summaryrefslogtreecommitdiffstats
path: root/src/ml/dlib/examples/dnn_imagenet_train_ex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/ml/dlib/examples/dnn_imagenet_train_ex.cpp')
-rw-r--r--src/ml/dlib/examples/dnn_imagenet_train_ex.cpp368
1 files changed, 368 insertions, 0 deletions
diff --git a/src/ml/dlib/examples/dnn_imagenet_train_ex.cpp b/src/ml/dlib/examples/dnn_imagenet_train_ex.cpp
new file mode 100644
index 000000000..e672018d3
--- /dev/null
+++ b/src/ml/dlib/examples/dnn_imagenet_train_ex.cpp
@@ -0,0 +1,368 @@
+// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
+/*
+ This program was used to train the resnet34_1000_imagenet_classifier.dnn
+ network used by the dnn_imagenet_ex.cpp example program.
+
+ You should be familiar with dlib's DNN module before reading this example
+ program. So read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp first.
+*/
+
+
+
+#include <dlib/dnn.h>
+#include <iostream>
+#include <dlib/data_io.h>
+#include <dlib/image_transforms.h>
+#include <dlib/dir_nav.h>
+#include <iterator>
+#include <thread>
+
+using namespace std;
+using namespace dlib;
+
+// ----------------------------------------------------------------------------------------
+
+template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
+using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
+
+template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
+using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
+
+template <int N, template <typename> class BN, int stride, typename SUBNET>
+using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
+
+
+template <int N, typename SUBNET> using res = relu<residual<block,N,bn_con,SUBNET>>;
+template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
+template <int N, typename SUBNET> using res_down = relu<residual_down<block,N,bn_con,SUBNET>>;
+template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
+
+
+// ----------------------------------------------------------------------------------------
+
+template <typename SUBNET> using level1 = res<512,res<512,res_down<512,SUBNET>>>;
+template <typename SUBNET> using level2 = res<256,res<256,res<256,res<256,res<256,res_down<256,SUBNET>>>>>>;
+template <typename SUBNET> using level3 = res<128,res<128,res<128,res_down<128,SUBNET>>>>;
+template <typename SUBNET> using level4 = res<64,res<64,res<64,SUBNET>>>;
+
+template <typename SUBNET> using alevel1 = ares<512,ares<512,ares_down<512,SUBNET>>>;
+template <typename SUBNET> using alevel2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>;
+template <typename SUBNET> using alevel3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>;
+template <typename SUBNET> using alevel4 = ares<64,ares<64,ares<64,SUBNET>>>;
+
+// training network type
+using net_type = loss_multiclass_log<fc<1000,avg_pool_everything<
+ level1<
+ level2<
+ level3<
+ level4<
+ max_pool<3,3,2,2,relu<bn_con<con<64,7,7,2,2,
+ input_rgb_image_sized<227>
+ >>>>>>>>>>>;
+
+// testing network type (replaced batch normalization with fixed affine transforms)
+using anet_type = loss_multiclass_log<fc<1000,avg_pool_everything<
+ alevel1<
+ alevel2<
+ alevel3<
+ alevel4<
+ max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
+ input_rgb_image_sized<227>
+ >>>>>>>>>>>;
+
+// ----------------------------------------------------------------------------------------
+
+rectangle make_random_cropping_rect_resnet(
+ const matrix<rgb_pixel>& img,
+ dlib::rand& rnd
+)
+{
+ // figure out what rectangle we want to crop from the image
+ double mins = 0.466666666, maxs = 0.875;
+ auto scale = mins + rnd.get_random_double()*(maxs-mins);
+ auto size = scale*std::min(img.nr(), img.nc());
+ rectangle rect(size, size);
+ // randomly shift the box around
+ point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
+ rnd.get_random_32bit_number()%(img.nr()-rect.height()));
+ return move_rect(rect, offset);
+}
+
+// ----------------------------------------------------------------------------------------
+
+void randomly_crop_image (
+ const matrix<rgb_pixel>& img,
+ matrix<rgb_pixel>& crop,
+ dlib::rand& rnd
+)
+{
+ auto rect = make_random_cropping_rect_resnet(img, rnd);
+
+ // now crop it out as a 227x227 image.
+ extract_image_chip(img, chip_details(rect, chip_dims(227,227)), crop);
+
+ // Also randomly flip the image
+ if (rnd.get_random_double() > 0.5)
+ crop = fliplr(crop);
+
+ // And then randomly adjust the colors.
+ apply_random_color_offset(crop, rnd);
+}
+
+void randomly_crop_images (
+ const matrix<rgb_pixel>& img,
+ dlib::array<matrix<rgb_pixel>>& crops,
+ dlib::rand& rnd,
+ long num_crops
+)
+{
+ std::vector<chip_details> dets;
+ for (long i = 0; i < num_crops; ++i)
+ {
+ auto rect = make_random_cropping_rect_resnet(img, rnd);
+ dets.push_back(chip_details(rect, chip_dims(227,227)));
+ }
+
+ extract_image_chips(img, dets, crops);
+
+ for (auto&& img : crops)
+ {
+ // Also randomly flip the image
+ if (rnd.get_random_double() > 0.5)
+ img = fliplr(img);
+
+ // And then randomly adjust the colors.
+ apply_random_color_offset(img, rnd);
+ }
+}
+
+// ----------------------------------------------------------------------------------------
+
+struct image_info
+{
+ string filename;
+ string label;
+ long numeric_label;
+};
+
+std::vector<image_info> get_imagenet_train_listing(
+ const std::string& images_folder
+)
+{
+ std::vector<image_info> results;
+ image_info temp;
+ temp.numeric_label = 0;
+ // We will loop over all the label types in the dataset, each is contained in a subfolder.
+ auto subdirs = directory(images_folder).get_dirs();
+ // But first, sort the sub directories so the numeric labels will be assigned in sorted order.
+ std::sort(subdirs.begin(), subdirs.end());
+ for (auto subdir : subdirs)
+ {
+ // Now get all the images in this label type
+ temp.label = subdir.name();
+ for (auto image_file : subdir.get_files())
+ {
+ temp.filename = image_file;
+ results.push_back(temp);
+ }
+ ++temp.numeric_label;
+ }
+ return results;
+}
+
+std::vector<image_info> get_imagenet_val_listing(
+ const std::string& imagenet_root_dir,
+ const std::string& validation_images_file
+)
+{
+ ifstream fin(validation_images_file);
+ string label, filename;
+ std::vector<image_info> results;
+ image_info temp;
+ temp.numeric_label = -1;
+ while(fin >> label >> filename)
+ {
+ temp.filename = imagenet_root_dir+"/"+filename;
+ if (!file_exists(temp.filename))
+ {
+ cerr << "file doesn't exist! " << temp.filename << endl;
+ exit(1);
+ }
+ if (label != temp.label)
+ ++temp.numeric_label;
+
+ temp.label = label;
+ results.push_back(temp);
+ }
+
+ return results;
+}
+
+// ----------------------------------------------------------------------------------------
+
+int main(int argc, char** argv) try
+{
+ if (argc != 3)
+ {
+ cout << "To run this program you need a copy of the imagenet ILSVRC2015 dataset and" << endl;
+ cout << "also the file http://dlib.net/files/imagenet2015_validation_images.txt.bz2" << endl;
+ cout << endl;
+ cout << "With those things, you call this program like this: " << endl;
+ cout << "./dnn_imagenet_train_ex /path/to/ILSVRC2015 imagenet2015_validation_images.txt" << endl;
+ return 1;
+ }
+
+ cout << "\nSCANNING IMAGENET DATASET\n" << endl;
+
+ auto listing = get_imagenet_train_listing(string(argv[1])+"/Data/CLS-LOC/train/");
+ cout << "images in dataset: " << listing.size() << endl;
+ const auto number_of_classes = listing.back().numeric_label+1;
+ if (listing.size() == 0 || number_of_classes != 1000)
+ {
+ cout << "Didn't find the imagenet dataset. " << endl;
+ return 1;
+ }
+
+ set_dnn_prefer_smallest_algorithms();
+
+
+ const double initial_learning_rate = 0.1;
+ const double weight_decay = 0.0001;
+ const double momentum = 0.9;
+
+ net_type net;
+ dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum));
+ trainer.be_verbose();
+ trainer.set_learning_rate(initial_learning_rate);
+ trainer.set_synchronization_file("imagenet_trainer_state_file.dat", std::chrono::minutes(10));
+ // This threshold is probably excessively large. You could likely get good results
+ // with a smaller value but if you aren't in a hurry this value will surely work well.
+ trainer.set_iterations_without_progress_threshold(20000);
+ // Since the progress threshold is so large might as well set the batch normalization
+ // stats window to something big too.
+ set_all_bn_running_stats_window_sizes(net, 1000);
+
+ std::vector<matrix<rgb_pixel>> samples;
+ std::vector<unsigned long> labels;
+
+ // Start a bunch of threads that read images from disk and pull out random crops. It's
+ // important to be sure to feed the GPU fast enough to keep it busy. Using multiple
+ // thread for this kind of data preparation helps us do that. Each thread puts the
+ // crops into the data queue.
+ dlib::pipe<std::pair<image_info,matrix<rgb_pixel>>> data(200);
+ auto f = [&data, &listing](time_t seed)
+ {
+ dlib::rand rnd(time(0)+seed);
+ matrix<rgb_pixel> img;
+ std::pair<image_info, matrix<rgb_pixel>> temp;
+ while(data.is_enabled())
+ {
+ temp.first = listing[rnd.get_random_32bit_number()%listing.size()];
+ load_image(img, temp.first.filename);
+ randomly_crop_image(img, temp.second, rnd);
+ data.enqueue(temp);
+ }
+ };
+ std::thread data_loader1([f](){ f(1); });
+ std::thread data_loader2([f](){ f(2); });
+ std::thread data_loader3([f](){ f(3); });
+ std::thread data_loader4([f](){ f(4); });
+
+ // The main training loop. Keep making mini-batches and giving them to the trainer.
+ // We will run until the learning rate has dropped by a factor of 1e-3.
+ while(trainer.get_learning_rate() >= initial_learning_rate*1e-3)
+ {
+ samples.clear();
+ labels.clear();
+
+ // make a 160 image mini-batch
+ std::pair<image_info, matrix<rgb_pixel>> img;
+ while(samples.size() < 160)
+ {
+ data.dequeue(img);
+
+ samples.push_back(std::move(img.second));
+ labels.push_back(img.first.numeric_label);
+ }
+
+ trainer.train_one_step(samples, labels);
+ }
+
+ // Training done, tell threads to stop and make sure to wait for them to finish before
+ // moving on.
+ data.disable();
+ data_loader1.join();
+ data_loader2.join();
+ data_loader3.join();
+ data_loader4.join();
+
+ // also wait for threaded processing to stop in the trainer.
+ trainer.get_net();
+
+ net.clean();
+ cout << "saving network" << endl;
+ serialize("resnet34.dnn") << net;
+
+
+
+
+
+
+ // Now test the network on the imagenet validation dataset. First, make a testing
+ // network with softmax as the final layer. We don't have to do this if we just wanted
+ // to test the "top1 accuracy" since the normal network outputs the class prediction.
+ // But this snet object will make getting the top5 predictions easy as it directly
+ // outputs the probability of each class as its final output.
+ softmax<anet_type::subnet_type> snet; snet.subnet() = net.subnet();
+
+ cout << "Testing network on imagenet validation dataset..." << endl;
+ int num_right = 0;
+ int num_wrong = 0;
+ int num_right_top1 = 0;
+ int num_wrong_top1 = 0;
+ dlib::rand rnd(time(0));
+ // loop over all the imagenet validation images
+ for (auto l : get_imagenet_val_listing(argv[1], argv[2]))
+ {
+ dlib::array<matrix<rgb_pixel>> images;
+ matrix<rgb_pixel> img;
+ load_image(img, l.filename);
+ // Grab 16 random crops from the image. We will run all of them through the
+ // network and average the results.
+ const int num_crops = 16;
+ randomly_crop_images(img, images, rnd, num_crops);
+ // p(i) == the probability the image contains object of class i.
+ matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
+
+ // check top 1 accuracy
+ if (index_of_max(p) == l.numeric_label)
+ ++num_right_top1;
+ else
+ ++num_wrong_top1;
+
+ // check top 5 accuracy
+ bool found_match = false;
+ for (int k = 0; k < 5; ++k)
+ {
+ long predicted_label = index_of_max(p);
+ p(predicted_label) = 0;
+ if (predicted_label == l.numeric_label)
+ {
+ found_match = true;
+ break;
+ }
+
+ }
+ if (found_match)
+ ++num_right;
+ else
+ ++num_wrong;
+ }
+ cout << "val top5 accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
+ cout << "val top1 accuracy: " << num_right_top1/(double)(num_right_top1+num_wrong_top1) << endl;
+}
+catch(std::exception& e)
+{
+ cout << e.what() << endl;
+}
+