summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/svm/kcentroid.h
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/dlib/svm/kcentroid.h')
-rw-r--r--ml/dlib/dlib/svm/kcentroid.h614
1 files changed, 0 insertions, 614 deletions
diff --git a/ml/dlib/dlib/svm/kcentroid.h b/ml/dlib/dlib/svm/kcentroid.h
deleted file mode 100644
index 5f380486a..000000000
--- a/ml/dlib/dlib/svm/kcentroid.h
+++ /dev/null
@@ -1,614 +0,0 @@
-// Copyright (C) 2008 Davis E. King (davis@dlib.net)
-// License: Boost Software License See LICENSE.txt for the full license.
-#ifndef DLIB_KCENTROId_
-#define DLIB_KCENTROId_
-
-#include <vector>
-
-#include "kcentroid_abstract.h"
-#include "../matrix.h"
-#include "function.h"
-#include "../std_allocator.h"
-
-namespace dlib
-{
-
-// ----------------------------------------------------------------------------------------
-
- template <typename kernel_type>
- class kcentroid
- {
- /*!
- This object represents a weighted sum of sample points in a kernel induced
- feature space. It can be used to kernelize any algorithm that requires only
- the ability to perform vector addition, subtraction, scalar multiplication,
- and inner products. It uses the sparsification technique described in the
- paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
-
- To understand the code it would also be useful to consult page 114 of the book
- Kernel Methods for Pattern Analysis by Taylor and Cristianini as well as page 554
- (particularly equation 18.31) of the book Learning with Kernels by Scholkopf and
- Smola. Everything you really need to know is in the Engel paper. But the other
- books help give more perspective on the issues involved.
-
-
- INITIAL VALUE
- - min_strength == 0
- - min_vect_idx == 0
- - K_inv.size() == 0
- - K.size() == 0
- - dictionary.size() == 0
- - bias == 0
- - bias_is_stale == false
-
- CONVENTION
- - max_dictionary_size() == my_max_dictionary_size
- - get_kernel() == kernel
-
- - K.nr() == dictionary.size()
- - K.nc() == dictionary.size()
- - for all valid r,c:
- - K(r,c) == kernel(dictionary[r], dictionary[c])
- - K_inv == inv(K)
-
- - if (dictionary.size() == my_max_dictionary_size && my_remove_oldest_first == false) then
- - for all valid 0 < i < dictionary.size():
- - Let STRENGTHS[i] == the delta you would get for dictionary[i] (i.e. Approximately
- Linearly Dependent value) if you removed dictionary[i] from this object and then
- tried to add it back in.
- - min_strength == the minimum value from STRENGTHS
- - min_vect_idx == the index of the element in STRENGTHS with the smallest value
-
- !*/
-
- public:
- typedef typename kernel_type::scalar_type scalar_type;
- typedef typename kernel_type::sample_type sample_type;
- typedef typename kernel_type::mem_manager_type mem_manager_type;
-
- kcentroid (
- ) :
- my_remove_oldest_first(false),
- my_tolerance(0.001),
- my_max_dictionary_size(1000000),
- bias(0),
- bias_is_stale(false)
- {
- clear_dictionary();
- }
-
- explicit kcentroid (
- const kernel_type& kernel_,
- scalar_type tolerance_ = 0.001,
- unsigned long max_dictionary_size_ = 1000000,
- bool remove_oldest_first_ = false
- ) :
- my_remove_oldest_first(remove_oldest_first_),
- kernel(kernel_),
- my_tolerance(tolerance_),
- my_max_dictionary_size(max_dictionary_size_),
- bias(0),
- bias_is_stale(false)
- {
- // make sure requires clause is not broken
- DLIB_ASSERT(tolerance_ > 0 && max_dictionary_size_ > 1,
- "\tkcentroid::kcentroid()"
- << "\n\t You have to give a positive tolerance"
- << "\n\t this: " << this
- << "\n\t tolerance_: " << tolerance_
- << "\n\t max_dictionary_size_: " << max_dictionary_size_
- );
-
- clear_dictionary();
- }
-
- scalar_type tolerance() const
- {
- return my_tolerance;
- }
-
- unsigned long max_dictionary_size() const
- {
- return my_max_dictionary_size;
- }
-
- bool remove_oldest_first (
- ) const
- {
- return my_remove_oldest_first;
- }
-
- const kernel_type& get_kernel (
- ) const
- {
- return kernel;
- }
-
- void clear_dictionary ()
- {
- dictionary.clear();
- alpha.clear();
-
- min_strength = 0;
- min_vect_idx = 0;
- K_inv.set_size(0,0);
- K.set_size(0,0);
- samples_seen = 0;
- bias = 0;
- bias_is_stale = false;
- }
-
- scalar_type operator() (
- const kcentroid& x
- ) const
- {
- // make sure requires clause is not broken
- DLIB_ASSERT(x.get_kernel() == get_kernel(),
- "\tscalar_type kcentroid::operator()(const kcentroid& x)"
- << "\n\tYou can only compare two kcentroid objects if they use the same kernel"
- << "\n\tthis: " << this
- );
-
- // make sure the bias terms are up to date
- refresh_bias();
- x.refresh_bias();
-
- scalar_type temp = x.bias + bias - 2*inner_product(x);
-
- if (temp > 0)
- return std::sqrt(temp);
- else
- return 0;
- }
-
- scalar_type inner_product (
- const sample_type& x
- ) const
- {
- scalar_type temp = 0;
- for (unsigned long i = 0; i < alpha.size(); ++i)
- temp += alpha[i]*kernel(dictionary[i], x);
- return temp;
- }
-
- scalar_type inner_product (
- const kcentroid& x
- ) const
- {
- // make sure requires clause is not broken
- DLIB_ASSERT(x.get_kernel() == get_kernel(),
- "\tscalar_type kcentroid::inner_product(const kcentroid& x)"
- << "\n\tYou can only compare two kcentroid objects if they use the same kernel"
- << "\n\tthis: " << this
- );
-
- scalar_type temp = 0;
- for (unsigned long i = 0; i < alpha.size(); ++i)
- {
- for (unsigned long j = 0; j < x.alpha.size(); ++j)
- {
- temp += alpha[i]*x.alpha[j]*kernel(dictionary[i], x.dictionary[j]);
- }
- }
- return temp;
- }
-
- scalar_type squared_norm (
- ) const
- {
- refresh_bias();
- return bias;
- }
-
- scalar_type operator() (
- const sample_type& x
- ) const
- {
- // make sure the bias terms are up to date
- refresh_bias();
-
- const scalar_type kxx = kernel(x,x);
-
- scalar_type temp = kxx + bias - 2*inner_product(x);
- if (temp > 0)
- return std::sqrt(temp);
- else
- return 0;
- }
-
- scalar_type samples_trained (
- ) const
- {
- return samples_seen;
- }
-
- scalar_type test_and_train (
- const sample_type& x
- )
- {
- ++samples_seen;
- const scalar_type xscale = 1/samples_seen;
- const scalar_type cscale = 1-xscale;
- return train_and_maybe_test(x,cscale,xscale,true);
- }
-
- void train (
- const sample_type& x
- )
- {
- ++samples_seen;
- const scalar_type xscale = 1/samples_seen;
- const scalar_type cscale = 1-xscale;
- train_and_maybe_test(x,cscale,xscale,false);
- }
-
- scalar_type test_and_train (
- const sample_type& x,
- scalar_type cscale,
- scalar_type xscale
- )
- {
- ++samples_seen;
- return train_and_maybe_test(x,cscale,xscale,true);
- }
-
- void scale_by (
- scalar_type cscale
- )
- {
- for (unsigned long i = 0; i < alpha.size(); ++i)
- {
- alpha[i] = cscale*alpha[i];
- }
- }
-
- void train (
- const sample_type& x,
- scalar_type cscale,
- scalar_type xscale
- )
- {
- ++samples_seen;
- train_and_maybe_test(x,cscale,xscale,false);
- }
-
- void swap (
- kcentroid& item
- )
- {
- exchange(min_strength, item.min_strength);
- exchange(min_vect_idx, item.min_vect_idx);
- exchange(my_remove_oldest_first, item.my_remove_oldest_first);
-
- exchange(kernel, item.kernel);
- dictionary.swap(item.dictionary);
- alpha.swap(item.alpha);
- K_inv.swap(item.K_inv);
- K.swap(item.K);
- exchange(my_tolerance, item.my_tolerance);
- exchange(samples_seen, item.samples_seen);
- exchange(bias, item.bias);
- a.swap(item.a);
- k.swap(item.k);
- exchange(bias_is_stale, item.bias_is_stale);
- exchange(my_max_dictionary_size, item.my_max_dictionary_size);
- }
-
- unsigned long dictionary_size (
- ) const { return dictionary.size(); }
-
- friend void serialize(const kcentroid& item, std::ostream& out)
- {
- serialize(item.min_strength, out);
- serialize(item.min_vect_idx, out);
- serialize(item.my_remove_oldest_first, out);
-
- serialize(item.kernel, out);
- serialize(item.dictionary, out);
- serialize(item.alpha, out);
- serialize(item.K_inv, out);
- serialize(item.K, out);
- serialize(item.my_tolerance, out);
- serialize(item.samples_seen, out);
- serialize(item.bias, out);
- serialize(item.bias_is_stale, out);
- serialize(item.my_max_dictionary_size, out);
- }
-
- friend void deserialize(kcentroid& item, std::istream& in)
- {
- deserialize(item.min_strength, in);
- deserialize(item.min_vect_idx, in);
- deserialize(item.my_remove_oldest_first, in);
-
- deserialize(item.kernel, in);
- deserialize(item.dictionary, in);
- deserialize(item.alpha, in);
- deserialize(item.K_inv, in);
- deserialize(item.K, in);
- deserialize(item.my_tolerance, in);
- deserialize(item.samples_seen, in);
- deserialize(item.bias, in);
- deserialize(item.bias_is_stale, in);
- deserialize(item.my_max_dictionary_size, in);
- }
-
- distance_function<kernel_type> get_distance_function (
- ) const
- {
- refresh_bias();
- return distance_function<kernel_type>(mat(alpha),
- bias,
- kernel,
- mat(dictionary));
- }
-
- private:
-
- void refresh_bias (
- ) const
- {
- if (bias_is_stale)
- {
- bias_is_stale = false;
- // recompute the bias term
- bias = sum(pointwise_multiply(K, mat(alpha)*trans(mat(alpha))));
- }
- }
-
- scalar_type train_and_maybe_test (
- const sample_type& x,
- scalar_type cscale,
- scalar_type xscale,
- bool do_test
- )
- {
- scalar_type test_result = 0;
- const scalar_type kx = kernel(x,x);
- if (alpha.size() == 0)
- {
- // just ignore this sample if it is the zero vector (or really close to being zero)
- if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
- {
- // set initial state since this is the first training example we have seen
-
- K_inv.set_size(1,1);
- K_inv(0,0) = 1/kx;
- K.set_size(1,1);
- K(0,0) = kx;
-
- alpha.push_back(xscale);
- dictionary.push_back(x);
- }
- else
- {
- // the distance from an empty kcentroid and the zero vector is zero by definition.
- return 0;
- }
- }
- else
- {
- // fill in k
- k.set_size(alpha.size());
- for (long r = 0; r < k.nr(); ++r)
- k(r) = kernel(x,dictionary[r]);
-
- if (do_test)
- {
- refresh_bias();
- test_result = std::sqrt(kx + bias - 2*trans(mat(alpha))*k);
- }
-
- // compute the error we would have if we approximated the new x sample
- // with the dictionary. That is, do the ALD test from the KRLS paper.
- a = K_inv*k;
- scalar_type delta = kx - trans(k)*a;
-
- // if this new vector isn't approximately linearly dependent on the vectors
- // in our dictionary.
- if (delta > min_strength && delta > my_tolerance)
- {
- bool need_to_update_min_strength = false;
- if (dictionary.size() >= my_max_dictionary_size)
- {
- // We need to remove one of the old members of the dictionary before
- // we proceed with adding a new one.
- long idx_to_remove;
- if (my_remove_oldest_first)
- {
- // remove the oldest one
- idx_to_remove = 0;
- }
- else
- {
- // if we have never computed the min_strength then we should compute it
- if (min_strength == 0)
- recompute_min_strength();
-
- // select the dictionary vector that is most linearly dependent for removal
- idx_to_remove = min_vect_idx;
- need_to_update_min_strength = true;
- }
-
- remove_dictionary_vector(idx_to_remove);
-
- // recompute these guys since they were computed with the old
- // kernel matrix
- k = remove_row(k,idx_to_remove);
- a = K_inv*k;
- delta = kx - trans(k)*a;
- }
-
- // add x to the dictionary
- dictionary.push_back(x);
-
-
- // update K_inv by computing the new one in the temp matrix (equation 3.14)
- matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
- // update the middle part of the matrix
- set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
- // update the right column of the matrix
- set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
- // update the bottom row of the matrix
- set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
- // update the bottom right corner of the matrix
- temp(K_inv.nr(), K_inv.nc()) = 1/delta;
- // put temp into K_inv
- temp.swap(K_inv);
-
-
-
- // update K (the kernel matrix)
- temp.set_size(K.nr()+1, K.nc()+1);
- set_subm(temp, get_rect(K)) = K;
- // update the right column of the matrix
- set_subm(temp, 0, K.nr(),K.nr(),1) = k;
- // update the bottom row of the matrix
- set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
- temp(K.nr(), K.nc()) = kx;
- // put temp into K
- temp.swap(K);
-
-
- // now update the alpha vector
- for (unsigned long i = 0; i < alpha.size(); ++i)
- {
- alpha[i] *= cscale;
- }
- alpha.push_back(xscale);
-
-
- if (need_to_update_min_strength)
- {
- // now we have to recompute the min_strength in this case
- recompute_min_strength();
- }
- }
- else
- {
- // update the alpha vector so that this new sample has been added into
- // the mean vector we are accumulating
- for (unsigned long i = 0; i < alpha.size(); ++i)
- {
- alpha[i] = cscale*alpha[i] + xscale*a(i);
- }
- }
- }
-
- bias_is_stale = true;
-
- return test_result;
- }
-
- void remove_dictionary_vector (
- long i
- )
- /*!
- requires
- - 0 <= i < dictionary.size()
- ensures
- - #dictionary.size() == dictionary.size() - 1
- - #alpha.size() == alpha.size() - 1
- - updates the K_inv matrix so that it is still a proper inverse of the
- kernel matrix
- - also removes the necessary row and column from the K matrix
- - uses the this->a variable so after this function runs that variable
- will contain a different value.
- !*/
- {
- // remove the dictionary vector
- dictionary.erase(dictionary.begin()+i);
-
- // remove the i'th vector from the inverse kernel matrix. This formula is basically
- // just the reverse of the way K_inv is updated by equation 3.14 during normal training.
- K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);
-
- // now compute the updated alpha values to take account that we just removed one of
- // our dictionary vectors
- a = (K_inv*remove_row(K,i)*mat(alpha));
-
- // now copy over the new alpha values
- alpha.resize(alpha.size()-1);
- for (unsigned long k = 0; k < alpha.size(); ++k)
- {
- alpha[k] = a(k);
- }
-
- // update the K matrix as well
- K = removerc(K,i,i);
- }
-
- void recompute_min_strength (
- )
- /*!
- ensures
- - recomputes the min_strength and min_vect_idx values
- so that they are correct with respect to the CONVENTION
- - uses the this->a variable so after this function runs that variable
- will contain a different value.
- !*/
- {
- min_strength = std::numeric_limits<scalar_type>::max();
-
- // here we loop over each dictionary vector and compute what its delta would be if
- // we were to remove it from the dictionary and then try to add it back in.
- for (unsigned long i = 0; i < dictionary.size(); ++i)
- {
- // compute a = K_inv*k but where dictionary vector i has been removed
- a = (removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i)) *
- (remove_row(colm(K,i),i));
- scalar_type delta = K(i,i) - trans(remove_row(colm(K,i),i))*a;
-
- if (delta < min_strength)
- {
- min_strength = delta;
- min_vect_idx = i;
- }
- }
- }
-
-
-
- typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
- typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
- typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
- typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;
-
-
- scalar_type min_strength;
- unsigned long min_vect_idx;
- bool my_remove_oldest_first;
-
- kernel_type kernel;
- dictionary_vector_type dictionary;
- alpha_vector_type alpha;
-
- matrix<scalar_type,0,0,mem_manager_type> K_inv;
- matrix<scalar_type,0,0,mem_manager_type> K;
-
- scalar_type my_tolerance;
- unsigned long my_max_dictionary_size;
- scalar_type samples_seen;
- mutable scalar_type bias;
- mutable bool bias_is_stale;
-
-
- // temp variables here just so we don't have to reconstruct them over and over. Thus,
- // they aren't really part of the state of this object.
- matrix<scalar_type,0,1,mem_manager_type> a;
- matrix<scalar_type,0,1,mem_manager_type> k;
-
- };
-
-// ----------------------------------------------------------------------------------------
-
- template <typename kernel_type>
- void swap(kcentroid<kernel_type>& a, kcentroid<kernel_type>& b)
- { a.swap(b); }
-
-// ----------------------------------------------------------------------------------------
-
-}
-
-#endif // DLIB_KCENTROId_
-