summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/dnn_introduction2_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/examples/dnn_introduction2_ex.cpp')
-rw-r--r--ml/dlib/examples/dnn_introduction2_ex.cpp388
1 files changed, 0 insertions, 388 deletions
diff --git a/ml/dlib/examples/dnn_introduction2_ex.cpp b/ml/dlib/examples/dnn_introduction2_ex.cpp
deleted file mode 100644
index 70b6edee7..000000000
--- a/ml/dlib/examples/dnn_introduction2_ex.cpp
+++ /dev/null
@@ -1,388 +0,0 @@
-// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
-/*
- This is an example illustrating the use of the deep learning tools from the
- dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp
- example. So in this example program I'm going to go over a number of more
- advanced parts of the API, including:
- - Using multiple GPUs
- - Training on large datasets that don't fit in memory
- - Defining large networks
- - Accessing and configuring layers in a network
-*/
-
-#include <dlib/dnn.h>
-#include <iostream>
-#include <dlib/data_io.h>
-
-using namespace std;
-using namespace dlib;
-
-// ----------------------------------------------------------------------------------------
-
-// Let's start by showing how you can conveniently define large and complex
-// networks. The most important tool for doing this are C++'s alias templates.
-// These let us define new layer types that are combinations of a bunch of other
-// layers. These will form the building blocks for more complex networks.
-
-// So let's begin by defining the building block of a residual network (see
-// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
-// and Sun). We are going to decompose the residual block into a few alias
-// statements. First, we define the core block.
-
-// Here we have parameterized the "block" layer on a BN layer (nominally some
-// kind of batch normalization), the number of filter outputs N, and the stride
-// the block operates at.
-template <
- int N,
- template <typename> class BN,
- int stride,
- typename SUBNET
- >
-using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
-
-// Next, we need to define the skip layer mechanism used in the residual network
-// paper. They create their blocks by adding the input tensor to the output of
-// each block. So we define an alias statement that takes a block and wraps it
-// with this skip/add structure.
-
-// Note the tag layer. This layer doesn't do any computation. It exists solely
-// so other layers can refer to it. In this case, the add_prev1 layer looks for
-// the tag1 layer and will take the tag1 output and add it to the input of the
-// add_prev1 layer. This combination allows us to implement skip and residual
-// style networks. We have also set the block stride to 1 in this statement.
-// The significance of that is explained next.
-template <
- template <int,template<typename>class,int,typename> class block,
- int N,
- template<typename>class BN,
- typename SUBNET
- >
-using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
-
-// Some residual blocks do downsampling. They do this by using a stride of 2
-// instead of 1. However, when downsampling we need to also take care to
-// downsample the part of the network that adds the original input to the output
-// or the sizes won't make sense (the network will still run, but the results
-// aren't as good). So here we define a downsampling version of residual. In
-// it, we make use of the skip1 layer. This layer simply outputs whatever is
-// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
-// skip3, etc. in dlib) allows you to create branching network structures.
-
-// residual_down creates a network structure like this:
-/*
- input from SUBNET
- / \
- / \
- block downsample(using avg_pool)
- \ /
- \ /
- add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
- |
- output
-*/
-template <
- template <int,template<typename>class,int,typename> class block,
- int N,
- template<typename>class BN,
- typename SUBNET
- >
-using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
-
-
-
-// Now we can define 4 different residual blocks we will use in this example.
-// The first two are non-downsampling residual blocks while the last two
-// downsample. Also, res and res_down use batch normalization while ares and
-// ares_down have had the batch normalization replaced with simple affine
-// layers. We will use the affine version of the layers when testing our
-// networks.
-template <typename SUBNET> using res = relu<residual<block,8,bn_con,SUBNET>>;
-template <typename SUBNET> using ares = relu<residual<block,8,affine,SUBNET>>;
-template <typename SUBNET> using res_down = relu<residual_down<block,8,bn_con,SUBNET>>;
-template <typename SUBNET> using ares_down = relu<residual_down<block,8,affine,SUBNET>>;
-
-
-
-// Now that we have these convenient aliases, we can define a residual network
-// without a lot of typing. Note the use of a repeat layer. This special layer
-// type allows us to type repeat<9,res,SUBNET> instead of
-// res<res<res<res<res<res<res<res<res<SUBNET>>>>>>>>>. It will also prevent
-// the compiler from complaining about super deep template nesting when creating
-// large networks.
-const unsigned long number_of_classes = 10;
-using net_type = loss_multiclass_log<fc<number_of_classes,
- avg_pool_everything<
- res<res<res<res_down<
- repeat<9,res, // repeat this layer 9 times
- res_down<
- res<
- input<matrix<unsigned char>>
- >>>>>>>>>>;
-
-
-// And finally, let's define a residual network building block that uses
-// parametric ReLU units instead of regular ReLU.
-template <typename SUBNET>
-using pres = prelu<add_prev1<bn_con<con<8,3,3,1,1,prelu<bn_con<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
-
-// ----------------------------------------------------------------------------------------
-
-int main(int argc, char** argv) try
-{
- if (argc != 2)
- {
- cout << "This example needs the MNIST dataset to run!" << endl;
- cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
- cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
- cout << "put them in a folder. Then give that folder as input to this program." << endl;
- return 1;
- }
-
- std::vector<matrix<unsigned char>> training_images;
- std::vector<unsigned long> training_labels;
- std::vector<matrix<unsigned char>> testing_images;
- std::vector<unsigned long> testing_labels;
- load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
-
-
- // dlib uses cuDNN under the covers. One of the features of cuDNN is the
- // option to use slower methods that use less RAM or faster methods that use
- // a lot of RAM. If you find that you run out of RAM on your graphics card
- // then you can call this function and we will request the slower but more
- // RAM frugal cuDNN algorithms.
- set_dnn_prefer_smallest_algorithms();
-
-
- // Create a network as defined above. This network will produce 10 outputs
- // because that's how we defined net_type. However, fc layers can have the
- // number of outputs they produce changed at runtime.
- net_type net;
- // So if you wanted to use the same network but override the number of
- // outputs at runtime you can do so like this:
- net_type net2(num_fc_outputs(15));
-
- // Now, let's imagine we wanted to replace some of the relu layers with
- // prelu layers. We might do it like this:
- using net_type2 = loss_multiclass_log<fc<number_of_classes,
- avg_pool_everything<
- pres<res<res<res_down< // 2 prelu layers here
- tag4<repeat<9,pres, // 9 groups, each containing 2 prelu layers
- res_down<
- res<
- input<matrix<unsigned char>>
- >>>>>>>>>>>;
-
- // prelu layers have a floating point parameter. If you want to set it to
- // something other than its default value you can do so like this:
- net_type2 pnet(prelu_(0.2),
- prelu_(0.25),
- repeat_group(prelu_(0.3),prelu_(0.4)) // Initialize all the prelu instances in the repeat
- // layer. repeat_group() is needed to group the
- // things that are part of repeat's block.
- );
- // As you can see, a network will greedily assign things given to its
- // constructor to the layers inside itself. The assignment is done in the
- // order the layers are defined, but it will skip layers where the
- // assignment doesn't make sense.
-
- // Now let's print the details of the pnet to the screen and inspect it.
- cout << "The pnet has " << pnet.num_layers << " layers in it." << endl;
- cout << pnet << endl;
- // These print statements will output this (I've truncated it since it's
- // long, but you get the idea):
- /*
- The pnet has 131 layers in it.
- layer<0> loss_multiclass_log
- layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<2> avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
- layer<3> prelu (initial_param_value=0.2)
- layer<4> add_prev1
- layer<5> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<7> prelu (initial_param_value=0.25)
- layer<8> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<10> tag1
- ...
- layer<34> relu
- layer<35> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<36> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<37> tag1
- layer<38> tag4
- layer<39> prelu (initial_param_value=0.3)
- layer<40> add_prev1
- layer<41> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- ...
- layer<118> relu
- layer<119> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<120> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<121> tag1
- layer<122> relu
- layer<123> add_prev1
- layer<124> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<125> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<126> relu
- layer<127> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
- layer<128> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
- layer<129> tag1
- layer<130> input<matrix>
- */
-
- // Now that we know the index numbers for each layer, we can access them
- // individually using layer<index>(pnet). For example, to access the output
- // tensor for the first prelu layer we can say:
- layer<3>(pnet).get_output();
- // Or to print the prelu parameter for layer 7 we can say:
- cout << "prelu param: "<< layer<7>(pnet).layer_details().get_initial_param_value() << endl;
-
- // We can also access layers by their type. This next statement finds the
- // first tag1 layer in pnet, and is therefore equivalent to calling
- // layer<10>(pnet):
- layer<tag1>(pnet);
- // The tag layers don't do anything at all and exist simply so you can tag
- // parts of your network and access them by layer<tag>(). You can also
- // index relative to a tag. So for example, to access the layer immediately
- // after tag4 you can say:
- layer<tag4,1>(pnet); // Equivalent to layer<38+1>(pnet).
-
- // Or to access the layer 2 layers after tag4:
- layer<tag4,2>(pnet);
- // Tagging is a very useful tool for making complex network structures. For
- // example, the add_prev1 layer is implemented internally by using a call to
- // layer<tag1>().
-
-
-
- // Ok, that's enough talk about defining and inspecting networks. Let's
- // talk about training networks!
-
- // The dnn_trainer will use SGD by default, but you can tell it to use
- // different solvers like adam with a weight decay of 0.0005 and the given
- // momentum parameters.
- dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999));
- // Also, if you have multiple graphics cards you can tell the trainer to use
- // them together to make the training faster. For example, replacing the
- // above constructor call with this one would cause it to use GPU cards 0
- // and 1.
- //dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
-
- trainer.be_verbose();
- // While the trainer is running it keeps an eye on the training error. If
- // it looks like the error hasn't decreased for the last 2000 iterations it
- // will automatically reduce the learning rate by 0.1. You can change these
- // default parameters to some other values by calling these functions. Or
- // disable the automatic shrinking entirely by setting the shrink factor to 1.
- trainer.set_iterations_without_progress_threshold(2000);
- trainer.set_learning_rate_shrink_factor(0.1);
- // The learning rate will start at 1e-3.
- trainer.set_learning_rate(1e-3);
- trainer.set_synchronization_file("mnist_resnet_sync", std::chrono::seconds(100));
-
-
- // Now, what if your training dataset is so big it doesn't fit in RAM? You
- // make mini-batches yourself, any way you like, and you send them to the
- // trainer by repeatedly calling trainer.train_one_step().
- //
- // For example, the loop below stream MNIST data to out trainer.
- std::vector<matrix<unsigned char>> mini_batch_samples;
- std::vector<unsigned long> mini_batch_labels;
- dlib::rand rnd(time(0));
- // Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
- // Given our settings, this means it will stop training after it has shrunk the
- // learning rate 3 times.
- while(trainer.get_learning_rate() >= 1e-6)
- {
- mini_batch_samples.clear();
- mini_batch_labels.clear();
-
- // make a 128 image mini-batch
- while(mini_batch_samples.size() < 128)
- {
- auto idx = rnd.get_random_32bit_number()%training_images.size();
- mini_batch_samples.push_back(training_images[idx]);
- mini_batch_labels.push_back(training_labels[idx]);
- }
-
- // Tell the trainer to update the network given this mini-batch
- trainer.train_one_step(mini_batch_samples, mini_batch_labels);
-
- // You can also feed validation data into the trainer by periodically
- // calling trainer.test_one_step(samples,labels). Unlike train_one_step(),
- // test_one_step() doesn't modify the network, it only computes the testing
- // error which it records internally. This testing error will then be print
- // in the verbose logging and will also determine when the trainer's
- // automatic learning rate shrinking happens. Therefore, test_one_step()
- // can be used to perform automatic early stopping based on held out data.
- }
-
- // When you call train_one_step(), the trainer will do its processing in a
- // separate thread. This allows the main thread to work on loading data
- // while the trainer is busy executing the mini-batches in parallel.
- // However, this also means we need to wait for any mini-batches that are
- // still executing to stop before we mess with the net object. Calling
- // get_net() performs the necessary synchronization.
- trainer.get_net();
-
-
- net.clean();
- serialize("mnist_res_network.dat") << net;
-
-
- // Now we have a trained network. However, it has batch normalization
- // layers in it. As is customary, we should replace these with simple
- // affine layers before we use the network. This can be accomplished by
- // making a network type which is identical to net_type but with the batch
- // normalization layers replaced with affine. For example:
- using test_net_type = loss_multiclass_log<fc<number_of_classes,
- avg_pool_everything<
- ares<ares<ares<ares_down<
- repeat<9,ares,
- ares_down<
- ares<
- input<matrix<unsigned char>>
- >>>>>>>>>>;
- // Then we can simply assign our trained net to our testing net.
- test_net_type tnet = net;
- // Or if you only had a file with your trained network you could deserialize
- // it directly into your testing network.
- deserialize("mnist_res_network.dat") >> tnet;
-
-
- // And finally, we can run the testing network over our data.
-
- std::vector<unsigned long> predicted_labels = tnet(training_images);
- int num_right = 0;
- int num_wrong = 0;
- for (size_t i = 0; i < training_images.size(); ++i)
- {
- if (predicted_labels[i] == training_labels[i])
- ++num_right;
- else
- ++num_wrong;
-
- }
- cout << "training num_right: " << num_right << endl;
- cout << "training num_wrong: " << num_wrong << endl;
- cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
-
- predicted_labels = tnet(testing_images);
- num_right = 0;
- num_wrong = 0;
- for (size_t i = 0; i < testing_images.size(); ++i)
- {
- if (predicted_labels[i] == testing_labels[i])
- ++num_right;
- else
- ++num_wrong;
-
- }
- cout << "testing num_right: " << num_right << endl;
- cout << "testing num_wrong: " << num_wrong << endl;
- cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
-
-}
-catch(std::exception& e)
-{
- cout << e.what() << endl;
-}
-