summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ml/dlib/examples/dnn_semantic_segmentation_ex.cpp')
-rw-r--r--ml/dlib/examples/dnn_semantic_segmentation_ex.cpp172
1 files changed, 0 insertions, 172 deletions
diff --git a/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp b/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
deleted file mode 100644
index fa49c5a9e..000000000
--- a/ml/dlib/examples/dnn_semantic_segmentation_ex.cpp
+++ /dev/null
@@ -1,172 +0,0 @@
-// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
-/*
- This example shows how to do semantic segmentation on an image using net pretrained
- on the PASCAL VOC2012 dataset. For an introduction to what segmentation is, see the
- accompanying header file dnn_semantic_segmentation_ex.h.
-
- Instructions how to run the example:
- 1. Download the PASCAL VOC2012 data, and untar it somewhere.
- http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
- 2. Build the dnn_semantic_segmentation_train_ex example program.
- 3. Run:
- ./dnn_semantic_segmentation_train_ex /path/to/VOC2012
- 4. Wait while the network is being trained.
- 5. Build the dnn_semantic_segmentation_ex example program.
- 6. Run:
- ./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
-
- An alternative to steps 2-4 above is to download a pre-trained network
- from here: http://dlib.net/files/semantic_segmentation_voc2012net.dnn
-
- It would be a good idea to become familiar with dlib's DNN tooling before reading this
- example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
- before reading this example program.
-*/
-
-#include "dnn_semantic_segmentation_ex.h"
-
-#include <iostream>
-#include <dlib/data_io.h>
-#include <dlib/gui_widgets.h>
-
-using namespace std;
-using namespace dlib;
-
-// ----------------------------------------------------------------------------------------
-
-// The PASCAL VOC2012 dataset contains 20 ground-truth classes + background. Each class
-// is represented using an RGB color value. We associate each class also to an index in the
-// range [0, 20], used internally by the network. To generate nice RGB representations of
-// inference results, we need to be able to convert the index values to the corresponding
-// RGB values.
-
-// Given an index in the range [0, 20], find the corresponding PASCAL VOC2012 class
-// (e.g., 'dog').
-const Voc2012class& find_voc2012_class(const uint16_t& index_label)
-{
- return find_voc2012_class(
- [&index_label](const Voc2012class& voc2012class)
- {
- return index_label == voc2012class.index;
- }
- );
-}
-
-// Convert an index in the range [0, 20] to a corresponding RGB class label.
-inline rgb_pixel index_label_to_rgb_label(uint16_t index_label)
-{
- return find_voc2012_class(index_label).rgb_label;
-}
-
-// Convert an image containing indexes in the range [0, 20] to a corresponding
-// image containing RGB class labels.
-void index_label_image_to_rgb_label_image(
- const matrix<uint16_t>& index_label_image,
- matrix<rgb_pixel>& rgb_label_image
-)
-{
- const long nr = index_label_image.nr();
- const long nc = index_label_image.nc();
-
- rgb_label_image.set_size(nr, nc);
-
- for (long r = 0; r < nr; ++r)
- {
- for (long c = 0; c < nc; ++c)
- {
- rgb_label_image(r, c) = index_label_to_rgb_label(index_label_image(r, c));
- }
- }
-}
-
-// Find the most prominent class label from amongst the per-pixel predictions.
-std::string get_most_prominent_non_background_classlabel(const matrix<uint16_t>& index_label_image)
-{
- const long nr = index_label_image.nr();
- const long nc = index_label_image.nc();
-
- std::vector<unsigned int> counters(class_count);
-
- for (long r = 0; r < nr; ++r)
- {
- for (long c = 0; c < nc; ++c)
- {
- const uint16_t label = index_label_image(r, c);
- ++counters[label];
- }
- }
-
- const auto max_element = std::max_element(counters.begin() + 1, counters.end());
- const uint16_t most_prominent_index_label = max_element - counters.begin();
-
- return find_voc2012_class(most_prominent_index_label).classlabel;
-}
-
-// ----------------------------------------------------------------------------------------
-
-int main(int argc, char** argv) try
-{
- if (argc != 2)
- {
- cout << "You call this program like this: " << endl;
- cout << "./dnn_semantic_segmentation_train_ex /path/to/images" << endl;
- cout << endl;
- cout << "You will also need a trained 'semantic_segmentation_voc2012net.dnn' file." << endl;
- cout << "You can either train it yourself (see example program" << endl;
- cout << "dnn_semantic_segmentation_train_ex), or download a" << endl;
- cout << "copy from here: http://dlib.net/files/semantic_segmentation_voc2012net.dnn" << endl;
- return 1;
- }
-
- // Read the file containing the trained network from the working directory.
- anet_type net;
- deserialize("semantic_segmentation_voc2012net.dnn") >> net;
-
- // Show inference results in a window.
- image_window win;
-
- matrix<rgb_pixel> input_image;
- matrix<uint16_t> index_label_image;
- matrix<rgb_pixel> rgb_label_image;
-
- // Find supported image files.
- const std::vector<file> files = dlib::get_files_in_directory_tree(argv[1],
- dlib::match_endings(".jpeg .jpg .png"));
-
- cout << "Found " << files.size() << " images, processing..." << endl;
-
- for (const file& file : files)
- {
- // Load the input image.
- load_image(input_image, file.full_name());
-
- // Create predictions for each pixel. At this point, the type of each prediction
- // is an index (a value between 0 and 20). Note that the net may return an image
- // that is not exactly the same size as the input.
- const matrix<uint16_t> temp = net(input_image);
-
- // Crop the returned image to be exactly the same size as the input.
- const chip_details chip_details(
- centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()),
- chip_dims(input_image.nr(), input_image.nc())
- );
- extract_image_chip(temp, chip_details, index_label_image, interpolate_nearest_neighbor());
-
- // Convert the indexes to RGB values.
- index_label_image_to_rgb_label_image(index_label_image, rgb_label_image);
-
- // Show the input image on the left, and the predicted RGB labels on the right.
- win.set_image(join_rows(input_image, rgb_label_image));
-
- // Find the most prominent class label from amongst the per-pixel predictions.
- const std::string classlabel = get_most_prominent_non_background_classlabel(index_label_image);
-
- cout << file.name() << " : " << classlabel << " - hit enter to process the next image";
- cin.get();
- }
-}
-catch(std::exception& e)
-{
- cout << e.what() << endl;
-}
-