summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/optimization/optimization.h
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/dlib/optimization/optimization.h')
-rw-r--r--ml/dlib/dlib/optimization/optimization.h714
1 files changed, 0 insertions, 714 deletions
diff --git a/ml/dlib/dlib/optimization/optimization.h b/ml/dlib/dlib/optimization/optimization.h
deleted file mode 100644
index 561d64376..000000000
--- a/ml/dlib/dlib/optimization/optimization.h
+++ /dev/null
@@ -1,714 +0,0 @@
-// Copyright (C) 2008 Davis E. King (davis@dlib.net)
-// License: Boost Software License See LICENSE.txt for the full license.
-#ifndef DLIB_OPTIMIZATIOn_H_
-#define DLIB_OPTIMIZATIOn_H_
-
-#include <cmath>
-#include <limits>
-#include "optimization_abstract.h"
-#include "optimization_search_strategies.h"
-#include "optimization_stop_strategies.h"
-#include "optimization_line_search.h"
-
-namespace dlib
-{
-
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-// Functions that transform other functions
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-
- template <typename funct>
- class central_differences
- {
- public:
- central_differences(const funct& f_, double eps_ = 1e-7) : f(f_), eps(eps_){}
-
- template <typename T>
- typename T::matrix_type operator()(const T& x) const
- {
- // T must be some sort of dlib matrix
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
-
- typename T::matrix_type der(x.size());
- typename T::matrix_type e(x);
- for (long i = 0; i < x.size(); ++i)
- {
- const double old_val = e(i);
-
- e(i) += eps;
- const double delta_plus = f(e);
- e(i) = old_val - eps;
- const double delta_minus = f(e);
-
- der(i) = (delta_plus - delta_minus)/((old_val+eps)-(old_val-eps));
-
- // and finally restore the old value of this element
- e(i) = old_val;
- }
-
- return der;
- }
-
- template <typename T, typename U>
- typename U::matrix_type operator()(const T& item, const U& x) const
- {
- // U must be some sort of dlib matrix
- COMPILE_TIME_ASSERT(is_matrix<U>::value);
-
- typename U::matrix_type der(x.size());
- typename U::matrix_type e(x);
- for (long i = 0; i < x.size(); ++i)
- {
- const double old_val = e(i);
-
- e(i) += eps;
- const double delta_plus = f(item,e);
- e(i) = old_val - eps;
- const double delta_minus = f(item,e);
-
- der(i) = (delta_plus - delta_minus)/((old_val+eps)-(old_val-eps));
-
- // and finally restore the old value of this element
- e(i) = old_val;
- }
-
- return der;
- }
-
-
- double operator()(const double& x) const
- {
- return (f(x+eps)-f(x-eps))/((x+eps)-(x-eps));
- }
-
- private:
- const funct& f;
- const double eps;
- };
-
- template <typename funct>
- const central_differences<funct> derivative(const funct& f) { return central_differences<funct>(f); }
- template <typename funct>
- const central_differences<funct> derivative(const funct& f, double eps)
- {
- DLIB_ASSERT (
- eps > 0,
- "\tcentral_differences derivative(f,eps)"
- << "\n\tYou must give an epsilon > 0"
- << "\n\teps: " << eps
- );
- return central_differences<funct>(f,eps);
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <typename funct, typename EXP1, typename EXP2>
- struct clamped_function_object
- {
- clamped_function_object(
- const funct& f_,
- const matrix_exp<EXP1>& x_lower_,
- const matrix_exp<EXP2>& x_upper_
- ) : f(f_), x_lower(x_lower_), x_upper(x_upper_)
- {
- }
-
- template <typename T>
- double operator() (
- const T& x
- ) const
- {
- return f(clamp(x,x_lower,x_upper));
- }
-
- const funct& f;
- const matrix_exp<EXP1>& x_lower;
- const matrix_exp<EXP2>& x_upper;
- };
-
- template <typename funct, typename EXP1, typename EXP2>
- clamped_function_object<funct,EXP1,EXP2> clamp_function(
- const funct& f,
- const matrix_exp<EXP1>& x_lower,
- const matrix_exp<EXP2>& x_upper
- ) { return clamped_function_object<funct,EXP1,EXP2>(f,x_lower,x_upper); }
-
-// ----------------------------------------------------------------------------------------
-
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-// Functions that perform unconstrained optimization
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T
- >
- double find_min (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- double min_f
- )
- {
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x),
- "\tdouble find_min()"
- << "\n\tYou have to supply column vectors to this function"
- << "\n\tx.nc(): " << x.nc()
- );
-
-
- T g, s;
-
- double f_value = f(x);
- g = der(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
-
- while(stop_strategy.should_continue_search(x, f_value, g) && f_value > min_f)
- {
- s = search_strategy.get_next_direction(x, f_value, g);
-
- double alpha = line_search(
- make_line_search_function(f,x,s, f_value),
- f_value,
- make_line_search_function(der,x,s, g),
- dot(g,s), // compute initial gradient for the line search
- search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), min_f,
- search_strategy.get_max_line_search_iterations());
-
- // Take the search step indicated by the above line search
- x += alpha*s;
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
- }
-
- return f_value;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T
- >
- double find_max (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- double max_f
- )
- {
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x),
- "\tdouble find_max()"
- << "\n\tYou have to supply column vectors to this function"
- << "\n\tx.nc(): " << x.nc()
- );
-
- T g, s;
-
- // This function is basically just a copy of find_min() but with - put in the right places
- // to flip things around so that it ends up looking for the max rather than the min.
-
- double f_value = -f(x);
- g = -der(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
-
- while(stop_strategy.should_continue_search(x, f_value, g) && f_value > -max_f)
- {
- s = search_strategy.get_next_direction(x, f_value, g);
-
- double alpha = line_search(
- negate_function(make_line_search_function(f,x,s, f_value)),
- f_value,
- negate_function(make_line_search_function(der,x,s, g)),
- dot(g,s), // compute initial gradient for the line search
- search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), -max_f,
- search_strategy.get_max_line_search_iterations()
- );
-
- // Take the search step indicated by the above line search
- x += alpha*s;
-
- // Don't forget to negate these outputs from the line search since they are
- // from the unnegated versions of f() and der()
- g *= -1;
- f_value *= -1;
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
- }
-
- return -f_value;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename T
- >
- double find_min_using_approximate_derivatives (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- T& x,
- double min_f,
- double derivative_eps = 1e-7
- )
- {
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x) && derivative_eps > 0,
- "\tdouble find_min_using_approximate_derivatives()"
- << "\n\tYou have to supply column vectors to this function"
- << "\n\tx.nc(): " << x.nc()
- << "\n\tderivative_eps: " << derivative_eps
- );
-
- T g, s;
-
- double f_value = f(x);
- g = derivative(f,derivative_eps)(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
-
- while(stop_strategy.should_continue_search(x, f_value, g) && f_value > min_f)
- {
- s = search_strategy.get_next_direction(x, f_value, g);
-
- double alpha = line_search(
- make_line_search_function(f,x,s,f_value),
- f_value,
- derivative(make_line_search_function(f,x,s),derivative_eps),
- dot(g,s), // Sometimes the following line is a better way of determining the initial gradient.
- //derivative(make_line_search_function(f,x,s),derivative_eps)(0),
- search_strategy.get_wolfe_rho(), search_strategy.get_wolfe_sigma(), min_f,
- search_strategy.get_max_line_search_iterations()
- );
-
- // Take the search step indicated by the above line search
- x += alpha*s;
-
- g = derivative(f,derivative_eps)(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
- }
-
- return f_value;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename T
- >
- double find_max_using_approximate_derivatives (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- T& x,
- double max_f,
- double derivative_eps = 1e-7
- )
- {
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x) && derivative_eps > 0,
- "\tdouble find_max_using_approximate_derivatives()"
- << "\n\tYou have to supply column vectors to this function"
- << "\n\tx.nc(): " << x.nc()
- << "\n\tderivative_eps: " << derivative_eps
- );
-
- // Just negate the necessary things and call the find_min version of this function.
- return -find_min_using_approximate_derivatives(
- search_strategy,
- stop_strategy,
- negate_function(f),
- x,
- -max_f,
- derivative_eps
- );
- }
-
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-// Functions for box constrained optimization
-// ----------------------------------------------------------------------------------------
-// ----------------------------------------------------------------------------------------
-
- template <typename T, typename U, typename V>
- T zero_bounded_variables (
- const double eps,
- T vect,
- const T& x,
- const T& gradient,
- const U& x_lower,
- const V& x_upper
- )
- {
- for (long i = 0; i < gradient.size(); ++i)
- {
- const double tol = eps*std::abs(x(i));
- // if x(i) is an active bound constraint
- if (x_lower(i)+tol >= x(i) && gradient(i) > 0)
- vect(i) = 0;
- else if (x_upper(i)-tol <= x(i) && gradient(i) < 0)
- vect(i) = 0;
- }
- return vect;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <typename T, typename U, typename V>
- T gap_step_assign_bounded_variables (
- const double eps,
- T vect,
- const T& x,
- const T& gradient,
- const U& x_lower,
- const V& x_upper
- )
- {
- for (long i = 0; i < gradient.size(); ++i)
- {
- const double tol = eps*std::abs(x(i));
- // If x(i) is an active bound constraint then we should set its search
- // direction such that a single step along the direction either does nothing or
- // closes the gap of size tol before hitting the bound exactly.
- if (x_lower(i)+tol >= x(i) && gradient(i) > 0)
- vect(i) = x_lower(i)-x(i);
- else if (x_upper(i)-tol <= x(i) && gradient(i) < 0)
- vect(i) = x_upper(i)-x(i);
- }
- return vect;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T,
- typename EXP1,
- typename EXP2
- >
- double find_min_box_constrained (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- const matrix_exp<EXP1>& x_lower,
- const matrix_exp<EXP2>& x_upper
- )
- {
- /*
- The implementation of this function is more or less based on the discussion in
- the paper Projected Newton-type Methods in Machine Learning by Mark Schmidt, et al.
- */
-
- // make sure the requires clause is not violated
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x) && is_col_vector(x_lower) && is_col_vector(x_upper) &&
- x.size() == x_lower.size() && x.size() == x_upper.size(),
- "\tdouble find_min_box_constrained()"
- << "\n\t The inputs to this function must be equal length column vectors."
- << "\n\t is_col_vector(x): " << is_col_vector(x)
- << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
- << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
- << "\n\t x.size(): " << x.size()
- << "\n\t x_lower.size(): " << x_lower.size()
- << "\n\t x_upper.size(): " << x_upper.size()
- );
- DLIB_ASSERT (
- min(x_upper-x_lower) >= 0,
- "\tdouble find_min_box_constrained()"
- << "\n\t You have to supply proper box constraints to this function."
- << "\n\r min(x_upper-x_lower): " << min(x_upper-x_lower)
- );
-
-
- T g, s;
- double f_value = f(x);
- g = der(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
-
- // gap_eps determines how close we have to get to a bound constraint before we
- // start basically dropping it from the optimization and consider it to be an
- // active constraint.
- const double gap_eps = 1e-8;
-
- double last_alpha = 1;
- while(stop_strategy.should_continue_search(x, f_value, g))
- {
- s = search_strategy.get_next_direction(x, f_value, zero_bounded_variables(gap_eps, g, x, g, x_lower, x_upper));
- s = gap_step_assign_bounded_variables(gap_eps, s, x, g, x_lower, x_upper);
-
- double alpha = backtracking_line_search(
- make_line_search_function(clamp_function(f,x_lower,x_upper), x, s, f_value),
- f_value,
- dot(g,s), // compute gradient for the line search
- last_alpha,
- search_strategy.get_wolfe_rho(),
- search_strategy.get_max_line_search_iterations());
-
- // Do a trust region style thing for alpha. The idea is that if we take a
- // small step then we are likely to take another small step. So we reuse the
- // alpha from the last iteration unless the line search didn't shrink alpha at
- // all, in that case, we start with a bigger alpha next time.
- if (alpha == last_alpha)
- last_alpha = std::min(last_alpha*10,1.0);
- else
- last_alpha = alpha;
-
- // Take the search step indicated by the above line search
- x = dlib::clamp(x + alpha*s, x_lower, x_upper);
- g = der(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
- }
-
- return f_value;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T
- >
- double find_min_box_constrained (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- double x_lower,
- double x_upper
- )
- {
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- typedef typename T::type scalar_type;
- return find_min_box_constrained(search_strategy,
- stop_strategy,
- f,
- der,
- x,
- uniform_matrix<scalar_type>(x.size(),1,x_lower),
- uniform_matrix<scalar_type>(x.size(),1,x_upper) );
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T,
- typename EXP1,
- typename EXP2
- >
- double find_max_box_constrained (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- const matrix_exp<EXP1>& x_lower,
- const matrix_exp<EXP2>& x_upper
- )
- {
- // make sure the requires clause is not violated
- COMPILE_TIME_ASSERT(is_matrix<T>::value);
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- DLIB_CASSERT (
- is_col_vector(x) && is_col_vector(x_lower) && is_col_vector(x_upper) &&
- x.size() == x_lower.size() && x.size() == x_upper.size(),
- "\tdouble find_max_box_constrained()"
- << "\n\t The inputs to this function must be equal length column vectors."
- << "\n\t is_col_vector(x): " << is_col_vector(x)
- << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
- << "\n\t is_col_vector(x_upper): " << is_col_vector(x_upper)
- << "\n\t x.size(): " << x.size()
- << "\n\t x_lower.size(): " << x_lower.size()
- << "\n\t x_upper.size(): " << x_upper.size()
- );
- DLIB_ASSERT (
- min(x_upper-x_lower) >= 0,
- "\tdouble find_max_box_constrained()"
- << "\n\t You have to supply proper box constraints to this function."
- << "\n\r min(x_upper-x_lower): " << min(x_upper-x_lower)
- );
-
- // This function is basically just a copy of find_min_box_constrained() but with - put
- // in the right places to flip things around so that it ends up looking for the max
- // rather than the min.
-
- T g, s;
- double f_value = -f(x);
- g = -der(x);
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
-
- // gap_eps determines how close we have to get to a bound constraint before we
- // start basically dropping it from the optimization and consider it to be an
- // active constraint.
- const double gap_eps = 1e-8;
-
- double last_alpha = 1;
- while(stop_strategy.should_continue_search(x, f_value, g))
- {
- s = search_strategy.get_next_direction(x, f_value, zero_bounded_variables(gap_eps, g, x, g, x_lower, x_upper));
- s = gap_step_assign_bounded_variables(gap_eps, s, x, g, x_lower, x_upper);
-
- double alpha = backtracking_line_search(
- negate_function(make_line_search_function(clamp_function(f,x_lower,x_upper), x, s, f_value)),
- f_value,
- dot(g,s), // compute gradient for the line search
- last_alpha,
- search_strategy.get_wolfe_rho(),
- search_strategy.get_max_line_search_iterations());
-
- // Do a trust region style thing for alpha. The idea is that if we take a
- // small step then we are likely to take another small step. So we reuse the
- // alpha from the last iteration unless the line search didn't shrink alpha at
- // all, in that case, we start with a bigger alpha next time.
- if (alpha == last_alpha)
- last_alpha = std::min(last_alpha*10,1.0);
- else
- last_alpha = alpha;
-
- // Take the search step indicated by the above line search
- x = dlib::clamp(x + alpha*s, x_lower, x_upper);
- g = -der(x);
-
- // Don't forget to negate the output from the line search since it is from the
- // unnegated version of f()
- f_value *= -1;
-
- if (!is_finite(f_value))
- throw error("The objective function generated non-finite outputs");
- if (!is_finite(g))
- throw error("The objective function generated non-finite outputs");
- }
-
- return -f_value;
- }
-
-// ----------------------------------------------------------------------------------------
-
- template <
- typename search_strategy_type,
- typename stop_strategy_type,
- typename funct,
- typename funct_der,
- typename T
- >
- double find_max_box_constrained (
- search_strategy_type search_strategy,
- stop_strategy_type stop_strategy,
- const funct& f,
- const funct_der& der,
- T& x,
- double x_lower,
- double x_upper
- )
- {
- // The starting point (i.e. x) must be a column vector.
- COMPILE_TIME_ASSERT(T::NC <= 1);
-
- typedef typename T::type scalar_type;
- return find_max_box_constrained(search_strategy,
- stop_strategy,
- f,
- der,
- x,
- uniform_matrix<scalar_type>(x.size(),1,x_lower),
- uniform_matrix<scalar_type>(x.size(),1,x_upper) );
- }
-
-// ----------------------------------------------------------------------------------------
-
-}
-
-#endif // DLIB_OPTIMIZATIOn_H_
-