diff options
Diffstat (limited to 'src/collectors/python.d.plugin/anomalies/anomalies.chart.py')
-rw-r--r-- | src/collectors/python.d.plugin/anomalies/anomalies.chart.py | 425 |
1 files changed, 0 insertions, 425 deletions
diff --git a/src/collectors/python.d.plugin/anomalies/anomalies.chart.py b/src/collectors/python.d.plugin/anomalies/anomalies.chart.py deleted file mode 100644 index 24e84cc15..000000000 --- a/src/collectors/python.d.plugin/anomalies/anomalies.chart.py +++ /dev/null @@ -1,425 +0,0 @@ -# -*- coding: utf-8 -*- -# Description: anomalies netdata python.d module -# Author: andrewm4894 -# SPDX-License-Identifier: GPL-3.0-or-later - -import sys -import time -from datetime import datetime -import re -import warnings - -import requests -import numpy as np -import pandas as pd -from netdata_pandas.data import get_data, get_allmetrics_async -from pyod.models.hbos import HBOS -from pyod.models.pca import PCA -from pyod.models.loda import LODA -from pyod.models.iforest import IForest -from pyod.models.cblof import CBLOF -from pyod.models.feature_bagging import FeatureBagging -from pyod.models.copod import COPOD -from sklearn.preprocessing import MinMaxScaler - -from bases.FrameworkServices.SimpleService import SimpleService - -# ignore some sklearn/numpy warnings that are ok -warnings.filterwarnings('ignore', r'All-NaN slice encountered') -warnings.filterwarnings('ignore', r'invalid value encountered in true_divide') -warnings.filterwarnings('ignore', r'divide by zero encountered in true_divide') -warnings.filterwarnings('ignore', r'invalid value encountered in subtract') - -disabled_by_default = True - -ORDER = ['probability', 'anomaly'] - -CHARTS = { - 'probability': { - 'options': ['probability', 'Anomaly Probability', 'probability', 'anomalies', 'anomalies.probability', 'line'], - 'lines': [] - }, - 'anomaly': { - 'options': ['anomaly', 'Anomaly', 'count', 'anomalies', 'anomalies.anomaly', 'stacked'], - 'lines': [] - }, -} - - -class Service(SimpleService): - def __init__(self, configuration=None, name=None): - SimpleService.__init__(self, configuration=configuration, name=name) - self.basic_init() - self.charts_init() - self.custom_models_init() - self.data_init() - self.model_params_init() - self.models_init() - self.collected_dims = {'probability': set(), 'anomaly': set()} - - def check(self): - if not (sys.version_info[0] >= 3 and sys.version_info[1] >= 6): - self.error("anomalies collector only works with Python>=3.6") - if len(self.host_charts_dict[self.host]) > 0: - _ = get_allmetrics_async(host_charts_dict=self.host_charts_dict, protocol=self.protocol, user=self.username, pwd=self.password) - return True - - def basic_init(self): - """Perform some basic initialization. - """ - self.order = ORDER - self.definitions = CHARTS - self.protocol = self.configuration.get('protocol', 'http') - self.host = self.configuration.get('host', '127.0.0.1:19999') - self.username = self.configuration.get('username', None) - self.password = self.configuration.get('password', None) - self.tls_verify = self.configuration.get('tls_verify', True) - self.fitted_at = {} - self.df_allmetrics = pd.DataFrame() - self.last_train_at = 0 - self.include_average_prob = bool(self.configuration.get('include_average_prob', True)) - self.reinitialize_at_every_step = bool(self.configuration.get('reinitialize_at_every_step', False)) - - def charts_init(self): - """Do some initialisation of charts in scope related variables. - """ - self.charts_regex = re.compile(self.configuration.get('charts_regex','None')) - self.charts_available = [c for c in list(requests.get(f'{self.protocol}://{self.host}/api/v1/charts', verify=self.tls_verify).json().get('charts', {}).keys())] - self.charts_in_scope = list(filter(self.charts_regex.match, self.charts_available)) - self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',') - if len(self.charts_to_exclude) > 0: - self.charts_in_scope = [c for c in self.charts_in_scope if c not in self.charts_to_exclude] - - def custom_models_init(self): - """Perform initialization steps related to custom models. - """ - self.custom_models = self.configuration.get('custom_models', None) - self.custom_models_normalize = bool(self.configuration.get('custom_models_normalize', False)) - if self.custom_models: - self.custom_models_names = [model['name'] for model in self.custom_models] - self.custom_models_dims = [i for s in [model['dimensions'].split(',') for model in self.custom_models] for i in s] - self.custom_models_dims = [dim if '::' in dim else f'{self.host}::{dim}' for dim in self.custom_models_dims] - self.custom_models_charts = list(set([dim.split('|')[0].split('::')[1] for dim in self.custom_models_dims])) - self.custom_models_hosts = list(set([dim.split('::')[0] for dim in self.custom_models_dims])) - self.custom_models_host_charts_dict = {} - for host in self.custom_models_hosts: - self.custom_models_host_charts_dict[host] = list(set([dim.split('::')[1].split('|')[0] for dim in self.custom_models_dims if dim.startswith(host)])) - self.custom_models_dims_renamed = [f"{model['name']}|{dim}" for model in self.custom_models for dim in model['dimensions'].split(',')] - self.models_in_scope = list(set([f'{self.host}::{c}' for c in self.charts_in_scope] + self.custom_models_names)) - self.charts_in_scope = list(set(self.charts_in_scope + self.custom_models_charts)) - self.host_charts_dict = {self.host: self.charts_in_scope} - for host in self.custom_models_host_charts_dict: - if host not in self.host_charts_dict: - self.host_charts_dict[host] = self.custom_models_host_charts_dict[host] - else: - for chart in self.custom_models_host_charts_dict[host]: - if chart not in self.host_charts_dict[host]: - self.host_charts_dict[host].extend(chart) - else: - self.models_in_scope = [f'{self.host}::{c}' for c in self.charts_in_scope] - self.host_charts_dict = {self.host: self.charts_in_scope} - self.model_display_names = {model: model.split('::')[1] if '::' in model else model for model in self.models_in_scope} - #self.info(f'self.host_charts_dict (len={len(self.host_charts_dict[self.host])}): {self.host_charts_dict}') - - def data_init(self): - """Initialize some empty data objects. - """ - self.data_probability_latest = {f'{m}_prob': 0 for m in self.charts_in_scope} - self.data_anomaly_latest = {f'{m}_anomaly': 0 for m in self.charts_in_scope} - self.data_latest = {**self.data_probability_latest, **self.data_anomaly_latest} - - def model_params_init(self): - """Model parameters initialisation. - """ - self.train_max_n = self.configuration.get('train_max_n', 100000) - self.train_n_secs = self.configuration.get('train_n_secs', 14400) - self.offset_n_secs = self.configuration.get('offset_n_secs', 0) - self.train_every_n = self.configuration.get('train_every_n', 1800) - self.train_no_prediction_n = self.configuration.get('train_no_prediction_n', 10) - self.initial_train_data_after = self.configuration.get('initial_train_data_after', 0) - self.initial_train_data_before = self.configuration.get('initial_train_data_before', 0) - self.contamination = self.configuration.get('contamination', 0.001) - self.lags_n = {model: self.configuration.get('lags_n', 5) for model in self.models_in_scope} - self.smooth_n = {model: self.configuration.get('smooth_n', 5) for model in self.models_in_scope} - self.diffs_n = {model: self.configuration.get('diffs_n', 5) for model in self.models_in_scope} - - def models_init(self): - """Models initialisation. - """ - self.model = self.configuration.get('model', 'pca') - if self.model == 'pca': - self.models = {model: PCA(contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'loda': - self.models = {model: LODA(contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'iforest': - self.models = {model: IForest(n_estimators=50, bootstrap=True, behaviour='new', contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'cblof': - self.models = {model: CBLOF(n_clusters=3, contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'feature_bagging': - self.models = {model: FeatureBagging(base_estimator=PCA(contamination=self.contamination), contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'copod': - self.models = {model: COPOD(contamination=self.contamination) for model in self.models_in_scope} - elif self.model == 'hbos': - self.models = {model: HBOS(contamination=self.contamination) for model in self.models_in_scope} - else: - self.models = {model: HBOS(contamination=self.contamination) for model in self.models_in_scope} - self.custom_model_scalers = {model: MinMaxScaler() for model in self.models_in_scope} - - def model_init(self, model): - """Model initialisation of a single model. - """ - if self.model == 'pca': - self.models[model] = PCA(contamination=self.contamination) - elif self.model == 'loda': - self.models[model] = LODA(contamination=self.contamination) - elif self.model == 'iforest': - self.models[model] = IForest(n_estimators=50, bootstrap=True, behaviour='new', contamination=self.contamination) - elif self.model == 'cblof': - self.models[model] = CBLOF(n_clusters=3, contamination=self.contamination) - elif self.model == 'feature_bagging': - self.models[model] = FeatureBagging(base_estimator=PCA(contamination=self.contamination), contamination=self.contamination) - elif self.model == 'copod': - self.models[model] = COPOD(contamination=self.contamination) - elif self.model == 'hbos': - self.models[model] = HBOS(contamination=self.contamination) - else: - self.models[model] = HBOS(contamination=self.contamination) - self.custom_model_scalers[model] = MinMaxScaler() - - def reinitialize(self): - """Reinitialize charts, models and data to a beginning state. - """ - self.charts_init() - self.custom_models_init() - self.data_init() - self.model_params_init() - self.models_init() - - def save_data_latest(self, data, data_probability, data_anomaly): - """Save the most recent data objects to be used if needed in the future. - """ - self.data_latest = data - self.data_probability_latest = data_probability - self.data_anomaly_latest = data_anomaly - - def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1): - """If dimension not in chart then add it. - """ - for dim in data: - if dim not in self.collected_dims[chart]: - self.collected_dims[chart].add(dim) - self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor]) - - for dim in list(self.collected_dims[chart]): - if dim not in data: - self.collected_dims[chart].remove(dim) - self.charts[chart].del_dimension(dim, hide=False) - - def add_custom_models_dims(self, df): - """Given a df, select columns used by custom models, add custom model name as prefix, and append to df. - - :param df <pd.DataFrame>: dataframe to append new renamed columns to. - :return: <pd.DataFrame> dataframe with additional columns added relating to the specified custom models. - """ - df_custom = df[self.custom_models_dims].copy() - df_custom.columns = self.custom_models_dims_renamed - df = df.join(df_custom) - - return df - - def make_features(self, arr, train=False, model=None): - """Take in numpy array and preprocess accordingly by taking diffs, smoothing and adding lags. - - :param arr <np.ndarray>: numpy array we want to make features from. - :param train <bool>: True if making features for training, in which case need to fit_transform scaler and maybe sample train_max_n. - :param model <str>: model to make features for. - :return: <np.ndarray> transformed numpy array. - """ - - def lag(arr, n): - res = np.empty_like(arr) - res[:n] = np.nan - res[n:] = arr[:-n] - - return res - - arr = np.nan_to_num(arr) - - diffs_n = self.diffs_n[model] - smooth_n = self.smooth_n[model] - lags_n = self.lags_n[model] - - if self.custom_models_normalize and model in self.custom_models_names: - if train: - arr = self.custom_model_scalers[model].fit_transform(arr) - else: - arr = self.custom_model_scalers[model].transform(arr) - - if diffs_n > 0: - arr = np.diff(arr, diffs_n, axis=0) - arr = arr[~np.isnan(arr).any(axis=1)] - - if smooth_n > 1: - arr = np.cumsum(arr, axis=0, dtype=float) - arr[smooth_n:] = arr[smooth_n:] - arr[:-smooth_n] - arr = arr[smooth_n - 1:] / smooth_n - arr = arr[~np.isnan(arr).any(axis=1)] - - if lags_n > 0: - arr_orig = np.copy(arr) - for lag_n in range(1, lags_n + 1): - arr = np.concatenate((arr, lag(arr_orig, lag_n)), axis=1) - arr = arr[~np.isnan(arr).any(axis=1)] - - if train: - if len(arr) > self.train_max_n: - arr = arr[np.random.randint(arr.shape[0], size=self.train_max_n), :] - - arr = np.nan_to_num(arr) - - return arr - - def train(self, models_to_train=None, train_data_after=0, train_data_before=0): - """Pull required training data and train a model for each specified model. - - :param models_to_train <list>: list of models to train on. - :param train_data_after <int>: integer timestamp for start of train data. - :param train_data_before <int>: integer timestamp for end of train data. - """ - now = datetime.now().timestamp() - if train_data_after > 0 and train_data_before > 0: - before = train_data_before - after = train_data_after - else: - before = int(now) - self.offset_n_secs - after = before - self.train_n_secs - - # get training data - df_train = get_data( - host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', after=after, before=before, - sort_cols=True, numeric_only=True, protocol=self.protocol, float_size='float32', user=self.username, pwd=self.password, - verify=self.tls_verify - ).ffill() - if self.custom_models: - df_train = self.add_custom_models_dims(df_train) - - # train model - self.try_fit(df_train, models_to_train=models_to_train) - self.info(f'training complete in {round(time.time() - now, 2)} seconds (runs_counter={self.runs_counter}, model={self.model}, train_n_secs={self.train_n_secs}, models={len(self.fitted_at)}, n_fit_success={self.n_fit_success}, n_fit_fails={self.n_fit_fail}, after={after}, before={before}).') - self.last_train_at = self.runs_counter - - def try_fit(self, df_train, models_to_train=None): - """Try fit each model and try to fallback to a default model if fit fails for any reason. - - :param df_train <pd.DataFrame>: data to train on. - :param models_to_train <list>: list of models to train. - """ - if models_to_train is None: - models_to_train = list(self.models.keys()) - self.n_fit_fail, self.n_fit_success = 0, 0 - for model in models_to_train: - if model not in self.models: - self.model_init(model) - X_train = self.make_features( - df_train[df_train.columns[df_train.columns.str.startswith(f'{model}|')]].values, - train=True, model=model) - try: - self.models[model].fit(X_train) - self.n_fit_success += 1 - except Exception as e: - self.n_fit_fail += 1 - self.info(e) - self.info(f'training failed for {model} at run_counter {self.runs_counter}, defaulting to hbos model.') - self.models[model] = HBOS(contamination=self.contamination) - self.models[model].fit(X_train) - self.fitted_at[model] = self.runs_counter - - def predict(self): - """Get latest data, make it into a feature vector, and get predictions for each available model. - - :return: (<dict>,<dict>) tuple of dictionaries, one for probability scores and the other for anomaly predictions. - """ - # get recent data to predict on - df_allmetrics = get_allmetrics_async( - host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', wide=True, sort_cols=True, - protocol=self.protocol, numeric_only=True, float_size='float32', user=self.username, pwd=self.password - ) - if self.custom_models: - df_allmetrics = self.add_custom_models_dims(df_allmetrics) - self.df_allmetrics = self.df_allmetrics.append(df_allmetrics).ffill().tail((max(self.lags_n.values()) + max(self.smooth_n.values()) + max(self.diffs_n.values())) * 2) - - # get predictions - data_probability, data_anomaly = self.try_predict() - - return data_probability, data_anomaly - - def try_predict(self): - """Try make prediction and fall back to last known prediction if fails. - - :return: (<dict>,<dict>) tuple of dictionaries, one for probability scores and the other for anomaly predictions. - """ - data_probability, data_anomaly = {}, {} - for model in self.fitted_at.keys(): - model_display_name = self.model_display_names[model] - try: - X_model = np.nan_to_num( - self.make_features( - self.df_allmetrics[self.df_allmetrics.columns[self.df_allmetrics.columns.str.startswith(f'{model}|')]].values, - model=model - )[-1,:].reshape(1, -1) - ) - data_probability[model_display_name + '_prob'] = np.nan_to_num(self.models[model].predict_proba(X_model)[-1][1]) * 10000 - data_anomaly[model_display_name + '_anomaly'] = self.models[model].predict(X_model)[-1] - except Exception as _: - #self.info(e) - if model_display_name + '_prob' in self.data_latest: - #self.info(f'prediction failed for {model} at run_counter {self.runs_counter}, using last prediction instead.') - data_probability[model_display_name + '_prob'] = self.data_latest[model_display_name + '_prob'] - data_anomaly[model_display_name + '_anomaly'] = self.data_latest[model_display_name + '_anomaly'] - else: - #self.info(f'prediction failed for {model} at run_counter {self.runs_counter}, skipping as no previous prediction.') - continue - - return data_probability, data_anomaly - - def get_data(self): - - # initialize to what's available right now - if self.reinitialize_at_every_step or len(self.host_charts_dict[self.host]) == 0: - self.charts_init() - self.custom_models_init() - self.model_params_init() - - # if not all models have been trained then train those we need to - if len(self.fitted_at) < len(self.models_in_scope): - self.train( - models_to_train=[m for m in self.models_in_scope if m not in self.fitted_at], - train_data_after=self.initial_train_data_after, - train_data_before=self.initial_train_data_before - ) - # retrain all models as per schedule from config - elif self.train_every_n > 0 and self.runs_counter % self.train_every_n == 0: - self.reinitialize() - self.train() - - # roll forward previous predictions around a training step to avoid the possibility of having the training itself trigger an anomaly - if (self.runs_counter - self.last_train_at) <= self.train_no_prediction_n: - data_probability = self.data_probability_latest - data_anomaly = self.data_anomaly_latest - else: - data_probability, data_anomaly = self.predict() - if self.include_average_prob: - average_prob = np.mean(list(data_probability.values())) - data_probability['average_prob'] = 0 if np.isnan(average_prob) else average_prob - - data = {**data_probability, **data_anomaly} - - self.validate_charts('probability', data_probability, divisor=100) - self.validate_charts('anomaly', data_anomaly) - - self.save_data_latest(data, data_probability, data_anomaly) - - #self.info(f'len(data)={len(data)}') - #self.info(f'data') - - return data |