diff options
Diffstat (limited to 'ml/dlib/python_examples/face_clustering.py')
-rwxr-xr-x | ml/dlib/python_examples/face_clustering.py | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/ml/dlib/python_examples/face_clustering.py b/ml/dlib/python_examples/face_clustering.py deleted file mode 100755 index 362613871..000000000 --- a/ml/dlib/python_examples/face_clustering.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/usr/bin/python -# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt -# -# This example shows how to use dlib's face recognition tool for clustering using chinese_whispers. -# This is useful when you have a collection of photographs which you know are linked to -# a particular person, but the person may be photographed with multiple other people. -# In this example, we assume the largest cluster will contain photos of the common person in the -# collection of photographs. Then, we save extracted images of the face in the largest cluster in -# a 150x150 px format which is suitable for jittering and loading to perform metric learning (as shown -# in the dnn_metric_learning_on_images_ex.cpp example. -# https://github.com/davisking/dlib/blob/master/examples/dnn_metric_learning_on_images_ex.cpp -# -# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE -# You can install dlib using the command: -# pip install dlib -# -# Alternatively, if you want to compile dlib yourself then go into the dlib -# root folder and run: -# python setup.py install -# or -# python setup.py install --yes USE_AVX_INSTRUCTIONS -# if you have a CPU that supports AVX instructions, since this makes some -# things run faster. This code will also use CUDA if you have CUDA and cuDNN -# installed. -# -# Compiling dlib should work on any operating system so long as you have -# CMake installed. On Ubuntu, this can be done easily by running the -# command: -# sudo apt-get install cmake -# -# Also note that this example requires scikit-image which can be installed -# via the command: -# pip install scikit-image -# Or downloaded from http://scikit-image.org/download.html. - -import sys -import os -import dlib -import glob -from skimage import io - -if len(sys.argv) != 5: - print( - "Call this program like this:\n" - " ./face_clustering.py shape_predictor_5_face_landmarks.dat dlib_face_recognition_resnet_model_v1.dat ../examples/faces output_folder\n" - "You can download a trained facial shape predictor and recognition model from:\n" - " http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2\n" - " http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2") - exit() - -predictor_path = sys.argv[1] -face_rec_model_path = sys.argv[2] -faces_folder_path = sys.argv[3] -output_folder_path = sys.argv[4] - -# Load all the models we need: a detector to find the faces, a shape predictor -# to find face landmarks so we can precisely localize the face, and finally the -# face recognition model. -detector = dlib.get_frontal_face_detector() -sp = dlib.shape_predictor(predictor_path) -facerec = dlib.face_recognition_model_v1(face_rec_model_path) - -descriptors = [] -images = [] - -# Now find all the faces and compute 128D face descriptors for each face. -for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")): - print("Processing file: {}".format(f)) - img = io.imread(f) - - # Ask the detector to find the bounding boxes of each face. The 1 in the - # second argument indicates that we should upsample the image 1 time. This - # will make everything bigger and allow us to detect more faces. - dets = detector(img, 1) - print("Number of faces detected: {}".format(len(dets))) - - # Now process each face we found. - for k, d in enumerate(dets): - # Get the landmarks/parts for the face in box d. - shape = sp(img, d) - - # Compute the 128D vector that describes the face in img identified by - # shape. - face_descriptor = facerec.compute_face_descriptor(img, shape) - descriptors.append(face_descriptor) - images.append((img, shape)) - -# Now let's cluster the faces. -labels = dlib.chinese_whispers_clustering(descriptors, 0.5) -num_classes = len(set(labels)) -print("Number of clusters: {}".format(num_classes)) - -# Find biggest class -biggest_class = None -biggest_class_length = 0 -for i in range(0, num_classes): - class_length = len([label for label in labels if label == i]) - if class_length > biggest_class_length: - biggest_class_length = class_length - biggest_class = i - -print("Biggest cluster id number: {}".format(biggest_class)) -print("Number of faces in biggest cluster: {}".format(biggest_class_length)) - -# Find the indices for the biggest class -indices = [] -for i, label in enumerate(labels): - if label == biggest_class: - indices.append(i) - -print("Indices of images in the biggest cluster: {}".format(str(indices))) - -# Ensure output directory exists -if not os.path.isdir(output_folder_path): - os.makedirs(output_folder_path) - -# Save the extracted faces -print("Saving faces in largest cluster to output folder...") -for i, index in enumerate(indices): - img, shape = images[index] - file_path = os.path.join(output_folder_path, "face_" + str(i)) - # The size and padding arguments are optional with default size=150x150 and padding=0.25 - dlib.save_face_chip(img, shape, file_path, size=150, padding=0.25) - - - - |