );
+ typedef op_diag_m_diag<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(d.ref(), m.ref().op.m1, m.ref().op.m2));
+ }
+
+ // catch (d*M)*d = EXP1*EXP2*EXP3
+ template <
+ typename EXP1,
+ typename EXP2,
+ typename EXP3
+ >
+ const matrix_op<op_diag_m_diag<EXP1,EXP2,EXP3> > operator* (
+ const matrix_exp<matrix_op<op_scale_rows_diag<EXP2,EXP1> > >& m,
+ const matrix_diag_exp<EXP3>& d
+ )
+ {
+ // Both arguments to this function must contain the same type of element
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP3::type,typename EXP2::type>::value == true));
+
+ // figure out the compile time known length of d
+ const long v_len = ((EXP3::NR)*(EXP3::NC) == 0)? 0 : (tmax<EXP3::NR,EXP3::NC>::value);
+
+ // the length of d must match the number of columns in m
+ COMPILE_TIME_ASSERT(EXP2::NC == v_len || EXP2::NC == 0 || v_len == 0);
+
+ DLIB_ASSERT(m.nc() == d.nr(),
+ "\tconst matrix_exp operator*(m, d)"
+ << "\n\tmatrix dimensions don't match"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\td.nr(): " << d.nr()
+ << "\n\td.nc(): " << d.nc()
+ );
+ typedef op_diag_m_diag<EXP1,EXP2,EXP3> op;
+ return matrix_op<op>(op(m.ref().op.m2, m.ref().op.m1, d.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+// ----------------------------------------------------------------------------------------
+
+ struct sort_columns_sort_helper
+ {
+ template <typename T>
+ bool operator() (
+ const T& item1,
+ const T& item2
+ ) const
+ {
+ return item1.first < item2.first;
+ }
+ };
+
+ template <
+ typename T, long NR, long NC, typename mm, typename l1,
+ long NR2, long NC2, typename mm2, typename l2
+ >
+ void sort_columns (
+ matrix<T,NR,NC,mm,l1>& m,
+ matrix<T,NR2,NC2,mm2,l2>& v
+ )
+ {
+ COMPILE_TIME_ASSERT(NC2 == 1 || NC2 == 0);
+ COMPILE_TIME_ASSERT(NC == NR2 || NC == 0 || NR2 == 0);
+
+ DLIB_ASSERT(is_col_vector(v) == true && v.size() == m.nc(),
+ "\tconst matrix_exp sort_columns(m, v)"
+ << "\n\tv must be a column vector and its length must match the number of columns in m"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tv.nr(): " << v.nr()
+ << "\n\tv.nc(): " << v.nc()
+ );
+
+
+
+ // Now we have to sort the given vectors in the m matrix according
+ // to how big their corresponding v(column index) values are.
+ typedef std::pair<T, matrix<T,0,1,mm> > col_pair;
+ typedef std_allocator<col_pair, mm> alloc;
+ std::vector<col_pair,alloc> colvalues;
+ col_pair p;
+ for (long r = 0; r < v.nr(); ++r)
+ {
+ p.first = v(r);
+ p.second = colm(m,r);
+ colvalues.push_back(p);
+ }
+ std::sort(colvalues.begin(), colvalues.end(), sort_columns_sort_helper());
+
+ for (long i = 0; i < v.nr(); ++i)
+ {
+ v(i) = colvalues[i].first;
+ set_colm(m,i) = colvalues[i].second;
+ }
+
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T, long NR, long NC, typename mm, typename l1,
+ long NR2, long NC2, typename mm2, typename l2
+ >
+ void rsort_columns (
+ matrix<T,NR,NC,mm,l1>& m,
+ matrix<T,NR2,NC2,mm2,l2>& v
+ )
+ {
+ COMPILE_TIME_ASSERT(NC2 == 1 || NC2 == 0);
+ COMPILE_TIME_ASSERT(NC == NR2 || NC == 0 || NR2 == 0);
+
+ DLIB_ASSERT(is_col_vector(v) == true && v.size() == m.nc(),
+ "\tconst matrix_exp rsort_columns(m, v)"
+ << "\n\tv must be a column vector and its length must match the number of columns in m"
+ << "\n\tm.nr(): " << m.nr()
+ << "\n\tm.nc(): " << m.nc()
+ << "\n\tv.nr(): " << v.nr()
+ << "\n\tv.nc(): " << v.nc()
+ );
+
+
+
+ // Now we have to sort the given vectors in the m matrix according
+ // to how big their corresponding v(column index) values are.
+ typedef std::pair<T, matrix<T,0,1,mm> > col_pair;
+ typedef std_allocator<col_pair, mm> alloc;
+ std::vector<col_pair,alloc> colvalues;
+ col_pair p;
+ for (long r = 0; r < v.nr(); ++r)
+ {
+ p.first = v(r);
+ p.second = colm(m,r);
+ colvalues.push_back(p);
+ }
+ std::sort(colvalues.rbegin(), colvalues.rend(), sort_columns_sort_helper());
+
+ for (long i = 0; i < v.nr(); ++i)
+ {
+ v(i) = colvalues[i].first;
+ set_colm(m,i) = colvalues[i].second;
+ }
+
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_tensor_product
+ {
+ op_tensor_product(const M1& m1_, const M2& m2_) : m1(m1_),m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ const static long NR = M1::NR*M2::NR;
+ const static long NC = M1::NC*M2::NC;
+ typedef typename M1::type type;
+ typedef const typename M1::type const_ret_type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ return m1(r/m2.nr(),c/m2.nc())*m2(r%m2.nr(),c%m2.nc());
+ }
+
+ long nr () const { return m1.nr()*m2.nr(); }
+ long nc () const { return m1.nc()*m2.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_tensor_product<EXP1,EXP2> > tensor_product (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ typedef op_tensor_product<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_make_symmetric : basic_op_m<M>
+ {
+ op_make_symmetric ( const M& m_) : basic_op_m<M>(m_){}
+
+ const static long cost = M::cost+1;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r >= c)
+ return this->m(r,c);
+ else
+ return this->m(c,r);
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_make_symmetric<EXP> > make_symmetric (
+ const matrix_exp<EXP>& m
+ )
+ {
+ DLIB_ASSERT(m.nr() == m.nc(),
+ "\tconst matrix make_symmetric(m)"
+ << "\n\t m must be a square matrix"
+ << "\n\t m.nr(): " << m.nr()
+ << "\n\t m.nc(): " << m.nc()
+ );
+
+ typedef op_make_symmetric<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_lowerm : basic_op_m<M>
+ {
+ op_lowerm( const M& m_) : basic_op_m<M>(m_){}
+
+ const static long cost = M::cost+2;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r >= c)
+ return this->m(r,c);
+ else
+ return 0;
+ }
+ };
+
+ template <typename M>
+ struct op_lowerm_s : basic_op_m<M>
+ {
+ typedef typename M::type type;
+ op_lowerm_s( const M& m_, const type& s_) : basic_op_m<M>(m_), s(s_){}
+
+ const type s;
+
+ const static long cost = M::cost+2;
+ typedef const typename M::type const_ret_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r > c)
+ return this->m(r,c);
+ else if (r==c)
+ return s;
+ else
+ return 0;
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_lowerm<EXP> > lowerm (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_lowerm<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_lowerm_s<EXP> > lowerm (
+ const matrix_exp<EXP>& m,
+ typename EXP::type s
+ )
+ {
+ typedef op_lowerm_s<EXP> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_upperm : basic_op_m<M>
+ {
+ op_upperm( const M& m_) : basic_op_m<M>(m_){}
+
+ const static long cost = M::cost+2;
+ typedef typename M::type type;
+ typedef const typename M::type const_ret_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r <= c)
+ return this->m(r,c);
+ else
+ return 0;
+ }
+ };
+
+ template <typename M>
+ struct op_upperm_s : basic_op_m<M>
+ {
+ typedef typename M::type type;
+ op_upperm_s( const M& m_, const type& s_) : basic_op_m<M>(m_), s(s_){}
+
+ const type s;
+
+ const static long cost = M::cost+2;
+ typedef const typename M::type const_ret_type;
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r < c)
+ return this->m(r,c);
+ else if (r==c)
+ return s;
+ else
+ return 0;
+ }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_upperm<EXP> > upperm (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_upperm<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_upperm_s<EXP> > upperm (
+ const matrix_exp<EXP>& m,
+ typename EXP::type s
+ )
+ {
+ typedef op_upperm_s<EXP> op;
+ return matrix_op<op>(op(m.ref(),s));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename rand_gen>
+ inline const matrix<double> randm(
+ long nr,
+ long nc,
+ rand_gen& rnd
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tconst matrix randm(nr, nc, rnd)"
+ << "\n\tInvalid inputs to this function"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+
+ matrix<double> m(nr,nc);
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ m(r,c) = rnd.get_random_double();
+ }
+ }
+
+ return m;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ inline const matrix<double> randm(
+ long nr,
+ long nc
+ )
+ {
+ DLIB_ASSERT(nr >= 0 && nc >= 0,
+ "\tconst matrix randm(nr, nc)"
+ << "\n\tInvalid inputs to this function"
+ << "\n\tnr: " << nr
+ << "\n\tnc: " << nc
+ );
+
+ matrix<double> m(nr,nc);
+ // make a double that contains RAND_MAX + the smallest number that still
+ // makes the resulting double slightly bigger than static_cast<double>(RAND_MAX)
+ double max_val = RAND_MAX;
+ max_val += std::numeric_limits<double>::epsilon()*RAND_MAX;
+
+ for (long r = 0; r < m.nr(); ++r)
+ {
+ for (long c = 0; c < m.nc(); ++c)
+ {
+ m(r,c) = std::rand()/max_val;
+ }
+ }
+
+ return m;
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ inline const matrix_range_exp<double> linspace (
+ double start,
+ double end,
+ long num
+ )
+ {
+ DLIB_ASSERT(num >= 0,
+ "\tconst matrix_exp linspace(start, end, num)"
+ << "\n\tInvalid inputs to this function"
+ << "\n\tstart: " << start
+ << "\n\tend: " << end
+ << "\n\tnum: " << num
+ );
+
+ return matrix_range_exp<double>(start,end,num,false);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_linpiece
+ {
+ op_linpiece(const double val_, const M& joints_) : joints(joints_), val(val_){}
+
+ const M& joints;
+ const double val;
+
+ const static long cost = 10;
+
+ const static long NR = (M::NR*M::NC==0) ? (0) : (M::NR*M::NC-1);
+ const static long NC = 1;
+ typedef typename M::type type;
+ typedef default_memory_manager mem_manager_type;
+ typedef row_major_layout layout_type;
+
+ typedef type const_ret_type;
+ const_ret_type apply (long i, long ) const
+ {
+ if (joints(i) < val)
+ return std::min<type>(val,joints(i+1)) - joints(i);
+ else
+ return 0;
+ }
+
+ long nr () const { return joints.size()-1; }
+ long nc () const { return 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return joints.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return joints.aliases(item); }
+ };
+
+ template < typename EXP >
+ const matrix_op<op_linpiece<EXP> > linpiece (
+ const double val,
+ const matrix_exp<EXP>& joints
+ )
+ {
+ // make sure requires clause is not broken
+ DLIB_ASSERT(is_vector(joints) && joints.size() >= 2,
+ "\t matrix_exp linpiece()"
+ << "\n\t Invalid inputs were given to this function "
+ << "\n\t is_vector(joints): " << is_vector(joints)
+ << "\n\t joints.size(): " << joints.size()
+ );
+#ifdef ENABLE_ASSERTS
+ for (long i = 1; i < joints.size(); ++i)
+ {
+ DLIB_ASSERT(joints(i-1) < joints(i),
+ "\t matrix_exp linpiece()"
+ << "\n\t Invalid inputs were given to this function "
+ << "\n\t joints("<<i-1<<"): " << joints(i-1)
+ << "\n\t joints("<<i<<"): " << joints(i)
+ );
+ }
+#endif
+
+ typedef op_linpiece<EXP> op;
+ return matrix_op<op>(op(val,joints.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ inline const matrix_log_range_exp<double> logspace (
+ double start,
+ double end,
+ long num
+ )
+ {
+ DLIB_ASSERT(num >= 0,
+ "\tconst matrix_exp logspace(start, end, num)"
+ << "\n\tInvalid inputs to this function"
+ << "\n\tstart: " << start
+ << "\n\tend: " << end
+ << "\n\tnum: " << num
+ );
+
+ return matrix_log_range_exp<double>(start,end,num);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_cart_prod
+ {
+ op_cart_prod(const M1& m1_, const M2& m2_) : m1(m1_),m2(m2_) {}
+ const M1& m1;
+ const M2& m2;
+
+ const static long cost = M1::cost+M2::cost+1;
+ typedef typename M1::type type;
+ typedef const typename M1::const_ret_type const_ret_type;
+
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+ const static long NR = M1::NR+M2::NR;
+ const static long NC = M1::NC*M2::NC;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r < m1.nr())
+ return m1(r, c/m2.nc());
+ else
+ return m2(r-m1.nr(), c%m2.nc());
+ }
+
+ long nr () const { return m1.nr() + m2.nr(); }
+ long nc () const { return m1.nc() * m2.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ const matrix_op<op_cart_prod<EXP1,EXP2> > cartesian_product (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+
+ typedef op_cart_prod<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_mat_to_vect
+ {
+ op_mat_to_vect(const M& m_) : m(m_) {}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = M::NC*M::NR;
+ const static long NC = 1;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply ( long r, long ) const { return m(r/m.nc(), r%m.nc()); }
+
+ long nr () const { return m.size(); }
+ long nc () const { return 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename EXP
+ >
+ const matrix_op<op_mat_to_vect<EXP> > reshape_to_column_vector (
+ const matrix_exp<EXP>& m
+ )
+ {
+ typedef op_mat_to_vect<EXP> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <
+ typename T,
+ long NR_,
+ long NC_,
+ typename MM
+ >
+ struct op_mat_to_vect2
+ {
+ typedef matrix<T,NR_,NC_,MM,row_major_layout> M;
+ op_mat_to_vect2(const M& m_) : m(m_) {}
+ const M& m;
+
+ const static long cost = M::cost+2;
+ const static long NR = M::NC*M::NR;
+ const static long NC = 1;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply ( long r, long ) const { return (&m(0,0))[r]; }
+
+ long nr () const { return m.size(); }
+ long nc () const { return 1; }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ };
+
+ template <
+ typename T,
+ long NR,
+ long NC,
+ typename MM
+ >
+ const matrix_op<op_mat_to_vect2<T,NR,NC,MM> > reshape_to_column_vector (
+ const matrix<T,NR,NC,MM,row_major_layout>& m
+ )
+ {
+ typedef op_mat_to_vect2<T,NR,NC,MM> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_join_rows
+ {
+ op_join_rows(const M1& m1_, const M2& m2_) : m1(m1_),m2(m2_),_nr(std::max(m1.nr(),m2.nr())) {}
+ const M1& m1;
+ const M2& m2;
+ const long _nr;
+
+ template <typename T, typename U, bool selection>
+ struct type_selector;
+ template <typename T, typename U>
+ struct type_selector<T,U,true> { typedef T type; };
+ template <typename T, typename U>
+ struct type_selector<T,U,false> { typedef U type; };
+
+ // If both const_ret_types are references then we should use them as the const_ret_type type
+ // but otherwise we should use the normal type.
+ typedef typename M1::const_ret_type T1;
+ typedef typename M1::type T2;
+ typedef typename M2::const_ret_type T3;
+ typedef typename type_selector<T1, T2, is_reference_type<T1>::value && is_reference_type<T3>::value>::type const_ret_type;
+
+ const static long cost = M1::cost + M2::cost + 1;
+ const static long NR = tmax<M1::NR, M2::NR>::value;
+ const static long NC = (M1::NC*M2::NC != 0)? (M1::NC+M2::NC) : (0);
+ typedef typename M1::type type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+
+ const_ret_type apply (long r, long c) const
+ {
+ if (c < m1.nc())
+ return m1(r,c);
+ else
+ return m2(r,c-m1.nc());
+ }
+
+ long nr () const { return _nr; }
+ long nc () const { return m1.nc()+m2.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_join_rows<EXP1,EXP2> > join_rows (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ // You are getting an error on this line because you are trying to join two matrices that
+ // don't have the same number of rows
+ COMPILE_TIME_ASSERT(EXP1::NR == EXP2::NR || (EXP1::NR*EXP2::NR == 0));
+
+ DLIB_ASSERT(a.nr() == b.nr() || a.size() == 0 || b.size() == 0,
+ "\tconst matrix_exp join_rows(const matrix_exp& a, const matrix_exp& b)"
+ << "\n\tYou can only use join_rows() if both matrices have the same number of rows"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nc(): " << b.nc()
+ );
+
+ typedef op_join_rows<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M1, typename M2>
+ struct op_join_cols
+ {
+ op_join_cols(const M1& m1_, const M2& m2_) : m1(m1_),m2(m2_),_nc(std::max(m1.nc(),m2.nc())) {}
+ const M1& m1;
+ const M2& m2;
+ const long _nc;
+
+ template <typename T, typename U, bool selection>
+ struct type_selector;
+ template <typename T, typename U>
+ struct type_selector<T,U,true> { typedef T type; };
+ template <typename T, typename U>
+ struct type_selector<T,U,false> { typedef U type; };
+
+ // If both const_ret_types are references then we should use them as the const_ret_type type
+ // but otherwise we should use the normal type.
+ typedef typename M1::const_ret_type T1;
+ typedef typename M1::type T2;
+ typedef typename M2::const_ret_type T3;
+ typedef typename type_selector<T1, T2, is_reference_type<T1>::value && is_reference_type<T3>::value>::type const_ret_type;
+
+
+
+ const static long cost = M1::cost + M2::cost + 1;
+ const static long NC = tmax<M1::NC, M2::NC>::value;
+ const static long NR = (M1::NR*M2::NR != 0)? (M1::NR+M2::NR) : (0);
+ typedef typename M1::type type;
+ typedef typename M1::mem_manager_type mem_manager_type;
+ typedef typename M1::layout_type layout_type;
+
+ const_ret_type apply ( long r, long c) const
+ {
+ if (r < m1.nr())
+ return m1(r,c);
+ else
+ return m2(r-m1.nr(),c);
+ }
+
+ long nr () const { return m1.nr()+m2.nr(); }
+ long nc () const { return _nc; }
+
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
+ { return m1.aliases(item) || m2.aliases(item); }
+ };
+
+ template <
+ typename EXP1,
+ typename EXP2
+ >
+ inline const matrix_op<op_join_cols<EXP1,EXP2> > join_cols (
+ const matrix_exp<EXP1>& a,
+ const matrix_exp<EXP2>& b
+ )
+ {
+ COMPILE_TIME_ASSERT((is_same_type<typename EXP1::type,typename EXP2::type>::value == true));
+ // You are getting an error on this line because you are trying to join two matrices that
+ // don't have the same number of columns
+ COMPILE_TIME_ASSERT(EXP1::NC == EXP2::NC || (EXP1::NC*EXP2::NC == 0));
+
+ DLIB_ASSERT(a.nc() == b.nc() || a.size() == 0 || b.size() == 0,
+ "\tconst matrix_exp join_cols(const matrix_exp& a, const matrix_exp& b)"
+ << "\n\tYou can only use join_cols() if both matrices have the same number of columns"
+ << "\n\ta.nr(): " << a.nr()
+ << "\n\tb.nr(): " << b.nr()
+ << "\n\ta.nc(): " << a.nc()
+ << "\n\tb.nc(): " << b.nc()
+ );
+
+ typedef op_join_cols<EXP1,EXP2> op;
+ return matrix_op<op>(op(a.ref(),b.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_fliplr
+ {
+ op_fliplr( const M& m_) : m(m_){}
+
+ const M& m;
+
+ const static long cost = M::cost;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply (long r, long c) const { return m(r,m.nc()-c-1); }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+
+ };
+
+ template <
+ typename M
+ >
+ const matrix_op<op_fliplr<M> > fliplr (
+ const matrix_exp<M>& m
+ )
+ {
+ typedef op_fliplr<M> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_flipud
+ {
+ op_flipud( const M& m_) : m(m_){}
+
+ const M& m;
+
+ const static long cost = M::cost;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply (long r, long c) const { return m(m.nr()-r-1,c); }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+
+ };
+
+ template <
+ typename M
+ >
+ const matrix_op<op_flipud<M> > flipud (
+ const matrix_exp<M>& m
+ )
+ {
+ typedef op_flipud<M> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename M>
+ struct op_flip
+ {
+ op_flip( const M& m_) : m(m_){}
+
+ const M& m;
+
+ const static long cost = M::cost;
+ const static long NR = M::NR;
+ const static long NC = M::NC;
+ typedef typename M::type type;
+ typedef typename M::const_ret_type const_ret_type;
+ typedef typename M::mem_manager_type mem_manager_type;
+ typedef typename M::layout_type layout_type;
+
+ const_ret_type apply (long r, long c) const { return m(m.nr()-r-1, m.nc()-c-1); }
+
+ long nr () const { return m.nr(); }
+ long nc () const { return m.nc(); }
+
+ template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+ template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
+
+ };
+
+ template <
+ typename M
+ >
+ const matrix_op<op_flip<M> > flip (
+ const matrix_exp<M>& m
+ )
+ {
+ typedef op_flip<M> op;
+ return matrix_op<op>(op(m.ref()));
+ }
+
+// ----------------------------------------------------------------------------------------
+
+ template <typename T, long NR, long NC, typename MM, typename L>
+ uint32 hash (
+ const matrix<T,NR,NC,MM,L>& item,
+ uint32 seed = 0
+ )
+ {
+ DLIB_ASSERT_HAS_STANDARD_LAYOUT(T);
+
+ if (item.size() == 0)
+ return 0;
+ else
+ return murmur_hash3(&item(0,0), sizeof(T)*item.size(), seed);
+ }
+
+// ----------------------------------------------------------------------------------------
+
+}
+
+#endif // DLIB_MATRIx_UTILITIES_
+