summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/custom_trainer_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/examples/custom_trainer_ex.cpp')
-rw-r--r--ml/dlib/examples/custom_trainer_ex.cpp277
1 files changed, 277 insertions, 0 deletions
diff --git a/ml/dlib/examples/custom_trainer_ex.cpp b/ml/dlib/examples/custom_trainer_ex.cpp
new file mode 100644
index 000000000..39af53f39
--- /dev/null
+++ b/ml/dlib/examples/custom_trainer_ex.cpp
@@ -0,0 +1,277 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This example program shows you how to create your own custom binary classification
+ trainer object and use it with the multiclass classification tools in the dlib C++
+ library. This example assumes you have already become familiar with the concepts
+ introduced in the multiclass_classification_ex.cpp example program.
+
+
+ In this example we will create a very simple trainer object that takes a binary
+ classification problem and produces a decision rule which says a test point has the
+ same class as whichever centroid it is closest to.
+
+ The multiclass training dataset will consist of four classes. Each class will be a blob
+ of points in one of the quadrants of the cartesian plane. For fun, we will use
+ std::string labels and therefore the labels of these classes will be the following:
+ "upper_left",
+ "upper_right",
+ "lower_left",
+ "lower_right"
+*/
+
+#include <dlib/svm_threaded.h>
+
+#include <iostream>
+#include <vector>
+
+#include <dlib/rand.h>
+
+using namespace std;
+using namespace dlib;
+
+// Our data will be 2-dimensional data. So declare an appropriate type to contain these points.
+typedef matrix<double,2,1> sample_type;
+
+// ----------------------------------------------------------------------------------------
+
+struct custom_decision_function
+{
+ /*!
+ WHAT THIS OBJECT REPRESENTS
+ This object is the representation of our binary decision rule.
+ !*/
+
+ // centers of the two classes
+ sample_type positive_center, negative_center;
+
+ double operator() (
+ const sample_type& x
+ ) const
+ {
+ // if x is closer to the positive class then return +1
+ if (length(positive_center - x) < length(negative_center - x))
+ return +1;
+ else
+ return -1;
+ }
+};
+
+// Later on in this example we will save our decision functions to disk. This
+// pair of routines is needed for this functionality.
+void serialize (const custom_decision_function& item, std::ostream& out)
+{
+ // write the state of item to the output stream
+ serialize(item.positive_center, out);
+ serialize(item.negative_center, out);
+}
+
+void deserialize (custom_decision_function& item, std::istream& in)
+{
+ // read the data from the input stream and store it in item
+ deserialize(item.positive_center, in);
+ deserialize(item.negative_center, in);
+}
+
+// ----------------------------------------------------------------------------------------
+
+class simple_custom_trainer
+{
+ /*!
+ WHAT THIS OBJECT REPRESENTS
+ This is our example custom binary classifier trainer object. It simply
+ computes the means of the +1 and -1 classes, puts them into our
+ custom_decision_function, and returns the results.
+
+ Below we define the train() function. I have also included the
+ requires/ensures definition for a generic binary classifier's train()
+ !*/
+public:
+
+
+ custom_decision_function train (
+ const std::vector<sample_type>& samples,
+ const std::vector<double>& labels
+ ) const
+ /*!
+ requires
+ - is_binary_classification_problem(samples, labels) == true
+ (e.g. labels consists of only +1 and -1 values, samples.size() == labels.size())
+ ensures
+ - returns a decision function F with the following properties:
+ - if (new_x is a sample predicted have +1 label) then
+ - F(new_x) >= 0
+ - else
+ - F(new_x) < 0
+ !*/
+ {
+ sample_type positive_center, negative_center;
+
+ // compute sums of each class
+ positive_center = 0;
+ negative_center = 0;
+ for (unsigned long i = 0; i < samples.size(); ++i)
+ {
+ if (labels[i] == +1)
+ positive_center += samples[i];
+ else // this is a -1 sample
+ negative_center += samples[i];
+ }
+
+ // divide by number of +1 samples
+ positive_center /= sum(mat(labels) == +1);
+ // divide by number of -1 samples
+ negative_center /= sum(mat(labels) == -1);
+
+ custom_decision_function df;
+ df.positive_center = positive_center;
+ df.negative_center = negative_center;
+
+ return df;
+ }
+};
+
+// ----------------------------------------------------------------------------------------
+
+void generate_data (
+ std::vector<sample_type>& samples,
+ std::vector<string>& labels
+);
+/*!
+ ensures
+ - make some four class data as described above.
+ - each class will have 50 samples in it
+!*/
+
+// ----------------------------------------------------------------------------------------
+
+int main()
+{
+ std::vector<sample_type> samples;
+ std::vector<string> labels;
+
+ // First, get our labeled set of training data
+ generate_data(samples, labels);
+
+ cout << "samples.size(): "<< samples.size() << endl;
+
+ // Define the trainer we will use. The second template argument specifies the type
+ // of label used, which is string in this case.
+ typedef one_vs_one_trainer<any_trainer<sample_type>, string> ovo_trainer;
+
+
+ ovo_trainer trainer;
+
+ // Now tell the one_vs_one_trainer that, by default, it should use the simple_custom_trainer
+ // to solve the individual binary classification subproblems.
+ trainer.set_trainer(simple_custom_trainer());
+
+ // Next, to make things a little more interesting, we will setup the one_vs_one_trainer
+ // to use kernel ridge regression to solve the upper_left vs lower_right binary classification
+ // subproblem.
+ typedef radial_basis_kernel<sample_type> rbf_kernel;
+ krr_trainer<rbf_kernel> rbf_trainer;
+ rbf_trainer.set_kernel(rbf_kernel(0.1));
+ trainer.set_trainer(rbf_trainer, "upper_left", "lower_right");
+
+
+ // Now let's do 5-fold cross-validation using the one_vs_one_trainer we just setup.
+ // As an aside, always shuffle the order of the samples before doing cross validation.
+ // For a discussion of why this is a good idea see the svm_ex.cpp example.
+ randomize_samples(samples, labels);
+ cout << "cross validation: \n" << cross_validate_multiclass_trainer(trainer, samples, labels, 5) << endl;
+ // This dataset is very easy and everything is correctly classified. Therefore, the output of
+ // cross validation is the following confusion matrix.
+ /*
+ 50 0 0 0
+ 0 50 0 0
+ 0 0 50 0
+ 0 0 0 50
+ */
+
+
+ // We can also obtain the decision rule as always.
+ one_vs_one_decision_function<ovo_trainer> df = trainer.train(samples, labels);
+
+ cout << "predicted label: "<< df(samples[0]) << ", true label: "<< labels[0] << endl;
+ cout << "predicted label: "<< df(samples[90]) << ", true label: "<< labels[90] << endl;
+ // The output is:
+ /*
+ predicted label: upper_right, true label: upper_right
+ predicted label: lower_left, true label: lower_left
+ */
+
+
+ // Finally, let's save our multiclass decision rule to disk. Remember that we have
+ // to specify the types of binary decision function used inside the one_vs_one_decision_function.
+ one_vs_one_decision_function<ovo_trainer,
+ custom_decision_function, // This is the output of the simple_custom_trainer
+ decision_function<radial_basis_kernel<sample_type> > // This is the output of the rbf_trainer
+ > df2, df3;
+
+ df2 = df;
+ // save to a file called df.dat
+ serialize("df.dat") << df2;
+
+ // load the function back in from disk and store it in df3.
+ deserialize("df.dat") >> df3;
+
+
+ // Test df3 to see that this worked.
+ cout << endl;
+ cout << "predicted label: "<< df3(samples[0]) << ", true label: "<< labels[0] << endl;
+ cout << "predicted label: "<< df3(samples[90]) << ", true label: "<< labels[90] << endl;
+ // Test df3 on the samples and labels and print the confusion matrix.
+ cout << "test deserialized function: \n" << test_multiclass_decision_function(df3, samples, labels) << endl;
+
+}
+
+// ----------------------------------------------------------------------------------------
+
+void generate_data (
+ std::vector<sample_type>& samples,
+ std::vector<string>& labels
+)
+{
+ const long num = 50;
+
+ sample_type m;
+
+ dlib::rand rnd;
+
+
+ // add some points in the upper right quadrant
+ m = 10, 10;
+ for (long i = 0; i < num; ++i)
+ {
+ samples.push_back(m + randm(2,1,rnd));
+ labels.push_back("upper_right");
+ }
+
+ // add some points in the upper left quadrant
+ m = -10, 10;
+ for (long i = 0; i < num; ++i)
+ {
+ samples.push_back(m + randm(2,1,rnd));
+ labels.push_back("upper_left");
+ }
+
+ // add some points in the lower right quadrant
+ m = 10, -10;
+ for (long i = 0; i < num; ++i)
+ {
+ samples.push_back(m + randm(2,1,rnd));
+ labels.push_back("lower_right");
+ }
+
+ // add some points in the lower left quadrant
+ m = -10, -10;
+ for (long i = 0; i < num; ++i)
+ {
+ samples.push_back(m + randm(2,1,rnd));
+ labels.push_back("lower_left");
+ }
+
+}
+
+// ----------------------------------------------------------------------------------------
+