summaryrefslogtreecommitdiffstats
path: root/src/web/api/queries/query.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/web/api/queries/query.c')
-rw-r--r--src/web/api/queries/query.c3736
1 files changed, 3736 insertions, 0 deletions
diff --git a/src/web/api/queries/query.c b/src/web/api/queries/query.c
new file mode 100644
index 000000000..c97b546b1
--- /dev/null
+++ b/src/web/api/queries/query.c
@@ -0,0 +1,3736 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#include "query.h"
+#include "web/api/formatters/rrd2json.h"
+#include "rrdr.h"
+
+#include "average/average.h"
+#include "countif/countif.h"
+#include "incremental_sum/incremental_sum.h"
+#include "max/max.h"
+#include "median/median.h"
+#include "min/min.h"
+#include "sum/sum.h"
+#include "stddev/stddev.h"
+#include "ses/ses.h"
+#include "des/des.h"
+#include "percentile/percentile.h"
+#include "trimmed_mean/trimmed_mean.h"
+
+#define QUERY_PLAN_MIN_POINTS 10
+#define POINTS_TO_EXPAND_QUERY 5
+
+// ----------------------------------------------------------------------------
+
+static struct {
+ const char *name;
+ uint32_t hash;
+ RRDR_TIME_GROUPING value;
+ RRDR_TIME_GROUPING add_flush;
+
+ // One time initialization for the module.
+ // This is called once, when netdata starts.
+ void (*init)(void);
+
+ // Allocate all required structures for a query.
+ // This is called once for each netdata query.
+ void (*create)(struct rrdresult *r, const char *options);
+
+ // Cleanup collected values, but don't destroy the structures.
+ // This is called when the query engine switches dimensions,
+ // as part of the same query (so same chart, switching metric).
+ void (*reset)(struct rrdresult *r);
+
+ // Free all resources allocated for the query.
+ void (*free)(struct rrdresult *r);
+
+ // Add a single value into the calculation.
+ // The module may decide to cache it, or use it in the fly.
+ void (*add)(struct rrdresult *r, NETDATA_DOUBLE value);
+
+ // Generate a single result for the values added so far.
+ // More values and points may be requested later.
+ // It is up to the module to reset its internal structures
+ // when flushing it (so for a few modules it may be better to
+ // continue after a flush as if nothing changed, for others a
+ // cleanup of the internal structures may be required).
+ NETDATA_DOUBLE (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
+
+ TIER_QUERY_FETCH tier_query_fetch;
+} api_v1_data_groups[] = {
+ {.name = "average",
+ .hash = 0,
+ .value = RRDR_GROUPING_AVERAGE,
+ .add_flush = RRDR_GROUPING_AVERAGE,
+ .init = NULL,
+ .create= tg_average_create,
+ .reset = tg_average_reset,
+ .free = tg_average_free,
+ .add = tg_average_add,
+ .flush = tg_average_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "avg", // alias on 'average'
+ .hash = 0,
+ .value = RRDR_GROUPING_AVERAGE,
+ .add_flush = RRDR_GROUPING_AVERAGE,
+ .init = NULL,
+ .create= tg_average_create,
+ .reset = tg_average_reset,
+ .free = tg_average_free,
+ .add = tg_average_add,
+ .flush = tg_average_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "mean", // alias on 'average'
+ .hash = 0,
+ .value = RRDR_GROUPING_AVERAGE,
+ .add_flush = RRDR_GROUPING_AVERAGE,
+ .init = NULL,
+ .create= tg_average_create,
+ .reset = tg_average_reset,
+ .free = tg_average_free,
+ .add = tg_average_add,
+ .flush = tg_average_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean1",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN1,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_1,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean2",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN2,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_2,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean3",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN3,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_3,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean5",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_5,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean10",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN10,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_10,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean15",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN15,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_15,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean20",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN20,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_20,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean25",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN25,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_25,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-mean",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEAN,
+ .add_flush = RRDR_GROUPING_TRIMMED_MEAN,
+ .init = NULL,
+ .create= tg_trimmed_mean_create_5,
+ .reset = tg_trimmed_mean_reset,
+ .free = tg_trimmed_mean_free,
+ .add = tg_trimmed_mean_add,
+ .flush = tg_trimmed_mean_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "incremental_sum",
+ .hash = 0,
+ .value = RRDR_GROUPING_INCREMENTAL_SUM,
+ .add_flush = RRDR_GROUPING_INCREMENTAL_SUM,
+ .init = NULL,
+ .create= tg_incremental_sum_create,
+ .reset = tg_incremental_sum_reset,
+ .free = tg_incremental_sum_free,
+ .add = tg_incremental_sum_add,
+ .flush = tg_incremental_sum_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "incremental-sum",
+ .hash = 0,
+ .value = RRDR_GROUPING_INCREMENTAL_SUM,
+ .add_flush = RRDR_GROUPING_INCREMENTAL_SUM,
+ .init = NULL,
+ .create= tg_incremental_sum_create,
+ .reset = tg_incremental_sum_reset,
+ .free = tg_incremental_sum_free,
+ .add = tg_incremental_sum_add,
+ .flush = tg_incremental_sum_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "median",
+ .hash = 0,
+ .value = RRDR_GROUPING_MEDIAN,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median1",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN1,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_1,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median2",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN2,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_2,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median3",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN3,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_3,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median5",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_5,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median10",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN10,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_10,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median15",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN15,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_15,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median20",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN20,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_20,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median25",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN25,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_25,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "trimmed-median",
+ .hash = 0,
+ .value = RRDR_GROUPING_TRIMMED_MEDIAN,
+ .add_flush = RRDR_GROUPING_MEDIAN,
+ .init = NULL,
+ .create= tg_median_create_trimmed_5,
+ .reset = tg_median_reset,
+ .free = tg_median_free,
+ .add = tg_median_add,
+ .flush = tg_median_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile25",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE25,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_25,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile50",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE50,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_50,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile75",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE75,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_75,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile80",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE80,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_80,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile90",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE90,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_90,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile95",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_95,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile97",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE97,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_97,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile98",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE98,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_98,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile99",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE99,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_99,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "percentile",
+ .hash = 0,
+ .value = RRDR_GROUPING_PERCENTILE,
+ .add_flush = RRDR_GROUPING_PERCENTILE,
+ .init = NULL,
+ .create= tg_percentile_create_95,
+ .reset = tg_percentile_reset,
+ .free = tg_percentile_free,
+ .add = tg_percentile_add,
+ .flush = tg_percentile_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "min",
+ .hash = 0,
+ .value = RRDR_GROUPING_MIN,
+ .add_flush = RRDR_GROUPING_MIN,
+ .init = NULL,
+ .create= tg_min_create,
+ .reset = tg_min_reset,
+ .free = tg_min_free,
+ .add = tg_min_add,
+ .flush = tg_min_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_MIN
+ },
+ {.name = "max",
+ .hash = 0,
+ .value = RRDR_GROUPING_MAX,
+ .add_flush = RRDR_GROUPING_MAX,
+ .init = NULL,
+ .create= tg_max_create,
+ .reset = tg_max_reset,
+ .free = tg_max_free,
+ .add = tg_max_add,
+ .flush = tg_max_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_MAX
+ },
+ {.name = "sum",
+ .hash = 0,
+ .value = RRDR_GROUPING_SUM,
+ .add_flush = RRDR_GROUPING_SUM,
+ .init = NULL,
+ .create= tg_sum_create,
+ .reset = tg_sum_reset,
+ .free = tg_sum_free,
+ .add = tg_sum_add,
+ .flush = tg_sum_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_SUM
+ },
+
+ // standard deviation
+ {.name = "stddev",
+ .hash = 0,
+ .value = RRDR_GROUPING_STDDEV,
+ .add_flush = RRDR_GROUPING_STDDEV,
+ .init = NULL,
+ .create= tg_stddev_create,
+ .reset = tg_stddev_reset,
+ .free = tg_stddev_free,
+ .add = tg_stddev_add,
+ .flush = tg_stddev_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "cv", // coefficient variation is calculated by stddev
+ .hash = 0,
+ .value = RRDR_GROUPING_CV,
+ .add_flush = RRDR_GROUPING_CV,
+ .init = NULL,
+ .create= tg_stddev_create, // not an error, stddev calculates this too
+ .reset = tg_stddev_reset, // not an error, stddev calculates this too
+ .free = tg_stddev_free, // not an error, stddev calculates this too
+ .add = tg_stddev_add, // not an error, stddev calculates this too
+ .flush = tg_stddev_coefficient_of_variation_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "rsd", // alias of 'cv'
+ .hash = 0,
+ .value = RRDR_GROUPING_CV,
+ .add_flush = RRDR_GROUPING_CV,
+ .init = NULL,
+ .create= tg_stddev_create, // not an error, stddev calculates this too
+ .reset = tg_stddev_reset, // not an error, stddev calculates this too
+ .free = tg_stddev_free, // not an error, stddev calculates this too
+ .add = tg_stddev_add, // not an error, stddev calculates this too
+ .flush = tg_stddev_coefficient_of_variation_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+
+ // single exponential smoothing
+ {.name = "ses",
+ .hash = 0,
+ .value = RRDR_GROUPING_SES,
+ .add_flush = RRDR_GROUPING_SES,
+ .init = tg_ses_init,
+ .create= tg_ses_create,
+ .reset = tg_ses_reset,
+ .free = tg_ses_free,
+ .add = tg_ses_add,
+ .flush = tg_ses_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "ema", // alias for 'ses'
+ .hash = 0,
+ .value = RRDR_GROUPING_SES,
+ .add_flush = RRDR_GROUPING_SES,
+ .init = NULL,
+ .create= tg_ses_create,
+ .reset = tg_ses_reset,
+ .free = tg_ses_free,
+ .add = tg_ses_add,
+ .flush = tg_ses_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+ {.name = "ewma", // alias for ses
+ .hash = 0,
+ .value = RRDR_GROUPING_SES,
+ .add_flush = RRDR_GROUPING_SES,
+ .init = NULL,
+ .create= tg_ses_create,
+ .reset = tg_ses_reset,
+ .free = tg_ses_free,
+ .add = tg_ses_add,
+ .flush = tg_ses_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+
+ // double exponential smoothing
+ {.name = "des",
+ .hash = 0,
+ .value = RRDR_GROUPING_DES,
+ .add_flush = RRDR_GROUPING_DES,
+ .init = tg_des_init,
+ .create= tg_des_create,
+ .reset = tg_des_reset,
+ .free = tg_des_free,
+ .add = tg_des_add,
+ .flush = tg_des_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+
+ {.name = "countif",
+ .hash = 0,
+ .value = RRDR_GROUPING_COUNTIF,
+ .add_flush = RRDR_GROUPING_COUNTIF,
+ .init = NULL,
+ .create= tg_countif_create,
+ .reset = tg_countif_reset,
+ .free = tg_countif_free,
+ .add = tg_countif_add,
+ .flush = tg_countif_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ },
+
+ // terminator
+ {.name = NULL,
+ .hash = 0,
+ .value = RRDR_GROUPING_UNDEFINED,
+ .add_flush = RRDR_GROUPING_AVERAGE,
+ .init = NULL,
+ .create= tg_average_create,
+ .reset = tg_average_reset,
+ .free = tg_average_free,
+ .add = tg_average_add,
+ .flush = tg_average_flush,
+ .tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
+ }
+};
+
+void time_grouping_init(void) {
+ int i;
+
+ for(i = 0; api_v1_data_groups[i].name ; i++) {
+ api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
+
+ if(api_v1_data_groups[i].init)
+ api_v1_data_groups[i].init();
+ }
+}
+
+const char *time_grouping_id2txt(RRDR_TIME_GROUPING group) {
+ int i;
+
+ for(i = 0; api_v1_data_groups[i].name ; i++) {
+ if(api_v1_data_groups[i].value == group) {
+ return api_v1_data_groups[i].name;
+ }
+ }
+
+ return "average";
+}
+
+RRDR_TIME_GROUPING time_grouping_txt2id(const char *name) {
+ int i;
+
+ uint32_t hash = simple_hash(name);
+ for(i = 0; api_v1_data_groups[i].name ; i++)
+ if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
+ return api_v1_data_groups[i].value;
+
+ return RRDR_GROUPING_AVERAGE;
+}
+
+RRDR_TIME_GROUPING time_grouping_parse(const char *name, RRDR_TIME_GROUPING def) {
+ int i;
+
+ uint32_t hash = simple_hash(name);
+ for(i = 0; api_v1_data_groups[i].name ; i++)
+ if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
+ return api_v1_data_groups[i].value;
+
+ return def;
+}
+
+const char *time_grouping_tostring(RRDR_TIME_GROUPING group) {
+ int i;
+
+ for(i = 0; api_v1_data_groups[i].name ; i++)
+ if(unlikely(group == api_v1_data_groups[i].value))
+ return api_v1_data_groups[i].name;
+
+ return "unknown";
+}
+
+static void rrdr_set_grouping_function(RRDR *r, RRDR_TIME_GROUPING group_method) {
+ int i, found = 0;
+ for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
+ if(api_v1_data_groups[i].value == group_method) {
+ r->time_grouping.create = api_v1_data_groups[i].create;
+ r->time_grouping.reset = api_v1_data_groups[i].reset;
+ r->time_grouping.free = api_v1_data_groups[i].free;
+ r->time_grouping.add = api_v1_data_groups[i].add;
+ r->time_grouping.flush = api_v1_data_groups[i].flush;
+ r->time_grouping.tier_query_fetch = api_v1_data_groups[i].tier_query_fetch;
+ r->time_grouping.add_flush = api_v1_data_groups[i].add_flush;
+ found = 1;
+ }
+ }
+ if(!found) {
+ errno = 0;
+ internal_error(true, "QUERY: grouping method %u not found. Using 'average'", (unsigned int)group_method);
+ r->time_grouping.create = tg_average_create;
+ r->time_grouping.reset = tg_average_reset;
+ r->time_grouping.free = tg_average_free;
+ r->time_grouping.add = tg_average_add;
+ r->time_grouping.flush = tg_average_flush;
+ r->time_grouping.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE;
+ r->time_grouping.add_flush = RRDR_GROUPING_AVERAGE;
+ }
+}
+
+static inline void time_grouping_add(RRDR *r, NETDATA_DOUBLE value, const RRDR_TIME_GROUPING add_flush) {
+ switch(add_flush) {
+ case RRDR_GROUPING_AVERAGE:
+ tg_average_add(r, value);
+ break;
+
+ case RRDR_GROUPING_MAX:
+ tg_max_add(r, value);
+ break;
+
+ case RRDR_GROUPING_MIN:
+ tg_min_add(r, value);
+ break;
+
+ case RRDR_GROUPING_MEDIAN:
+ tg_median_add(r, value);
+ break;
+
+ case RRDR_GROUPING_STDDEV:
+ case RRDR_GROUPING_CV:
+ tg_stddev_add(r, value);
+ break;
+
+ case RRDR_GROUPING_SUM:
+ tg_sum_add(r, value);
+ break;
+
+ case RRDR_GROUPING_COUNTIF:
+ tg_countif_add(r, value);
+ break;
+
+ case RRDR_GROUPING_TRIMMED_MEAN:
+ tg_trimmed_mean_add(r, value);
+ break;
+
+ case RRDR_GROUPING_PERCENTILE:
+ tg_percentile_add(r, value);
+ break;
+
+ case RRDR_GROUPING_SES:
+ tg_ses_add(r, value);
+ break;
+
+ case RRDR_GROUPING_DES:
+ tg_des_add(r, value);
+ break;
+
+ case RRDR_GROUPING_INCREMENTAL_SUM:
+ tg_incremental_sum_add(r, value);
+ break;
+
+ default:
+ r->time_grouping.add(r, value);
+ break;
+ }
+}
+
+static inline NETDATA_DOUBLE time_grouping_flush(RRDR *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr, const RRDR_TIME_GROUPING add_flush) {
+ switch(add_flush) {
+ case RRDR_GROUPING_AVERAGE:
+ return tg_average_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_MAX:
+ return tg_max_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_MIN:
+ return tg_min_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_MEDIAN:
+ return tg_median_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_STDDEV:
+ return tg_stddev_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_CV:
+ return tg_stddev_coefficient_of_variation_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_SUM:
+ return tg_sum_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_COUNTIF:
+ return tg_countif_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_TRIMMED_MEAN:
+ return tg_trimmed_mean_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_PERCENTILE:
+ return tg_percentile_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_SES:
+ return tg_ses_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_DES:
+ return tg_des_flush(r, rrdr_value_options_ptr);
+
+ case RRDR_GROUPING_INCREMENTAL_SUM:
+ return tg_incremental_sum_flush(r, rrdr_value_options_ptr);
+
+ default:
+ return r->time_grouping.flush(r, rrdr_value_options_ptr);
+ }
+}
+
+RRDR_GROUP_BY group_by_parse(char *s) {
+ RRDR_GROUP_BY group_by = RRDR_GROUP_BY_NONE;
+
+ while(s) {
+ char *key = strsep_skip_consecutive_separators(&s, ",| ");
+ if (!key || !*key) continue;
+
+ if (strcmp(key, "selected") == 0)
+ group_by |= RRDR_GROUP_BY_SELECTED;
+
+ if (strcmp(key, "dimension") == 0)
+ group_by |= RRDR_GROUP_BY_DIMENSION;
+
+ if (strcmp(key, "instance") == 0)
+ group_by |= RRDR_GROUP_BY_INSTANCE;
+
+ if (strcmp(key, "percentage-of-instance") == 0)
+ group_by |= RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE;
+
+ if (strcmp(key, "label") == 0)
+ group_by |= RRDR_GROUP_BY_LABEL;
+
+ if (strcmp(key, "node") == 0)
+ group_by |= RRDR_GROUP_BY_NODE;
+
+ if (strcmp(key, "context") == 0)
+ group_by |= RRDR_GROUP_BY_CONTEXT;
+
+ if (strcmp(key, "units") == 0)
+ group_by |= RRDR_GROUP_BY_UNITS;
+ }
+
+ if((group_by & RRDR_GROUP_BY_SELECTED) && (group_by & ~RRDR_GROUP_BY_SELECTED)) {
+ internal_error(true, "group-by given by query has 'selected' together with more groupings");
+ group_by = RRDR_GROUP_BY_SELECTED; // remove all other groupings
+ }
+
+ if(group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
+ group_by = RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE; // remove all other groupings
+
+ return group_by;
+}
+
+void buffer_json_group_by_to_array(BUFFER *wb, RRDR_GROUP_BY group_by) {
+ if(group_by == RRDR_GROUP_BY_NONE)
+ buffer_json_add_array_item_string(wb, "none");
+ else {
+ if (group_by & RRDR_GROUP_BY_DIMENSION)
+ buffer_json_add_array_item_string(wb, "dimension");
+
+ if (group_by & RRDR_GROUP_BY_INSTANCE)
+ buffer_json_add_array_item_string(wb, "instance");
+
+ if (group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
+ buffer_json_add_array_item_string(wb, "percentage-of-instance");
+
+ if (group_by & RRDR_GROUP_BY_LABEL)
+ buffer_json_add_array_item_string(wb, "label");
+
+ if (group_by & RRDR_GROUP_BY_NODE)
+ buffer_json_add_array_item_string(wb, "node");
+
+ if (group_by & RRDR_GROUP_BY_CONTEXT)
+ buffer_json_add_array_item_string(wb, "context");
+
+ if (group_by & RRDR_GROUP_BY_UNITS)
+ buffer_json_add_array_item_string(wb, "units");
+
+ if (group_by & RRDR_GROUP_BY_SELECTED)
+ buffer_json_add_array_item_string(wb, "selected");
+ }
+}
+
+RRDR_GROUP_BY_FUNCTION group_by_aggregate_function_parse(const char *s) {
+ if(strcmp(s, "average") == 0)
+ return RRDR_GROUP_BY_FUNCTION_AVERAGE;
+
+ if(strcmp(s, "avg") == 0)
+ return RRDR_GROUP_BY_FUNCTION_AVERAGE;
+
+ if(strcmp(s, "min") == 0)
+ return RRDR_GROUP_BY_FUNCTION_MIN;
+
+ if(strcmp(s, "max") == 0)
+ return RRDR_GROUP_BY_FUNCTION_MAX;
+
+ if(strcmp(s, "sum") == 0)
+ return RRDR_GROUP_BY_FUNCTION_SUM;
+
+ if(strcmp(s, "percentage") == 0)
+ return RRDR_GROUP_BY_FUNCTION_PERCENTAGE;
+
+ return RRDR_GROUP_BY_FUNCTION_AVERAGE;
+}
+
+const char *group_by_aggregate_function_to_string(RRDR_GROUP_BY_FUNCTION group_by_function) {
+ switch(group_by_function) {
+ default:
+ case RRDR_GROUP_BY_FUNCTION_AVERAGE:
+ return "average";
+
+ case RRDR_GROUP_BY_FUNCTION_MIN:
+ return "min";
+
+ case RRDR_GROUP_BY_FUNCTION_MAX:
+ return "max";
+
+ case RRDR_GROUP_BY_FUNCTION_SUM:
+ return "sum";
+
+ case RRDR_GROUP_BY_FUNCTION_PERCENTAGE:
+ return "percentage";
+ }
+}
+
+// ----------------------------------------------------------------------------
+// helpers to find our way in RRDR
+
+static inline RRDR_VALUE_FLAGS *UNUSED_FUNCTION(rrdr_line_options)(RRDR *r, long rrdr_line) {
+ return &r->o[ rrdr_line * r->d ];
+}
+
+static inline NETDATA_DOUBLE *UNUSED_FUNCTION(rrdr_line_values)(RRDR *r, long rrdr_line) {
+ return &r->v[ rrdr_line * r->d ];
+}
+
+static inline long rrdr_line_init(RRDR *r __maybe_unused, time_t t __maybe_unused, long rrdr_line) {
+ rrdr_line++;
+
+ internal_fatal(rrdr_line >= (long)r->n,
+ "QUERY: requested to step above RRDR size for query '%s'",
+ r->internal.qt->id);
+
+ internal_fatal(r->t[rrdr_line] != t,
+ "QUERY: wrong timestamp at RRDR line %ld, expected %ld, got %ld, of query '%s'",
+ rrdr_line, r->t[rrdr_line], t, r->internal.qt->id);
+
+ return rrdr_line;
+}
+
+// ----------------------------------------------------------------------------
+// tier management
+
+static bool query_metric_is_valid_tier(QUERY_METRIC *qm, size_t tier) {
+ if(!qm->tiers[tier].smh || !qm->tiers[tier].db_first_time_s || !qm->tiers[tier].db_last_time_s || !qm->tiers[tier].db_update_every_s)
+ return false;
+
+ return true;
+}
+
+static size_t query_metric_first_working_tier(QUERY_METRIC *qm) {
+ for(size_t tier = 0; tier < storage_tiers ; tier++) {
+
+ // find the db time-range for this tier for all metrics
+ STORAGE_METRIC_HANDLE *smh = qm->tiers[tier].smh;
+ time_t first_time_s = qm->tiers[tier].db_first_time_s;
+ time_t last_time_s = qm->tiers[tier].db_last_time_s;
+ time_t update_every_s = qm->tiers[tier].db_update_every_s;
+
+ if(!smh || !first_time_s || !last_time_s || !update_every_s)
+ continue;
+
+ return tier;
+ }
+
+ return 0;
+}
+
+static long query_plan_points_coverage_weight(time_t db_first_time_s, time_t db_last_time_s, time_t db_update_every_s, time_t after_wanted, time_t before_wanted, size_t points_wanted, size_t tier __maybe_unused) {
+ if(db_first_time_s == 0 ||
+ db_last_time_s == 0 ||
+ db_update_every_s == 0 ||
+ db_first_time_s > before_wanted ||
+ db_last_time_s < after_wanted)
+ return -LONG_MAX;
+
+ long long common_first_t = MAX(db_first_time_s, after_wanted);
+ long long common_last_t = MIN(db_last_time_s, before_wanted);
+
+ long long time_coverage = (common_last_t - common_first_t) * 1000000LL / (before_wanted - after_wanted);
+ long long points_wanted_in_coverage = (long long)points_wanted * time_coverage / 1000000LL;
+
+ long long points_available = (common_last_t - common_first_t) / db_update_every_s;
+ long long points_delta = (long)(points_available - points_wanted_in_coverage);
+ long long points_coverage = (points_delta < 0) ? (long)(points_available * time_coverage / points_wanted_in_coverage) : time_coverage;
+
+ // a way to benefit higher tiers
+ // points_coverage += (long)tier * 10000;
+
+ if(points_available <= 0)
+ return -LONG_MAX;
+
+ return (long)(points_coverage + (25000LL * tier)); // 2.5% benefit for each higher tier
+}
+
+static size_t query_metric_best_tier_for_timeframe(QUERY_METRIC *qm, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
+ if(unlikely(storage_tiers < 2))
+ return 0;
+
+ if(unlikely(after_wanted == before_wanted || points_wanted <= 0))
+ return query_metric_first_working_tier(qm);
+
+ if(points_wanted < QUERY_PLAN_MIN_POINTS)
+ // when selecting tiers, aim for a resolution of at least QUERY_PLAN_MIN_POINTS points
+ points_wanted = (before_wanted - after_wanted) > QUERY_PLAN_MIN_POINTS ? QUERY_PLAN_MIN_POINTS : before_wanted - after_wanted;
+
+ time_t min_first_time_s = 0;
+ time_t max_last_time_s = 0;
+
+ for(size_t tier = 0; tier < storage_tiers ; tier++) {
+ time_t first_time_s = qm->tiers[tier].db_first_time_s;
+ time_t last_time_s = qm->tiers[tier].db_last_time_s;
+
+ if(!min_first_time_s || (first_time_s && first_time_s < min_first_time_s))
+ min_first_time_s = first_time_s;
+
+ if(!max_last_time_s || (last_time_s && last_time_s > max_last_time_s))
+ max_last_time_s = last_time_s;
+ }
+
+ for(size_t tier = 0; tier < storage_tiers ; tier++) {
+
+ // find the db time-range for this tier for all metrics
+ STORAGE_METRIC_HANDLE *smh = qm->tiers[tier].smh;
+ time_t first_time_s = qm->tiers[tier].db_first_time_s;
+ time_t last_time_s = qm->tiers[tier].db_last_time_s;
+ time_t update_every_s = qm->tiers[tier].db_update_every_s;
+
+ if( !smh ||
+ !first_time_s ||
+ !last_time_s ||
+ !update_every_s ||
+ first_time_s > before_wanted ||
+ last_time_s < after_wanted
+ ) {
+ qm->tiers[tier].weight = -LONG_MAX;
+ continue;
+ }
+
+ internal_fatal(first_time_s > before_wanted || last_time_s < after_wanted, "QUERY: invalid db durations");
+
+ qm->tiers[tier].weight = query_plan_points_coverage_weight(
+ min_first_time_s, max_last_time_s, update_every_s,
+ after_wanted, before_wanted, points_wanted, tier);
+ }
+
+ size_t best_tier = 0;
+ for(size_t tier = 1; tier < storage_tiers ; tier++) {
+ if(qm->tiers[tier].weight >= qm->tiers[best_tier].weight)
+ best_tier = tier;
+ }
+
+ return best_tier;
+}
+
+static size_t rrddim_find_best_tier_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
+ if(unlikely(storage_tiers < 2))
+ return 0;
+
+ if(unlikely(after_wanted == before_wanted || points_wanted <= 0)) {
+ internal_error(true, "QUERY: '%s' has invalid params to tier calculation", qt->id);
+ return 0;
+ }
+
+ long weight[storage_tiers];
+
+ for(size_t tier = 0; tier < storage_tiers ; tier++) {
+
+ time_t common_first_time_s = 0;
+ time_t common_last_time_s = 0;
+ time_t common_update_every_s = 0;
+
+ // find the db time-range for this tier for all metrics
+ for(size_t i = 0, used = qt->query.used; i < used ; i++) {
+ QUERY_METRIC *qm = query_metric(qt, i);
+
+ time_t first_time_s = qm->tiers[tier].db_first_time_s;
+ time_t last_time_s = qm->tiers[tier].db_last_time_s;
+ time_t update_every_s = qm->tiers[tier].db_update_every_s;
+
+ if(!first_time_s || !last_time_s || !update_every_s)
+ continue;
+
+ if(!common_first_time_s)
+ common_first_time_s = first_time_s;
+ else
+ common_first_time_s = MIN(first_time_s, common_first_time_s);
+
+ if(!common_last_time_s)
+ common_last_time_s = last_time_s;
+ else
+ common_last_time_s = MAX(last_time_s, common_last_time_s);
+
+ if(!common_update_every_s)
+ common_update_every_s = update_every_s;
+ else
+ common_update_every_s = MIN(update_every_s, common_update_every_s);
+ }
+
+ weight[tier] = query_plan_points_coverage_weight(common_first_time_s, common_last_time_s, common_update_every_s, after_wanted, before_wanted, points_wanted, tier);
+ }
+
+ size_t best_tier = 0;
+ for(size_t tier = 1; tier < storage_tiers ; tier++) {
+ if(weight[tier] >= weight[best_tier])
+ best_tier = tier;
+ }
+
+ if(weight[best_tier] == -LONG_MAX)
+ best_tier = 0;
+
+ return best_tier;
+}
+
+static time_t rrdset_find_natural_update_every_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted, RRDR_OPTIONS options, size_t tier) {
+ size_t best_tier;
+ if((options & RRDR_OPTION_SELECTED_TIER) && tier < storage_tiers)
+ best_tier = tier;
+ else
+ best_tier = rrddim_find_best_tier_for_timeframe(qt, after_wanted, before_wanted, points_wanted);
+
+ // find the db minimum update every for this tier for all metrics
+ time_t common_update_every_s = default_rrd_update_every;
+ for(size_t i = 0, used = qt->query.used; i < used ; i++) {
+ QUERY_METRIC *qm = query_metric(qt, i);
+
+ time_t update_every_s = qm->tiers[best_tier].db_update_every_s;
+
+ if(!i)
+ common_update_every_s = update_every_s;
+ else
+ common_update_every_s = MIN(update_every_s, common_update_every_s);
+ }
+
+ return common_update_every_s;
+}
+
+// ----------------------------------------------------------------------------
+// query ops
+
+typedef struct query_point {
+ STORAGE_POINT sp;
+ NETDATA_DOUBLE value;
+ bool added;
+#ifdef NETDATA_INTERNAL_CHECKS
+ size_t id;
+#endif
+} QUERY_POINT;
+
+QUERY_POINT QUERY_POINT_EMPTY = {
+ .sp = STORAGE_POINT_UNSET,
+ .value = NAN,
+ .added = false,
+#ifdef NETDATA_INTERNAL_CHECKS
+ .id = 0,
+#endif
+};
+
+#ifdef NETDATA_INTERNAL_CHECKS
+#define query_point_set_id(point, point_id) (point).id = point_id
+#else
+#define query_point_set_id(point, point_id) debug_dummy()
+#endif
+
+typedef struct query_engine_ops {
+ // configuration
+ RRDR *r;
+ QUERY_METRIC *qm;
+ time_t view_update_every;
+ time_t query_granularity;
+ TIER_QUERY_FETCH tier_query_fetch;
+
+ // query planer
+ size_t current_plan;
+ time_t current_plan_expire_time;
+ time_t plan_expanded_after;
+ time_t plan_expanded_before;
+
+ // storage queries
+ size_t tier;
+ struct query_metric_tier *tier_ptr;
+ struct storage_engine_query_handle *seqh;
+
+ // aggregating points over time
+ size_t group_points_non_zero;
+ size_t group_points_added;
+ STORAGE_POINT group_point; // aggregates min, max, sum, count, anomaly count for each group point
+ STORAGE_POINT query_point; // aggregates min, max, sum, count, anomaly count across the whole query
+ RRDR_VALUE_FLAGS group_value_flags;
+
+ // statistics
+ size_t db_total_points_read;
+ size_t db_points_read_per_tier[RRD_STORAGE_TIERS];
+
+ struct {
+ time_t expanded_after;
+ time_t expanded_before;
+ struct storage_engine_query_handle handle;
+ bool initialized;
+ bool finalized;
+ } plans[QUERY_PLANS_MAX];
+
+ struct query_engine_ops *next;
+} QUERY_ENGINE_OPS;
+
+
+// ----------------------------------------------------------------------------
+// query planer
+
+#define query_plan_should_switch_plan(ops, now) ((now) >= (ops)->current_plan_expire_time)
+
+static size_t query_planer_expand_duration_in_points(time_t this_update_every, time_t next_update_every) {
+
+ time_t delta = this_update_every - next_update_every;
+ if(delta < 0) delta = -delta;
+
+ size_t points;
+ if(delta < this_update_every * POINTS_TO_EXPAND_QUERY)
+ points = POINTS_TO_EXPAND_QUERY;
+ else
+ points = (delta + this_update_every - 1) / this_update_every;
+
+ return points;
+}
+
+static void query_planer_initialize_plans(QUERY_ENGINE_OPS *ops) {
+ QUERY_METRIC *qm = ops->qm;
+
+ for(size_t p = 0; p < qm->plan.used ; p++) {
+ size_t tier = qm->plan.array[p].tier;
+ time_t update_every = qm->tiers[tier].db_update_every_s;
+
+ size_t points_to_add_to_after;
+ if(p > 0) {
+ // there is another plan before to this
+
+ size_t tier0 = qm->plan.array[p - 1].tier;
+ time_t update_every0 = qm->tiers[tier0].db_update_every_s;
+
+ points_to_add_to_after = query_planer_expand_duration_in_points(update_every, update_every0);
+ }
+ else
+ points_to_add_to_after = (tier == 0) ? 0 : POINTS_TO_EXPAND_QUERY;
+
+ size_t points_to_add_to_before;
+ if(p + 1 < qm->plan.used) {
+ // there is another plan after to this
+
+ size_t tier1 = qm->plan.array[p+1].tier;
+ time_t update_every1 = qm->tiers[tier1].db_update_every_s;
+
+ points_to_add_to_before = query_planer_expand_duration_in_points(update_every, update_every1);
+ }
+ else
+ points_to_add_to_before = POINTS_TO_EXPAND_QUERY;
+
+ time_t after = qm->plan.array[p].after - (time_t)(update_every * points_to_add_to_after);
+ time_t before = qm->plan.array[p].before + (time_t)(update_every * points_to_add_to_before);
+
+ ops->plans[p].expanded_after = after;
+ ops->plans[p].expanded_before = before;
+
+ ops->r->internal.qt->db.tiers[tier].queries++;
+
+ struct query_metric_tier *tier_ptr = &qm->tiers[tier];
+ STORAGE_ENGINE *eng = query_metric_storage_engine(ops->r->internal.qt, qm, tier);
+ storage_engine_query_init(eng->seb, tier_ptr->smh, &ops->plans[p].handle,
+ after, before, ops->r->internal.qt->request.priority);
+
+ ops->plans[p].initialized = true;
+ ops->plans[p].finalized = false;
+ }
+}
+
+static void query_planer_finalize_plan(QUERY_ENGINE_OPS *ops, size_t plan_id) {
+ // QUERY_METRIC *qm = ops->qm;
+
+ if(ops->plans[plan_id].initialized && !ops->plans[plan_id].finalized) {
+ storage_engine_query_finalize(&ops->plans[plan_id].handle);
+ ops->plans[plan_id].initialized = false;
+ ops->plans[plan_id].finalized = true;
+ }
+}
+
+static void query_planer_finalize_remaining_plans(QUERY_ENGINE_OPS *ops) {
+ QUERY_METRIC *qm = ops->qm;
+
+ for(size_t p = 0; p < qm->plan.used ; p++)
+ query_planer_finalize_plan(ops, p);
+}
+
+static void query_planer_activate_plan(QUERY_ENGINE_OPS *ops, size_t plan_id, time_t overwrite_after __maybe_unused) {
+ QUERY_METRIC *qm = ops->qm;
+
+ internal_fatal(plan_id >= qm->plan.used, "QUERY: invalid plan_id given");
+ internal_fatal(!ops->plans[plan_id].initialized, "QUERY: plan has not been initialized");
+ internal_fatal(ops->plans[plan_id].finalized, "QUERY: plan has been finalized");
+
+ internal_fatal(qm->plan.array[plan_id].after > qm->plan.array[plan_id].before, "QUERY: flipped after/before");
+
+ ops->tier = qm->plan.array[plan_id].tier;
+ ops->tier_ptr = &qm->tiers[ops->tier];
+ ops->seqh = &ops->plans[plan_id].handle;
+ ops->current_plan = plan_id;
+
+ if(plan_id + 1 < qm->plan.used && qm->plan.array[plan_id + 1].after < qm->plan.array[plan_id].before)
+ ops->current_plan_expire_time = qm->plan.array[plan_id + 1].after;
+ else
+ ops->current_plan_expire_time = qm->plan.array[plan_id].before;
+
+ ops->plan_expanded_after = ops->plans[plan_id].expanded_after;
+ ops->plan_expanded_before = ops->plans[plan_id].expanded_before;
+}
+
+static bool query_planer_next_plan(QUERY_ENGINE_OPS *ops, time_t now, time_t last_point_end_time) {
+ QUERY_METRIC *qm = ops->qm;
+
+ size_t old_plan = ops->current_plan;
+
+ time_t next_plan_before_time;
+ do {
+ ops->current_plan++;
+
+ if (ops->current_plan >= qm->plan.used) {
+ ops->current_plan = old_plan;
+ ops->current_plan_expire_time = ops->r->internal.qt->window.before;
+ // let the query run with current plan
+ // we will not switch it
+ return false;
+ }
+
+ next_plan_before_time = qm->plan.array[ops->current_plan].before;
+ } while(now >= next_plan_before_time || last_point_end_time >= next_plan_before_time);
+
+ if(!query_metric_is_valid_tier(qm, qm->plan.array[ops->current_plan].tier)) {
+ ops->current_plan = old_plan;
+ ops->current_plan_expire_time = ops->r->internal.qt->window.before;
+ return false;
+ }
+
+ query_planer_finalize_plan(ops, old_plan);
+ query_planer_activate_plan(ops, ops->current_plan, MIN(now, last_point_end_time));
+ return true;
+}
+
+static int compare_query_plan_entries_on_start_time(const void *a, const void *b) {
+ QUERY_PLAN_ENTRY *p1 = (QUERY_PLAN_ENTRY *)a;
+ QUERY_PLAN_ENTRY *p2 = (QUERY_PLAN_ENTRY *)b;
+ return (p1->after < p2->after)?-1:1;
+}
+
+static bool query_plan(QUERY_ENGINE_OPS *ops, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
+ QUERY_METRIC *qm = ops->qm;
+
+ // put our selected tier as the first plan
+ size_t selected_tier;
+ bool switch_tiers = true;
+
+ if((ops->r->internal.qt->window.options & RRDR_OPTION_SELECTED_TIER)
+ && ops->r->internal.qt->window.tier < storage_tiers
+ && query_metric_is_valid_tier(qm, ops->r->internal.qt->window.tier)) {
+ selected_tier = ops->r->internal.qt->window.tier;
+ switch_tiers = false;
+ }
+ else {
+ selected_tier = query_metric_best_tier_for_timeframe(qm, after_wanted, before_wanted, points_wanted);
+
+ if(!query_metric_is_valid_tier(qm, selected_tier))
+ return false;
+ }
+
+ if(qm->tiers[selected_tier].db_first_time_s > before_wanted ||
+ qm->tiers[selected_tier].db_last_time_s < after_wanted) {
+ // we don't have any data to satisfy this query
+ return false;
+ }
+
+ qm->plan.used = 1;
+ qm->plan.array[0].tier = selected_tier;
+ qm->plan.array[0].after = (qm->tiers[selected_tier].db_first_time_s < after_wanted) ? after_wanted : qm->tiers[selected_tier].db_first_time_s;
+ qm->plan.array[0].before = (qm->tiers[selected_tier].db_last_time_s > before_wanted) ? before_wanted : qm->tiers[selected_tier].db_last_time_s;
+
+ if(switch_tiers) {
+ // the selected tier
+ time_t selected_tier_first_time_s = qm->plan.array[0].after;
+ time_t selected_tier_last_time_s = qm->plan.array[0].before;
+
+ // check if our selected tier can start the query
+ if (selected_tier_first_time_s > after_wanted) {
+ // we need some help from other tiers
+ for (size_t tr = (int)selected_tier + 1; tr < storage_tiers && qm->plan.used < QUERY_PLANS_MAX ; tr++) {
+ if(!query_metric_is_valid_tier(qm, tr))
+ continue;
+
+ // find the first time of this tier
+ time_t tier_first_time_s = qm->tiers[tr].db_first_time_s;
+ time_t tier_last_time_s = qm->tiers[tr].db_last_time_s;
+
+ // can it help?
+ if (tier_first_time_s < selected_tier_first_time_s && tier_first_time_s <= before_wanted && tier_last_time_s >= after_wanted) {
+ // it can help us add detail at the beginning of the query
+ QUERY_PLAN_ENTRY t = {
+ .tier = tr,
+ .after = (tier_first_time_s < after_wanted) ? after_wanted : tier_first_time_s,
+ .before = selected_tier_first_time_s,
+ };
+ ops->plans[qm->plan.used].initialized = false;
+ ops->plans[qm->plan.used].finalized = false;
+ qm->plan.array[qm->plan.used++] = t;
+
+ internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
+
+ // prepare for the tier
+ selected_tier_first_time_s = t.after;
+
+ if (t.after <= after_wanted)
+ break;
+ }
+ }
+ }
+
+ // check if our selected tier can finish the query
+ if (selected_tier_last_time_s < before_wanted) {
+ // we need some help from other tiers
+ for (int tr = (int)selected_tier - 1; tr >= 0 && qm->plan.used < QUERY_PLANS_MAX ; tr--) {
+ if(!query_metric_is_valid_tier(qm, tr))
+ continue;
+
+ // find the last time of this tier
+ time_t tier_first_time_s = qm->tiers[tr].db_first_time_s;
+ time_t tier_last_time_s = qm->tiers[tr].db_last_time_s;
+
+ //buffer_sprintf(wb, ": EVAL BEFORE tier %d, %ld", tier, last_time_s);
+
+ // can it help?
+ if (tier_last_time_s > selected_tier_last_time_s && tier_first_time_s <= before_wanted && tier_last_time_s >= after_wanted) {
+ // it can help us add detail at the end of the query
+ QUERY_PLAN_ENTRY t = {
+ .tier = tr,
+ .after = selected_tier_last_time_s,
+ .before = (tier_last_time_s > before_wanted) ? before_wanted : tier_last_time_s,
+ };
+ ops->plans[qm->plan.used].initialized = false;
+ ops->plans[qm->plan.used].finalized = false;
+ qm->plan.array[qm->plan.used++] = t;
+
+ // prepare for the tier
+ selected_tier_last_time_s = t.before;
+
+ internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
+
+ if (t.before >= before_wanted)
+ break;
+ }
+ }
+ }
+ }
+
+ // sort the query plan
+ if(qm->plan.used > 1)
+ qsort(&qm->plan.array, qm->plan.used, sizeof(QUERY_PLAN_ENTRY), compare_query_plan_entries_on_start_time);
+
+ if(!query_metric_is_valid_tier(qm, qm->plan.array[0].tier))
+ return false;
+
+#ifdef NETDATA_INTERNAL_CHECKS
+ for(size_t p = 0; p < qm->plan.used ;p++) {
+ internal_fatal(qm->plan.array[p].after > qm->plan.array[p].before, "QUERY: flipped after/before");
+ internal_fatal(qm->plan.array[p].after < after_wanted, "QUERY: too small plan first time");
+ internal_fatal(qm->plan.array[p].before > before_wanted, "QUERY: too big plan last time");
+ }
+#endif
+
+ query_planer_initialize_plans(ops);
+ query_planer_activate_plan(ops, 0, 0);
+
+ return true;
+}
+
+
+// ----------------------------------------------------------------------------
+// dimension level query engine
+
+#define query_interpolate_point(this_point, last_point, now) do { \
+ if(likely( \
+ /* the point to interpolate is more than 1s wide */ \
+ (this_point).sp.end_time_s - (this_point).sp.start_time_s > 1 \
+ \
+ /* the two points are exactly next to each other */ \
+ && (last_point).sp.end_time_s == (this_point).sp.start_time_s \
+ \
+ /* both points are valid numbers */ \
+ && netdata_double_isnumber((this_point).value) \
+ && netdata_double_isnumber((last_point).value) \
+ \
+ )) { \
+ (this_point).value = (last_point).value + ((this_point).value - (last_point).value) * (1.0 - (NETDATA_DOUBLE)((this_point).sp.end_time_s - (now)) / (NETDATA_DOUBLE)((this_point).sp.end_time_s - (this_point).sp.start_time_s)); \
+ (this_point).sp.end_time_s = now; \
+ } \
+} while(0)
+
+#define query_add_point_to_group(r, point, ops, add_flush) do { \
+ if(likely(netdata_double_isnumber((point).value))) { \
+ if(likely(fpclassify((point).value) != FP_ZERO)) \
+ (ops)->group_points_non_zero++; \
+ \
+ if(unlikely((point).sp.flags & SN_FLAG_RESET)) \
+ (ops)->group_value_flags |= RRDR_VALUE_RESET; \
+ \
+ time_grouping_add(r, (point).value, add_flush); \
+ \
+ storage_point_merge_to((ops)->group_point, (point).sp); \
+ if(!(point).added) \
+ storage_point_merge_to((ops)->query_point, (point).sp); \
+ } \
+ \
+ (ops)->group_points_added++; \
+} while(0)
+
+static __thread QUERY_ENGINE_OPS *released_ops = NULL;
+
+static void rrd2rrdr_query_ops_freeall(RRDR *r __maybe_unused) {
+ while(released_ops) {
+ QUERY_ENGINE_OPS *ops = released_ops;
+ released_ops = ops->next;
+
+ onewayalloc_freez(r->internal.owa, ops);
+ }
+}
+
+static void rrd2rrdr_query_ops_release(QUERY_ENGINE_OPS *ops) {
+ if(!ops) return;
+
+ ops->next = released_ops;
+ released_ops = ops;
+}
+
+static QUERY_ENGINE_OPS *rrd2rrdr_query_ops_get(RRDR *r) {
+ QUERY_ENGINE_OPS *ops;
+ if(released_ops) {
+ ops = released_ops;
+ released_ops = ops->next;
+ }
+ else {
+ ops = onewayalloc_mallocz(r->internal.owa, sizeof(QUERY_ENGINE_OPS));
+ }
+
+ memset(ops, 0, sizeof(*ops));
+ return ops;
+}
+
+static QUERY_ENGINE_OPS *rrd2rrdr_query_ops_prep(RRDR *r, size_t query_metric_id) {
+ QUERY_TARGET *qt = r->internal.qt;
+
+ QUERY_ENGINE_OPS *ops = rrd2rrdr_query_ops_get(r);
+ *ops = (QUERY_ENGINE_OPS) {
+ .r = r,
+ .qm = query_metric(qt, query_metric_id),
+ .tier_query_fetch = r->time_grouping.tier_query_fetch,
+ .view_update_every = r->view.update_every,
+ .query_granularity = (time_t)(r->view.update_every / r->view.group),
+ .group_value_flags = RRDR_VALUE_NOTHING,
+ };
+
+ if(!query_plan(ops, qt->window.after, qt->window.before, qt->window.points)) {
+ rrd2rrdr_query_ops_release(ops);
+ return NULL;
+ }
+
+ return ops;
+}
+
+static void rrd2rrdr_query_execute(RRDR *r, size_t dim_id_in_rrdr, QUERY_ENGINE_OPS *ops) {
+ QUERY_TARGET *qt = r->internal.qt;
+ QUERY_METRIC *qm = ops->qm;
+
+ const RRDR_TIME_GROUPING add_flush = r->time_grouping.add_flush;
+
+ ops->group_point = STORAGE_POINT_UNSET;
+ ops->query_point = STORAGE_POINT_UNSET;
+
+ RRDR_OPTIONS options = qt->window.options;
+ size_t points_wanted = qt->window.points;
+ time_t after_wanted = qt->window.after;
+ time_t before_wanted = qt->window.before; (void)before_wanted;
+
+// bool debug_this = false;
+// if(strcmp("user", string2str(rd->id)) == 0 && strcmp("system.cpu", string2str(rd->rrdset->id)) == 0)
+// debug_this = true;
+
+ size_t points_added = 0;
+
+ long rrdr_line = -1;
+ bool use_anomaly_bit_as_value = (r->internal.qt->window.options & RRDR_OPTION_ANOMALY_BIT) ? true : false;
+
+ NETDATA_DOUBLE min = r->view.min, max = r->view.max;
+
+ QUERY_POINT last2_point = QUERY_POINT_EMPTY;
+ QUERY_POINT last1_point = QUERY_POINT_EMPTY;
+ QUERY_POINT new_point = QUERY_POINT_EMPTY;
+
+ // ONE POINT READ-AHEAD
+ // when we switch plans, we read-ahead a point from the next plan
+ // to join them smoothly at the exact time the next plan begins
+ STORAGE_POINT next1_point = STORAGE_POINT_UNSET;
+
+ time_t now_start_time = after_wanted - ops->query_granularity;
+ time_t now_end_time = after_wanted + ops->view_update_every - ops->query_granularity;
+
+ size_t db_points_read_since_plan_switch = 0; (void)db_points_read_since_plan_switch;
+ size_t query_is_finished_counter = 0;
+
+ // The main loop, based on the query granularity we need
+ for( ; points_added < points_wanted && query_is_finished_counter <= 10 ;
+ now_start_time = now_end_time, now_end_time += ops->view_update_every) {
+
+ if(unlikely(query_plan_should_switch_plan(ops, now_end_time))) {
+ query_planer_next_plan(ops, now_end_time, new_point.sp.end_time_s);
+ db_points_read_since_plan_switch = 0;
+ }
+
+ // read all the points of the db, prior to the time we need (now_end_time)
+
+ size_t count_same_end_time = 0;
+ while(count_same_end_time < 100) {
+ if(likely(count_same_end_time == 0)) {
+ last2_point = last1_point;
+ last1_point = new_point;
+ }
+
+ if(unlikely(storage_engine_query_is_finished(ops->seqh))) {
+ query_is_finished_counter++;
+
+ if(count_same_end_time != 0) {
+ last2_point = last1_point;
+ last1_point = new_point;
+ }
+ new_point = QUERY_POINT_EMPTY;
+ new_point.sp.start_time_s = last1_point.sp.end_time_s;
+ new_point.sp.end_time_s = now_end_time;
+//
+// if(debug_this) netdata_log_info("QUERY: is finished() returned true");
+//
+ break;
+ }
+ else
+ query_is_finished_counter = 0;
+
+ // fetch the new point
+ {
+ STORAGE_POINT sp;
+ if(likely(storage_point_is_unset(next1_point))) {
+ db_points_read_since_plan_switch++;
+ sp = storage_engine_query_next_metric(ops->seqh);
+ ops->db_points_read_per_tier[ops->tier]++;
+ ops->db_total_points_read++;
+
+ if(unlikely(options & RRDR_OPTION_ABSOLUTE))
+ storage_point_make_positive(sp);
+ }
+ else {
+ // ONE POINT READ-AHEAD
+ sp = next1_point;
+ storage_point_unset(next1_point);
+ db_points_read_since_plan_switch = 1;
+ }
+
+ // ONE POINT READ-AHEAD
+ if(unlikely(query_plan_should_switch_plan(ops, sp.end_time_s) &&
+ query_planer_next_plan(ops, now_end_time, new_point.sp.end_time_s))) {
+
+ // The end time of the current point, crosses our plans (tiers)
+ // so, we switched plan (tier)
+ //
+ // There are 2 cases now:
+ //
+ // A. the entire point of the previous plan is to the future of point from the next plan
+ // B. part of the point of the previous plan overlaps with the point from the next plan
+
+ STORAGE_POINT sp2 = storage_engine_query_next_metric(ops->seqh);
+ ops->db_points_read_per_tier[ops->tier]++;
+ ops->db_total_points_read++;
+
+ if(unlikely(options & RRDR_OPTION_ABSOLUTE))
+ storage_point_make_positive(sp);
+
+ if(sp.start_time_s > sp2.start_time_s)
+ // the point from the previous plan is useless
+ sp = sp2;
+ else
+ // let the query run from the previous plan
+ // but setting this will also cut off the interpolation
+ // of the point from the previous plan
+ next1_point = sp2;
+ }
+
+ new_point.sp = sp;
+ new_point.added = false;
+ query_point_set_id(new_point, ops->db_total_points_read);
+
+// if(debug_this)
+// netdata_log_info("QUERY: got point %zu, from time %ld to %ld // now from %ld to %ld // query from %ld to %ld",
+// new_point.id, new_point.start_time, new_point.end_time, now_start_time, now_end_time, after_wanted, before_wanted);
+//
+ // get the right value from the point we got
+ if(likely(!storage_point_is_unset(sp) && !storage_point_is_gap(sp))) {
+
+ if(unlikely(use_anomaly_bit_as_value))
+ new_point.value = storage_point_anomaly_rate(new_point.sp);
+
+ else {
+ switch (ops->tier_query_fetch) {
+ default:
+ case TIER_QUERY_FETCH_AVERAGE:
+ new_point.value = sp.sum / (NETDATA_DOUBLE)sp.count;
+ break;
+
+ case TIER_QUERY_FETCH_MIN:
+ new_point.value = sp.min;
+ break;
+
+ case TIER_QUERY_FETCH_MAX:
+ new_point.value = sp.max;
+ break;
+
+ case TIER_QUERY_FETCH_SUM:
+ new_point.value = sp.sum;
+ break;
+ }
+ }
+ }
+ else
+ new_point.value = NAN;
+ }
+
+ // check if the db is giving us zero duration points
+ if(unlikely(db_points_read_since_plan_switch > 1 &&
+ new_point.sp.start_time_s == new_point.sp.end_time_s)) {
+
+ internal_error(true, "QUERY: '%s', dimension '%s' next_metric() returned "
+ "point %zu from %ld to %ld, that are both equal",
+ qt->id, query_metric_id(qt, qm),
+ new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s);
+
+ new_point.sp.start_time_s = new_point.sp.end_time_s - ops->tier_ptr->db_update_every_s;
+ }
+
+ // check if the db is advancing the query
+ if(unlikely(db_points_read_since_plan_switch > 1 &&
+ new_point.sp.end_time_s <= last1_point.sp.end_time_s)) {
+
+ internal_error(true,
+ "QUERY: '%s', dimension '%s' next_metric() returned "
+ "point %zu from %ld to %ld, before the "
+ "last point %zu from %ld to %ld, "
+ "now is %ld to %ld",
+ qt->id, query_metric_id(qt, qm),
+ new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s,
+ last1_point.id, last1_point.sp.start_time_s, last1_point.sp.end_time_s,
+ now_start_time, now_end_time);
+
+ count_same_end_time++;
+ continue;
+ }
+ count_same_end_time = 0;
+
+ // decide how to use this point
+ if(likely(new_point.sp.end_time_s < now_end_time)) { // likely to favor tier0
+ // this db point ends before our now_end_time
+
+ if(likely(new_point.sp.end_time_s >= now_start_time)) { // likely to favor tier0
+ // this db point ends after our now_start time
+
+ query_add_point_to_group(r, new_point, ops, add_flush);
+ new_point.added = true;
+ }
+ else {
+ // we don't need this db point
+ // it is totally outside our current time-frame
+
+ // this is desirable for the first point of the query
+ // because it allows us to interpolate the next point
+ // at exactly the time we will want
+
+ // we only log if this is not point 1
+ internal_error(new_point.sp.end_time_s < ops->plan_expanded_after &&
+ db_points_read_since_plan_switch > 1,
+ "QUERY: '%s', dimension '%s' next_metric() "
+ "returned point %zu from %ld time %ld, "
+ "which is entirely before our current timeframe %ld to %ld "
+ "(and before the entire query, after %ld, before %ld)",
+ qt->id, query_metric_id(qt, qm),
+ new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s,
+ now_start_time, now_end_time,
+ ops->plan_expanded_after, ops->plan_expanded_before);
+ }
+
+ }
+ else {
+ // the point ends in the future
+ // so, we will interpolate it below, at the inner loop
+ break;
+ }
+ }
+
+ if(unlikely(count_same_end_time)) {
+ internal_error(true,
+ "QUERY: '%s', dimension '%s', the database does not advance the query,"
+ " it returned an end time less or equal to the end time of the last "
+ "point we got %ld, %zu times",
+ qt->id, query_metric_id(qt, qm),
+ last1_point.sp.end_time_s, count_same_end_time);
+
+ if(unlikely(new_point.sp.end_time_s <= last1_point.sp.end_time_s))
+ new_point.sp.end_time_s = now_end_time;
+ }
+
+ time_t stop_time = new_point.sp.end_time_s;
+ if(unlikely(!storage_point_is_unset(next1_point) && next1_point.start_time_s >= now_end_time)) {
+ // ONE POINT READ-AHEAD
+ // the point crosses the start time of the
+ // read ahead storage point we have read
+ stop_time = next1_point.start_time_s;
+ }
+
+ // the inner loop
+ // we have 3 points in memory: last2, last1, new
+ // we select the one to use based on their timestamps
+
+ internal_fatal(now_end_time > stop_time || points_added >= points_wanted,
+ "QUERY: first part of query provides invalid point to interpolate (now_end_time %ld, stop_time %ld",
+ now_end_time, stop_time);
+
+ do {
+ // now_start_time is wrong in this loop
+ // but, we don't need it
+
+ QUERY_POINT current_point;
+
+ if(likely(now_end_time > new_point.sp.start_time_s)) {
+ // it is time for our NEW point to be used
+ current_point = new_point;
+ new_point.added = true; // first copy, then set it, so that new_point will not be added again
+ query_interpolate_point(current_point, last1_point, now_end_time);
+
+// internal_error(current_point.id > 0
+// && last1_point.id == 0
+// && current_point.end_time > after_wanted
+// && current_point.end_time > now_end_time,
+// "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
+// " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
+// " but we could really favor by having last_point1 in this query.",
+// qt->id, string2str(qm->dimension.id),
+// after_wanted, before_wanted,
+// ops.view_update_every, ops.query_granularity,
+// current_point.id, current_point.start_time, current_point.end_time,
+// now_end_time);
+ }
+ else if(likely(now_end_time <= last1_point.sp.end_time_s)) {
+ // our LAST point is still valid
+ current_point = last1_point;
+ last1_point.added = true; // first copy, then set it, so that last1_point will not be added again
+ query_interpolate_point(current_point, last2_point, now_end_time);
+
+// internal_error(current_point.id > 0
+// && last2_point.id == 0
+// && current_point.end_time > after_wanted
+// && current_point.end_time > now_end_time,
+// "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
+// " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
+// " but we could really favor by having last_point2 in this query.",
+// qt->id, string2str(qm->dimension.id),
+// after_wanted, before_wanted, ops.view_update_every, ops.query_granularity,
+// current_point.id, current_point.start_time, current_point.end_time,
+// now_end_time);
+ }
+ else {
+ // a GAP, we don't have a value this time
+ current_point = QUERY_POINT_EMPTY;
+ }
+
+ query_add_point_to_group(r, current_point, ops, add_flush);
+
+ rrdr_line = rrdr_line_init(r, now_end_time, rrdr_line);
+ size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
+
+ // find the place to store our values
+ RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_o_v_index];
+
+ // update the dimension options
+ if(likely(ops->group_points_non_zero))
+ r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
+
+ // store the specific point options
+ *rrdr_value_options_ptr = ops->group_value_flags;
+
+ // store the group value
+ NETDATA_DOUBLE group_value = time_grouping_flush(r, rrdr_value_options_ptr, add_flush);
+ r->v[rrdr_o_v_index] = group_value;
+
+ r->ar[rrdr_o_v_index] = storage_point_anomaly_rate(ops->group_point);
+
+ if(likely(points_added || r->internal.queries_count)) {
+ // find the min/max across all dimensions
+
+ if(unlikely(group_value < min)) min = group_value;
+ if(unlikely(group_value > max)) max = group_value;
+
+ }
+ else {
+ // runs only when r->internal.queries_count == 0 && points_added == 0
+ // so, on the first point added for the query.
+ min = max = group_value;
+ }
+
+ points_added++;
+ ops->group_points_added = 0;
+ ops->group_value_flags = RRDR_VALUE_NOTHING;
+ ops->group_points_non_zero = 0;
+ ops->group_point = STORAGE_POINT_UNSET;
+
+ now_end_time += ops->view_update_every;
+ } while(now_end_time <= stop_time && points_added < points_wanted);
+
+ // the loop above increased "now" by ops->view_update_every,
+ // but the main loop will increase it too,
+ // so, let's undo the last iteration of this loop
+ now_end_time -= ops->view_update_every;
+ }
+ query_planer_finalize_remaining_plans(ops);
+
+ qm->query_points = ops->query_point;
+
+ // fill the rest of the points with empty values
+ while (points_added < points_wanted) {
+ rrdr_line++;
+ size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
+ r->o[rrdr_o_v_index] = RRDR_VALUE_EMPTY;
+ r->v[rrdr_o_v_index] = 0.0;
+ r->ar[rrdr_o_v_index] = 0.0;
+ points_added++;
+ }
+
+ r->internal.queries_count++;
+ r->view.min = min;
+ r->view.max = max;
+
+ r->stats.result_points_generated += points_added;
+ r->stats.db_points_read += ops->db_total_points_read;
+ for(size_t tr = 0; tr < storage_tiers ; tr++)
+ qt->db.tiers[tr].points += ops->db_points_read_per_tier[tr];
+}
+
+// ----------------------------------------------------------------------------
+// fill the gap of a tier
+
+void store_metric_at_tier(RRDDIM *rd, size_t tier, struct rrddim_tier *t, STORAGE_POINT sp, usec_t now_ut);
+
+void rrdr_fill_tier_gap_from_smaller_tiers(RRDDIM *rd, size_t tier, time_t now_s) {
+ if(unlikely(tier >= storage_tiers)) return;
+#ifdef ENABLE_DBENGINE
+ if(default_backfill == RRD_BACKFILL_NONE) return;
+#else
+ return;
+#endif
+
+ struct rrddim_tier *t = &rd->tiers[tier];
+ if(unlikely(!t)) return;
+
+ time_t latest_time_s = storage_engine_latest_time_s(t->seb, t->smh);
+ time_t granularity = (time_t)t->tier_grouping * (time_t)rd->rrdset->update_every;
+ time_t time_diff = now_s - latest_time_s;
+
+ // if the user wants only NEW backfilling, and we don't have any data
+#ifdef ENABLE_DBENGINE
+ if(default_backfill == RRD_BACKFILL_NEW && latest_time_s <= 0) return;
+#else
+ return;
+#endif
+
+ // there is really nothing we can do
+ if(now_s <= latest_time_s || time_diff < granularity) return;
+
+ struct storage_engine_query_handle seqh;
+
+ // for each lower tier
+ for(int read_tier = (int)tier - 1; read_tier >= 0 ; read_tier--){
+ time_t smaller_tier_first_time = storage_engine_oldest_time_s(rd->tiers[read_tier].seb, rd->tiers[read_tier].smh);
+ time_t smaller_tier_last_time = storage_engine_latest_time_s(rd->tiers[read_tier].seb, rd->tiers[read_tier].smh);
+ if(smaller_tier_last_time <= latest_time_s) continue; // it is as bad as we are
+
+ long after_wanted = (latest_time_s < smaller_tier_first_time) ? smaller_tier_first_time : latest_time_s;
+ long before_wanted = smaller_tier_last_time;
+
+ struct rrddim_tier *tmp = &rd->tiers[read_tier];
+ storage_engine_query_init(tmp->seb, tmp->smh, &seqh, after_wanted, before_wanted, STORAGE_PRIORITY_HIGH);
+
+ size_t points_read = 0;
+
+ while(!storage_engine_query_is_finished(&seqh)) {
+
+ STORAGE_POINT sp = storage_engine_query_next_metric(&seqh);
+ points_read++;
+
+ if(sp.end_time_s > latest_time_s) {
+ latest_time_s = sp.end_time_s;
+ store_metric_at_tier(rd, tier, t, sp, sp.end_time_s * USEC_PER_SEC);
+ }
+ }
+
+ storage_engine_query_finalize(&seqh);
+ store_metric_collection_completed();
+ global_statistics_backfill_query_completed(points_read);
+
+ //internal_error(true, "DBENGINE: backfilled chart '%s', dimension '%s', tier %d, from %ld to %ld, with %zu points from tier %d",
+ // rd->rrdset->name, rd->name, tier, after_wanted, before_wanted, points, tr);
+ }
+}
+
+// ----------------------------------------------------------------------------
+// fill RRDR for the whole chart
+
+#ifdef NETDATA_INTERNAL_CHECKS
+static void rrd2rrdr_log_request_response_metadata(RRDR *r
+ , RRDR_OPTIONS options __maybe_unused
+ , RRDR_TIME_GROUPING group_method
+ , bool aligned
+ , size_t group
+ , time_t resampling_time
+ , size_t resampling_group
+ , time_t after_wanted
+ , time_t after_requested
+ , time_t before_wanted
+ , time_t before_requested
+ , size_t points_requested
+ , size_t points_wanted
+ //, size_t after_slot
+ //, size_t before_slot
+ , const char *msg
+ ) {
+
+ QUERY_TARGET *qt = r->internal.qt;
+ time_t first_entry_s = qt->db.first_time_s;
+ time_t last_entry_s = qt->db.last_time_s;
+
+ internal_error(
+ true,
+ "rrd2rrdr() on %s update every %ld with %s grouping %s (group: %zu, resampling_time: %ld, resampling_group: %zu), "
+ "after (got: %ld, want: %ld, req: %ld, db: %ld), "
+ "before (got: %ld, want: %ld, req: %ld, db: %ld), "
+ "duration (got: %ld, want: %ld, req: %ld, db: %ld), "
+ "points (got: %zu, want: %zu, req: %zu), "
+ "%s"
+ , qt->id
+ , qt->window.query_granularity
+
+ // grouping
+ , (aligned) ? "aligned" : "unaligned"
+ , time_grouping_id2txt(group_method)
+ , group
+ , resampling_time
+ , resampling_group
+
+ // after
+ , r->view.after
+ , after_wanted
+ , after_requested
+ , first_entry_s
+
+ // before
+ , r->view.before
+ , before_wanted
+ , before_requested
+ , last_entry_s
+
+ // duration
+ , (long)(r->view.before - r->view.after + qt->window.query_granularity)
+ , (long)(before_wanted - after_wanted + qt->window.query_granularity)
+ , (long)before_requested - after_requested
+ , (long)((last_entry_s - first_entry_s) + qt->window.query_granularity)
+
+ // points
+ , r->rows
+ , points_wanted
+ , points_requested
+
+ // message
+ , msg
+ );
+}
+#endif // NETDATA_INTERNAL_CHECKS
+
+// #define DEBUG_QUERY_LOGIC 1
+
+#ifdef DEBUG_QUERY_LOGIC
+#define query_debug_log_init() BUFFER *debug_log = buffer_create(1000)
+#define query_debug_log(args...) buffer_sprintf(debug_log, ##args)
+#define query_debug_log_fin() { \
+ netdata_log_info("QUERY: '%s', after:%ld, before:%ld, duration:%ld, points:%zu, res:%ld - wanted => after:%ld, before:%ld, points:%zu, group:%zu, granularity:%ld, resgroup:%ld, resdiv:" NETDATA_DOUBLE_FORMAT_AUTO " %s", qt->id, after_requested, before_requested, before_requested - after_requested, points_requested, resampling_time_requested, after_wanted, before_wanted, points_wanted, group, query_granularity, resampling_group, resampling_divisor, buffer_tostring(debug_log)); \
+ buffer_free(debug_log); \
+ debug_log = NULL; \
+ }
+#define query_debug_log_free() do { buffer_free(debug_log); } while(0)
+#else
+#define query_debug_log_init() debug_dummy()
+#define query_debug_log(args...) debug_dummy()
+#define query_debug_log_fin() debug_dummy()
+#define query_debug_log_free() debug_dummy()
+#endif
+
+bool query_target_calculate_window(QUERY_TARGET *qt) {
+ if (unlikely(!qt)) return false;
+
+ size_t points_requested = (long)qt->request.points;
+ time_t after_requested = qt->request.after;
+ time_t before_requested = qt->request.before;
+ RRDR_TIME_GROUPING group_method = qt->request.time_group_method;
+ time_t resampling_time_requested = qt->request.resampling_time;
+ RRDR_OPTIONS options = qt->window.options;
+ size_t tier = qt->request.tier;
+ time_t update_every = qt->db.minimum_latest_update_every_s ? qt->db.minimum_latest_update_every_s : 1;
+
+ // RULES
+ // points_requested = 0
+ // the user wants all the natural points the database has
+ //
+ // after_requested = 0
+ // the user wants to start the query from the oldest point in our database
+ //
+ // before_requested = 0
+ // the user wants the query to end to the latest point in our database
+ //
+ // when natural points are wanted, the query has to be aligned to the update_every
+ // of the database
+
+ size_t points_wanted = points_requested;
+ time_t after_wanted = after_requested;
+ time_t before_wanted = before_requested;
+
+ bool aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
+ bool automatic_natural_points = (points_wanted == 0);
+ bool relative_period_requested = false;
+ bool natural_points = (options & RRDR_OPTION_NATURAL_POINTS) || automatic_natural_points;
+ bool before_is_aligned_to_db_end = false;
+
+ query_debug_log_init();
+
+ if (ABS(before_requested) <= API_RELATIVE_TIME_MAX || ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
+ relative_period_requested = true;
+ natural_points = true;
+ options |= RRDR_OPTION_NATURAL_POINTS;
+ query_debug_log(":relative+natural");
+ }
+
+ // if the user wants virtual points, make sure we do it
+ if (options & RRDR_OPTION_VIRTUAL_POINTS)
+ natural_points = false;
+
+ // set the right flag about natural and virtual points
+ if (natural_points) {
+ options |= RRDR_OPTION_NATURAL_POINTS;
+
+ if (options & RRDR_OPTION_VIRTUAL_POINTS)
+ options &= ~RRDR_OPTION_VIRTUAL_POINTS;
+ }
+ else {
+ options |= RRDR_OPTION_VIRTUAL_POINTS;
+
+ if (options & RRDR_OPTION_NATURAL_POINTS)
+ options &= ~RRDR_OPTION_NATURAL_POINTS;
+ }
+
+ if (after_wanted == 0 || before_wanted == 0) {
+ relative_period_requested = true;
+
+ time_t first_entry_s = qt->db.first_time_s;
+ time_t last_entry_s = qt->db.last_time_s;
+
+ if (first_entry_s == 0 || last_entry_s == 0) {
+ internal_error(true, "QUERY: no data detected on query '%s' (db first_entry_t = %ld, last_entry_t = %ld)", qt->id, first_entry_s, last_entry_s);
+ after_wanted = qt->window.after;
+ before_wanted = qt->window.before;
+
+ if(after_wanted == before_wanted)
+ after_wanted = before_wanted - update_every;
+
+ if (points_wanted == 0) {
+ points_wanted = (before_wanted - after_wanted) / update_every;
+ query_debug_log(":zero points_wanted %zu", points_wanted);
+ }
+ }
+ else {
+ query_debug_log(":first_entry_t %ld, last_entry_t %ld", first_entry_s, last_entry_s);
+
+ if (after_wanted == 0) {
+ after_wanted = first_entry_s;
+ query_debug_log(":zero after_wanted %ld", after_wanted);
+ }
+
+ if (before_wanted == 0) {
+ before_wanted = last_entry_s;
+ before_is_aligned_to_db_end = true;
+ query_debug_log(":zero before_wanted %ld", before_wanted);
+ }
+
+ if (points_wanted == 0) {
+ points_wanted = (last_entry_s - first_entry_s) / update_every;
+ query_debug_log(":zero points_wanted %zu", points_wanted);
+ }
+ }
+ }
+
+ if (points_wanted == 0) {
+ points_wanted = 600;
+ query_debug_log(":zero600 points_wanted %zu", points_wanted);
+ }
+
+ // convert our before_wanted and after_wanted to absolute
+ rrdr_relative_window_to_absolute_query(&after_wanted, &before_wanted, NULL, unittest_running);
+ query_debug_log(":relative2absolute after %ld, before %ld", after_wanted, before_wanted);
+
+ if (natural_points && (options & RRDR_OPTION_SELECTED_TIER) && tier > 0 && storage_tiers > 1) {
+ update_every = rrdset_find_natural_update_every_for_timeframe(
+ qt, after_wanted, before_wanted, points_wanted, options, tier);
+
+ if (update_every <= 0) update_every = qt->db.minimum_latest_update_every_s;
+ query_debug_log(":natural update every %ld", update_every);
+ }
+
+ // this is the update_every of the query
+ // it may be different to the update_every of the database
+ time_t query_granularity = (natural_points) ? update_every : 1;
+ if (query_granularity <= 0) query_granularity = 1;
+ query_debug_log(":query_granularity %ld", query_granularity);
+
+ // align before_wanted and after_wanted to query_granularity
+ if (before_wanted % query_granularity) {
+ before_wanted -= before_wanted % query_granularity;
+ query_debug_log(":granularity align before_wanted %ld", before_wanted);
+ }
+
+ if (after_wanted % query_granularity) {
+ after_wanted -= after_wanted % query_granularity;
+ query_debug_log(":granularity align after_wanted %ld", after_wanted);
+ }
+
+ // automatic_natural_points is set when the user wants all the points available in the database
+ if (automatic_natural_points) {
+ points_wanted = (before_wanted - after_wanted + 1) / query_granularity;
+ if (unlikely(points_wanted <= 0)) points_wanted = 1;
+ query_debug_log(":auto natural points_wanted %zu", points_wanted);
+ }
+
+ time_t duration = before_wanted - after_wanted;
+
+ // if the resampling time is too big, extend the duration to the past
+ if (unlikely(resampling_time_requested > duration)) {
+ after_wanted = before_wanted - resampling_time_requested;
+ duration = before_wanted - after_wanted;
+ query_debug_log(":resampling after_wanted %ld", after_wanted);
+ }
+
+ // if the duration is not aligned to resampling time
+ // extend the duration to the past, to avoid a gap at the chart
+ // only when the missing duration is above 1/10th of a point
+ if (resampling_time_requested > query_granularity && duration % resampling_time_requested) {
+ time_t delta = duration % resampling_time_requested;
+ if (delta > resampling_time_requested / 10) {
+ after_wanted -= resampling_time_requested - delta;
+ duration = before_wanted - after_wanted;
+ query_debug_log(":resampling2 after_wanted %ld", after_wanted);
+ }
+ }
+
+ // the available points of the query
+ size_t points_available = (duration + 1) / query_granularity;
+ if (unlikely(points_available <= 0)) points_available = 1;
+ query_debug_log(":points_available %zu", points_available);
+
+ if (points_wanted > points_available) {
+ points_wanted = points_available;
+ query_debug_log(":max points_wanted %zu", points_wanted);
+ }
+
+ if(points_wanted > 86400 && !unittest_running) {
+ points_wanted = 86400;
+ query_debug_log(":absolute max points_wanted %zu", points_wanted);
+ }
+
+ // calculate the desired grouping of source data points
+ size_t group = points_available / points_wanted;
+ if (group == 0) group = 1;
+
+ // round "group" to the closest integer
+ if (points_available % points_wanted > points_wanted / 2)
+ group++;
+
+ query_debug_log(":group %zu", group);
+
+ if (points_wanted * group * query_granularity < (size_t)duration) {
+ // the grouping we are going to do, is not enough
+ // to cover the entire duration requested, so
+ // we have to change the number of points, to make sure we will
+ // respect the timeframe as closely as possibly
+
+ // let's see how many points are the optimal
+ points_wanted = points_available / group;
+
+ if (points_wanted * group < points_available)
+ points_wanted++;
+
+ if (unlikely(points_wanted == 0))
+ points_wanted = 1;
+
+ query_debug_log(":optimal points %zu", points_wanted);
+ }
+
+ // resampling_time_requested enforces a certain grouping multiple
+ NETDATA_DOUBLE resampling_divisor = 1.0;
+ size_t resampling_group = 1;
+ if (unlikely(resampling_time_requested > query_granularity)) {
+ // the points we should group to satisfy gtime
+ resampling_group = resampling_time_requested / query_granularity;
+ if (unlikely(resampling_time_requested % query_granularity))
+ resampling_group++;
+
+ query_debug_log(":resampling group %zu", resampling_group);
+
+ // adapt group according to resampling_group
+ if (unlikely(group < resampling_group)) {
+ group = resampling_group; // do not allow grouping below the desired one
+ query_debug_log(":group less res %zu", group);
+ }
+ if (unlikely(group % resampling_group)) {
+ group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
+ query_debug_log(":group mod res %zu", group);
+ }
+
+ // resampling_divisor = group / resampling_group;
+ resampling_divisor = (NETDATA_DOUBLE) (group * query_granularity) / (NETDATA_DOUBLE) resampling_time_requested;
+ query_debug_log(":resampling divisor " NETDATA_DOUBLE_FORMAT, resampling_divisor);
+ }
+
+ // now that we have group, align the requested timeframe to fit it.
+ if (aligned && before_wanted % (group * query_granularity)) {
+ if (before_is_aligned_to_db_end)
+ before_wanted -= before_wanted % (time_t)(group * query_granularity);
+ else
+ before_wanted += (time_t)(group * query_granularity) - before_wanted % (time_t)(group * query_granularity);
+ query_debug_log(":align before_wanted %ld", before_wanted);
+ }
+
+ after_wanted = before_wanted - (time_t)(points_wanted * group * query_granularity) + query_granularity;
+ query_debug_log(":final after_wanted %ld", after_wanted);
+
+ duration = before_wanted - after_wanted;
+ query_debug_log(":final duration %ld", duration + 1);
+
+ query_debug_log_fin();
+
+ internal_error(points_wanted != duration / (query_granularity * group) + 1,
+ "QUERY: points_wanted %zu is not points %zu",
+ points_wanted, (size_t)(duration / (query_granularity * group) + 1));
+
+ internal_error(group < resampling_group,
+ "QUERY: group %zu is less than the desired group points %zu",
+ group, resampling_group);
+
+ internal_error(group > resampling_group && group % resampling_group,
+ "QUERY: group %zu is not a multiple of the desired group points %zu",
+ group, resampling_group);
+
+ // -------------------------------------------------------------------------
+ // update QUERY_TARGET with our calculations
+
+ qt->window.after = after_wanted;
+ qt->window.before = before_wanted;
+ qt->window.relative = relative_period_requested;
+ qt->window.points = points_wanted;
+ qt->window.group = group;
+ qt->window.time_group_method = group_method;
+ qt->window.time_group_options = qt->request.time_group_options;
+ qt->window.query_granularity = query_granularity;
+ qt->window.resampling_group = resampling_group;
+ qt->window.resampling_divisor = resampling_divisor;
+ qt->window.options = options;
+ qt->window.tier = tier;
+ qt->window.aligned = aligned;
+
+ return true;
+}
+
+// ----------------------------------------------------------------------------
+// group by
+
+struct group_by_label_key {
+ DICTIONARY *values;
+};
+
+static void group_by_label_key_insert_cb(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data) {
+ // add the key to our r->label_keys global keys dictionary
+ DICTIONARY *label_keys = data;
+ dictionary_set(label_keys, dictionary_acquired_item_name(item), NULL, 0);
+
+ // create a dictionary for the values of this key
+ struct group_by_label_key *k = value;
+ k->values = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE, NULL, 0);
+}
+
+static void group_by_label_key_delete_cb(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data __maybe_unused) {
+ struct group_by_label_key *k = value;
+ dictionary_destroy(k->values);
+}
+
+static int rrdlabels_traversal_cb_to_group_by_label_key(const char *name, const char *value, RRDLABEL_SRC ls __maybe_unused, void *data) {
+ DICTIONARY *dl = data;
+ struct group_by_label_key *k = dictionary_set(dl, name, NULL, sizeof(struct group_by_label_key));
+ dictionary_set(k->values, value, NULL, 0);
+ return 1;
+}
+
+void rrdr_json_group_by_labels(BUFFER *wb, const char *key, RRDR *r, RRDR_OPTIONS options) {
+ if(!r->label_keys || !r->dl)
+ return;
+
+ buffer_json_member_add_object(wb, key);
+
+ void *t;
+ dfe_start_read(r->label_keys, t) {
+ buffer_json_member_add_array(wb, t_dfe.name);
+
+ for(size_t d = 0; d < r->d ;d++) {
+ if(!rrdr_dimension_should_be_exposed(r->od[d], options))
+ continue;
+
+ struct group_by_label_key *k = dictionary_get(r->dl[d], t_dfe.name);
+ if(k) {
+ buffer_json_add_array_item_array(wb);
+ void *tt;
+ dfe_start_read(k->values, tt) {
+ buffer_json_add_array_item_string(wb, tt_dfe.name);
+ }
+ dfe_done(tt);
+ buffer_json_array_close(wb);
+ }
+ else
+ buffer_json_add_array_item_string(wb, NULL);
+ }
+
+ buffer_json_array_close(wb);
+ }
+ dfe_done(t);
+
+ buffer_json_object_close(wb); // key
+}
+
+static void rrd2rrdr_set_timestamps(RRDR *r) {
+ QUERY_TARGET *qt = r->internal.qt;
+
+ internal_fatal(qt->window.points != r->n, "QUERY: mismatch to the number of points in qt and r");
+
+ r->view.group = qt->window.group;
+ r->view.update_every = (int) query_view_update_every(qt);
+ r->view.before = qt->window.before;
+ r->view.after = qt->window.after;
+
+ r->time_grouping.points_wanted = qt->window.points;
+ r->time_grouping.resampling_group = qt->window.resampling_group;
+ r->time_grouping.resampling_divisor = qt->window.resampling_divisor;
+
+ r->rows = qt->window.points;
+
+ size_t points_wanted = qt->window.points;
+ time_t after_wanted = qt->window.after;
+ time_t before_wanted = qt->window.before; (void)before_wanted;
+
+ time_t view_update_every = r->view.update_every;
+ time_t query_granularity = (time_t)(r->view.update_every / r->view.group);
+
+ size_t rrdr_line = 0;
+ time_t first_point_end_time = after_wanted + view_update_every - query_granularity;
+ time_t now_end_time = first_point_end_time;
+
+ while (rrdr_line < points_wanted) {
+ r->t[rrdr_line++] = now_end_time;
+ now_end_time += view_update_every;
+ }
+
+ internal_fatal(r->t[0] != first_point_end_time, "QUERY: wrong first timestamp in the query");
+ internal_error(r->t[points_wanted - 1] != before_wanted,
+ "QUERY: wrong last timestamp in the query, expected %ld, found %ld",
+ before_wanted, r->t[points_wanted - 1]);
+}
+
+static void query_group_by_make_dimension_key(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_group) {
+ buffer_flush(key);
+ if(unlikely(!query_has_percentage_of_group && qm->status & RRDR_DIMENSION_HIDDEN)) {
+ buffer_strcat(key, "__hidden_dimensions__");
+ }
+ else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
+ buffer_strcat(key, "selected");
+ }
+ else {
+ if (group_by & RRDR_GROUP_BY_DIMENSION) {
+ buffer_fast_strcat(key, "|", 1);
+ buffer_strcat(key, query_metric_name(qt, qm));
+ }
+
+ if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
+ buffer_fast_strcat(key, "|", 1);
+ buffer_strcat(key, string2str(query_instance_id_fqdn(qi, qt->request.version)));
+ }
+
+ if (group_by & RRDR_GROUP_BY_LABEL) {
+ RRDLABELS *labels = rrdinstance_acquired_labels(qi->ria);
+ for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
+ buffer_fast_strcat(key, "|", 1);
+ rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
+ }
+ }
+
+ if (group_by & RRDR_GROUP_BY_NODE) {
+ buffer_fast_strcat(key, "|", 1);
+ buffer_strcat(key, qn->rrdhost->machine_guid);
+ }
+
+ if (group_by & RRDR_GROUP_BY_CONTEXT) {
+ buffer_fast_strcat(key, "|", 1);
+ buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
+ }
+
+ if (group_by & RRDR_GROUP_BY_UNITS) {
+ buffer_fast_strcat(key, "|", 1);
+ buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
+ }
+ }
+}
+
+static void query_group_by_make_dimension_id(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_group) {
+ buffer_flush(key);
+ if(unlikely(!query_has_percentage_of_group && qm->status & RRDR_DIMENSION_HIDDEN)) {
+ buffer_strcat(key, "__hidden_dimensions__");
+ }
+ else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
+ buffer_strcat(key, "selected");
+ }
+ else {
+ if (group_by & RRDR_GROUP_BY_DIMENSION) {
+ buffer_strcat(key, query_metric_name(qt, qm));
+ }
+
+ if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ if (group_by & RRDR_GROUP_BY_NODE)
+ buffer_strcat(key, rrdinstance_acquired_id(qi->ria));
+ else
+ buffer_strcat(key, string2str(query_instance_id_fqdn(qi, qt->request.version)));
+ }
+
+ if (group_by & RRDR_GROUP_BY_LABEL) {
+ RRDLABELS *labels = rrdinstance_acquired_labels(qi->ria);
+ for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+ rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
+ }
+ }
+
+ if (group_by & RRDR_GROUP_BY_NODE) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, qn->rrdhost->machine_guid);
+ }
+
+ if (group_by & RRDR_GROUP_BY_CONTEXT) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
+ }
+
+ if (group_by & RRDR_GROUP_BY_UNITS) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
+ }
+ }
+}
+
+static void query_group_by_make_dimension_name(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_group) {
+ buffer_flush(key);
+ if(unlikely(!query_has_percentage_of_group && qm->status & RRDR_DIMENSION_HIDDEN)) {
+ buffer_strcat(key, "__hidden_dimensions__");
+ }
+ else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
+ buffer_strcat(key, "selected");
+ }
+ else {
+ if (group_by & RRDR_GROUP_BY_DIMENSION) {
+ buffer_strcat(key, query_metric_name(qt, qm));
+ }
+
+ if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ if (group_by & RRDR_GROUP_BY_NODE)
+ buffer_strcat(key, rrdinstance_acquired_name(qi->ria));
+ else
+ buffer_strcat(key, string2str(query_instance_name_fqdn(qi, qt->request.version)));
+ }
+
+ if (group_by & RRDR_GROUP_BY_LABEL) {
+ RRDLABELS *labels = rrdinstance_acquired_labels(qi->ria);
+ for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+ rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
+ }
+ }
+
+ if (group_by & RRDR_GROUP_BY_NODE) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, rrdhost_hostname(qn->rrdhost));
+ }
+
+ if (group_by & RRDR_GROUP_BY_CONTEXT) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
+ }
+
+ if (group_by & RRDR_GROUP_BY_UNITS) {
+ if (buffer_strlen(key) != 0)
+ buffer_fast_strcat(key, ",", 1);
+
+ buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
+ }
+ }
+}
+
+struct rrdr_group_by_entry {
+ size_t priority;
+ size_t count;
+ STRING *id;
+ STRING *name;
+ STRING *units;
+ RRDR_DIMENSION_FLAGS od;
+ DICTIONARY *dl;
+};
+
+static RRDR *rrd2rrdr_group_by_initialize(ONEWAYALLOC *owa, QUERY_TARGET *qt) {
+ RRDR *r_tmp = NULL;
+ RRDR_OPTIONS options = qt->window.options;
+
+ if(qt->request.version < 2) {
+ // v1 query
+ RRDR *r = rrdr_create(owa, qt, qt->query.used, qt->window.points);
+ if(unlikely(!r)) {
+ internal_error(true, "QUERY: cannot create RRDR for %s, after=%ld, before=%ld, dimensions=%u, points=%zu",
+ qt->id, qt->window.after, qt->window.before, qt->query.used, qt->window.points);
+ return NULL;
+ }
+ r->group_by.r = NULL;
+
+ for(size_t d = 0; d < qt->query.used ; d++) {
+ QUERY_METRIC *qm = query_metric(qt, d);
+ QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
+ r->di[d] = rrdmetric_acquired_id_dup(qd->rma);
+ r->dn[d] = rrdmetric_acquired_name_dup(qd->rma);
+ }
+
+ rrd2rrdr_set_timestamps(r);
+ return r;
+ }
+ // v2 query
+
+ // parse all the group-by label keys
+ for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++) {
+ if (qt->request.group_by[g].group_by & RRDR_GROUP_BY_LABEL &&
+ qt->request.group_by[g].group_by_label && *qt->request.group_by[g].group_by_label)
+ qt->group_by[g].used = quoted_strings_splitter_query_group_by_label(
+ qt->request.group_by[g].group_by_label, qt->group_by[g].label_keys,
+ GROUP_BY_MAX_LABEL_KEYS);
+
+ if (!qt->group_by[g].used)
+ qt->request.group_by[g].group_by &= ~RRDR_GROUP_BY_LABEL;
+ }
+
+ // make sure there are valid group-by methods
+ for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++) {
+ if(!(qt->request.group_by[g].group_by & SUPPORTED_GROUP_BY_METHODS))
+ qt->request.group_by[g].group_by = (g == 0) ? RRDR_GROUP_BY_DIMENSION : RRDR_GROUP_BY_NONE;
+ }
+
+ bool query_has_percentage_of_group = query_target_has_percentage_of_group(qt);
+
+ // merge all group-by options to upper levels,
+ // so that the top level has all the groupings of the inner levels,
+ // and each subsequent level has all the groupings of its inner levels.
+ for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES - 1 ;g++) {
+ if(qt->request.group_by[g].group_by == RRDR_GROUP_BY_NONE)
+ continue;
+
+ if(qt->request.group_by[g].group_by == RRDR_GROUP_BY_SELECTED) {
+ for (size_t r = g + 1; r < MAX_QUERY_GROUP_BY_PASSES; r++)
+ qt->request.group_by[r].group_by = RRDR_GROUP_BY_NONE;
+ }
+ else {
+ for (size_t r = g + 1; r < MAX_QUERY_GROUP_BY_PASSES; r++) {
+ if (qt->request.group_by[r].group_by == RRDR_GROUP_BY_NONE)
+ continue;
+
+ if (qt->request.group_by[r].group_by != RRDR_GROUP_BY_SELECTED) {
+ if(qt->request.group_by[r].group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
+ qt->request.group_by[g].group_by |= RRDR_GROUP_BY_INSTANCE;
+ else
+ qt->request.group_by[g].group_by |= qt->request.group_by[r].group_by;
+
+ if(qt->request.group_by[r].group_by & RRDR_GROUP_BY_LABEL) {
+ for (size_t lr = 0; lr < qt->group_by[r].used; lr++) {
+ bool found = false;
+ for (size_t lg = 0; lg < qt->group_by[g].used; lg++) {
+ if (strcmp(qt->group_by[g].label_keys[lg], qt->group_by[r].label_keys[lr]) == 0) {
+ found = true;
+ break;
+ }
+ }
+
+ if (!found && qt->group_by[g].used < GROUP_BY_MAX_LABEL_KEYS * MAX_QUERY_GROUP_BY_PASSES)
+ qt->group_by[g].label_keys[qt->group_by[g].used++] = qt->group_by[r].label_keys[lr];
+ }
+ }
+ }
+ }
+ }
+ }
+
+ int added = 0;
+ RRDR *first_r = NULL, *last_r = NULL;
+ BUFFER *key = buffer_create(0, NULL);
+ struct rrdr_group_by_entry *entries = onewayalloc_mallocz(owa, qt->query.used * sizeof(struct rrdr_group_by_entry));
+ DICTIONARY *groups = dictionary_create(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE);
+ DICTIONARY *label_keys = NULL;
+
+ for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++) {
+ RRDR_GROUP_BY group_by = qt->request.group_by[g].group_by;
+ RRDR_GROUP_BY_FUNCTION aggregation_method = qt->request.group_by[g].aggregation;
+
+ if(group_by == RRDR_GROUP_BY_NONE)
+ break;
+
+ memset(entries, 0, qt->query.used * sizeof(struct rrdr_group_by_entry));
+ dictionary_flush(groups);
+ added = 0;
+
+ size_t hidden_dimensions = 0;
+ bool final_grouping = (g == MAX_QUERY_GROUP_BY_PASSES - 1 || qt->request.group_by[g + 1].group_by == RRDR_GROUP_BY_NONE) ? true : false;
+
+ if (final_grouping && (options & RRDR_OPTION_GROUP_BY_LABELS))
+ label_keys = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE, NULL, 0);
+
+ QUERY_INSTANCE *last_qi = NULL;
+ size_t priority = 0;
+ time_t update_every_max = 0;
+ for (size_t d = 0; d < qt->query.used; d++) {
+ QUERY_METRIC *qm = query_metric(qt, d);
+ QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
+ QUERY_INSTANCE *qi = query_instance(qt, qm->link.query_instance_id);
+ QUERY_CONTEXT *qc = query_context(qt, qm->link.query_context_id);
+ QUERY_NODE *qn = query_node(qt, qm->link.query_node_id);
+
+ if (qi != last_qi) {
+ last_qi = qi;
+
+ time_t update_every = rrdinstance_acquired_update_every(qi->ria);
+ if (update_every > update_every_max)
+ update_every_max = update_every;
+ }
+
+ priority = qd->priority;
+
+ if(qm->status & RRDR_DIMENSION_HIDDEN)
+ hidden_dimensions++;
+
+ // --------------------------------------------------------------------
+ // generate the group by key
+
+ query_group_by_make_dimension_key(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_group);
+
+ // lookup the key in the dictionary
+
+ int pos = -1;
+ int *set = dictionary_set(groups, buffer_tostring(key), &pos, sizeof(pos));
+ if (*set == -1) {
+ // the key just added to the dictionary
+
+ *set = pos = added++;
+
+ // ----------------------------------------------------------------
+ // generate the dimension id
+
+ query_group_by_make_dimension_id(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_group);
+ entries[pos].id = string_strdupz(buffer_tostring(key));
+
+ // ----------------------------------------------------------------
+ // generate the dimension name
+
+ query_group_by_make_dimension_name(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_group);
+ entries[pos].name = string_strdupz(buffer_tostring(key));
+
+ // add the rest of the info
+ entries[pos].units = rrdinstance_acquired_units_dup(qi->ria);
+ entries[pos].priority = priority;
+
+ if (label_keys) {
+ entries[pos].dl = dictionary_create_advanced(
+ DICT_OPTION_SINGLE_THREADED | DICT_OPTION_FIXED_SIZE | DICT_OPTION_DONT_OVERWRITE_VALUE,
+ NULL, sizeof(struct group_by_label_key));
+ dictionary_register_insert_callback(entries[pos].dl, group_by_label_key_insert_cb, label_keys);
+ dictionary_register_delete_callback(entries[pos].dl, group_by_label_key_delete_cb, label_keys);
+ }
+ } else {
+ // the key found in the dictionary
+ pos = *set;
+ }
+
+ entries[pos].count++;
+
+ if (unlikely(priority < entries[pos].priority))
+ entries[pos].priority = priority;
+
+ if(g > 0)
+ last_r->dgbs[qm->grouped_as.slot] = pos;
+ else
+ qm->grouped_as.first_slot = pos;
+
+ qm->grouped_as.slot = pos;
+ qm->grouped_as.id = entries[pos].id;
+ qm->grouped_as.name = entries[pos].name;
+ qm->grouped_as.units = entries[pos].units;
+
+ // copy the dimension flags decided by the query target
+ // we need this, because if a dimension is explicitly selected
+ // the query target adds to it the non-zero flag
+ qm->status |= RRDR_DIMENSION_GROUPED;
+
+ if(query_has_percentage_of_group)
+ // when the query has percentage of group
+ // there will be no hidden dimensions in the final query,
+ // so we have to remove the hidden flag from all dimensions
+ entries[pos].od |= qm->status & ~RRDR_DIMENSION_HIDDEN;
+ else
+ entries[pos].od |= qm->status;
+
+ if (entries[pos].dl)
+ rrdlabels_walkthrough_read(rrdinstance_acquired_labels(qi->ria),
+ rrdlabels_traversal_cb_to_group_by_label_key, entries[pos].dl);
+ }
+
+ RRDR *r = rrdr_create(owa, qt, added, qt->window.points);
+ if (!r) {
+ internal_error(true,
+ "QUERY: cannot create group by RRDR for %s, after=%ld, before=%ld, dimensions=%d, points=%zu",
+ qt->id, qt->window.after, qt->window.before, added, qt->window.points);
+ goto cleanup;
+ }
+ // prevent double free at cleanup in case of error
+ added = 0;
+
+ // link this RRDR
+ if(!last_r)
+ first_r = last_r = r;
+ else
+ last_r->group_by.r = r;
+
+ last_r = r;
+
+ rrd2rrdr_set_timestamps(r);
+ r->dp = onewayalloc_callocz(owa, r->d, sizeof(*r->dp));
+ r->dview = onewayalloc_callocz(owa, r->d, sizeof(*r->dview));
+ r->dgbc = onewayalloc_callocz(owa, r->d, sizeof(*r->dgbc));
+ r->gbc = onewayalloc_callocz(owa, r->n * r->d, sizeof(*r->gbc));
+ r->dqp = onewayalloc_callocz(owa, r->d, sizeof(STORAGE_POINT));
+
+ if(hidden_dimensions && ((group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE) || (aggregation_method == RRDR_GROUP_BY_FUNCTION_PERCENTAGE)))
+ // this is where we are going to group the hidden dimensions
+ r->vh = onewayalloc_mallocz(owa, r->n * r->d * sizeof(*r->vh));
+
+ if(!final_grouping)
+ // this is where we are going to store the slot in the next RRDR
+ // that we are going to group by the dimension of this RRDR
+ r->dgbs = onewayalloc_callocz(owa, r->d, sizeof(*r->dgbs));
+
+ if (label_keys) {
+ r->dl = onewayalloc_callocz(owa, r->d, sizeof(DICTIONARY *));
+ r->label_keys = label_keys;
+ label_keys = NULL;
+ }
+
+ // zero r (dimension options, names, and ids)
+ // this is required, because group-by may lead to empty dimensions
+ for (size_t d = 0; d < r->d; d++) {
+ r->di[d] = entries[d].id;
+ r->dn[d] = entries[d].name;
+
+ r->od[d] = entries[d].od;
+ r->du[d] = entries[d].units;
+ r->dp[d] = entries[d].priority;
+ r->dgbc[d] = entries[d].count;
+
+ if (r->dl)
+ r->dl[d] = entries[d].dl;
+ }
+
+ // initialize partial trimming
+ r->partial_data_trimming.max_update_every = update_every_max * 2;
+ r->partial_data_trimming.expected_after =
+ (!query_target_aggregatable(qt) &&
+ qt->window.before >= qt->window.now - r->partial_data_trimming.max_update_every) ?
+ qt->window.before - r->partial_data_trimming.max_update_every :
+ qt->window.before;
+ r->partial_data_trimming.trimmed_after = qt->window.before;
+
+ // make all values empty
+ for (size_t i = 0; i != r->n; i++) {
+ NETDATA_DOUBLE *cn = &r->v[i * r->d];
+ RRDR_VALUE_FLAGS *co = &r->o[i * r->d];
+ NETDATA_DOUBLE *ar = &r->ar[i * r->d];
+ NETDATA_DOUBLE *vh = r->vh ? &r->vh[i * r->d] : NULL;
+
+ for (size_t d = 0; d < r->d; d++) {
+ cn[d] = NAN;
+ ar[d] = 0.0;
+ co[d] = RRDR_VALUE_EMPTY;
+
+ if(vh)
+ vh[d] = NAN;
+ }
+ }
+ }
+
+ if(!first_r || !last_r)
+ goto cleanup;
+
+ r_tmp = rrdr_create(owa, qt, 1, qt->window.points);
+ if (!r_tmp) {
+ internal_error(true,
+ "QUERY: cannot create group by temporary RRDR for %s, after=%ld, before=%ld, dimensions=%d, points=%zu",
+ qt->id, qt->window.after, qt->window.before, 1, qt->window.points);
+ goto cleanup;
+ }
+ rrd2rrdr_set_timestamps(r_tmp);
+ r_tmp->group_by.r = first_r;
+
+cleanup:
+ if(!first_r || !last_r || !r_tmp) {
+ if(r_tmp) {
+ r_tmp->group_by.r = NULL;
+ rrdr_free(owa, r_tmp);
+ }
+
+ if(first_r) {
+ RRDR *r = first_r;
+ while (r) {
+ r_tmp = r->group_by.r;
+ r->group_by.r = NULL;
+ rrdr_free(owa, r);
+ r = r_tmp;
+ }
+ }
+
+ if(entries && added) {
+ for (int d = 0; d < added; d++) {
+ string_freez(entries[d].id);
+ string_freez(entries[d].name);
+ string_freez(entries[d].units);
+ dictionary_destroy(entries[d].dl);
+ }
+ }
+ dictionary_destroy(label_keys);
+
+ first_r = last_r = r_tmp = NULL;
+ }
+
+ buffer_free(key);
+ onewayalloc_freez(owa, entries);
+ dictionary_destroy(groups);
+
+ return r_tmp;
+}
+
+static void rrd2rrdr_group_by_add_metric(RRDR *r_dst, size_t d_dst, RRDR *r_tmp, size_t d_tmp,
+ RRDR_GROUP_BY_FUNCTION group_by_aggregate_function,
+ STORAGE_POINT *query_points, size_t pass __maybe_unused) {
+ if(!r_tmp || r_dst == r_tmp || !(r_tmp->od[d_tmp] & RRDR_DIMENSION_QUERIED))
+ return;
+
+ internal_fatal(r_dst->n != r_tmp->n, "QUERY: group-by source and destination do not have the same number of rows");
+ internal_fatal(d_dst >= r_dst->d, "QUERY: group-by destination dimension number exceeds destination RRDR size");
+ internal_fatal(d_tmp >= r_tmp->d, "QUERY: group-by source dimension number exceeds source RRDR size");
+ internal_fatal(!r_dst->dqp, "QUERY: group-by destination is not properly prepared (missing dqp array)");
+ internal_fatal(!r_dst->gbc, "QUERY: group-by destination is not properly prepared (missing gbc array)");
+
+ bool hidden_dimension_on_percentage_of_group = (r_tmp->od[d_tmp] & RRDR_DIMENSION_HIDDEN) && r_dst->vh;
+
+ if(!hidden_dimension_on_percentage_of_group) {
+ r_dst->od[d_dst] |= r_tmp->od[d_tmp];
+ storage_point_merge_to(r_dst->dqp[d_dst], *query_points);
+ }
+
+ // do the group_by
+ for(size_t i = 0; i != rrdr_rows(r_tmp) ; i++) {
+
+ size_t idx_tmp = i * r_tmp->d + d_tmp;
+ NETDATA_DOUBLE n_tmp = r_tmp->v[ idx_tmp ];
+ RRDR_VALUE_FLAGS o_tmp = r_tmp->o[ idx_tmp ];
+ NETDATA_DOUBLE ar_tmp = r_tmp->ar[ idx_tmp ];
+
+ if(o_tmp & RRDR_VALUE_EMPTY)
+ continue;
+
+ size_t idx_dst = i * r_dst->d + d_dst;
+ NETDATA_DOUBLE *cn = (hidden_dimension_on_percentage_of_group) ? &r_dst->vh[ idx_dst ] : &r_dst->v[ idx_dst ];
+ RRDR_VALUE_FLAGS *co = &r_dst->o[ idx_dst ];
+ NETDATA_DOUBLE *ar = &r_dst->ar[ idx_dst ];
+ uint32_t *gbc = &r_dst->gbc[ idx_dst ];
+
+ switch(group_by_aggregate_function) {
+ default:
+ case RRDR_GROUP_BY_FUNCTION_AVERAGE:
+ case RRDR_GROUP_BY_FUNCTION_SUM:
+ case RRDR_GROUP_BY_FUNCTION_PERCENTAGE:
+ if(isnan(*cn))
+ *cn = n_tmp;
+ else
+ *cn += n_tmp;
+ break;
+
+ case RRDR_GROUP_BY_FUNCTION_MIN:
+ if(isnan(*cn) || n_tmp < *cn)
+ *cn = n_tmp;
+ break;
+
+ case RRDR_GROUP_BY_FUNCTION_MAX:
+ if(isnan(*cn) || n_tmp > *cn)
+ *cn = n_tmp;
+ break;
+ }
+
+ if(!hidden_dimension_on_percentage_of_group) {
+ *co &= ~RRDR_VALUE_EMPTY;
+ *co |= (o_tmp & (RRDR_VALUE_RESET | RRDR_VALUE_PARTIAL));
+ *ar += ar_tmp;
+ (*gbc)++;
+ }
+ }
+}
+
+static void rrdr2rrdr_group_by_partial_trimming(RRDR *r) {
+ time_t trimmable_after = r->partial_data_trimming.expected_after;
+
+ // find the point just before the trimmable ones
+ ssize_t i = (ssize_t)r->n - 1;
+ for( ; i >= 0 ;i--) {
+ if (r->t[i] < trimmable_after)
+ break;
+ }
+
+ if(unlikely(i < 0))
+ return;
+
+ // internal_error(true, "Found trimmable index %zd (from 0 to %zu)", i, r->n - 1);
+
+ size_t last_row_gbc = 0;
+ for (; i < (ssize_t)r->n; i++) {
+ size_t row_gbc = 0;
+ for (size_t d = 0; d < r->d; d++) {
+ if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
+ continue;
+
+ row_gbc += r->gbc[ i * r->d + d ];
+ }
+
+ // internal_error(true, "GBC of index %zd is %zu", i, row_gbc);
+
+ if (unlikely(r->t[i] >= trimmable_after && (row_gbc < last_row_gbc || !row_gbc))) {
+ // discard the rest of the points
+ // internal_error(true, "Discarding points %zd to %zu", i, r->n - 1);
+ r->partial_data_trimming.trimmed_after = r->t[i];
+ r->rows = i;
+ break;
+ }
+ else
+ last_row_gbc = row_gbc;
+ }
+}
+
+static void rrdr2rrdr_group_by_calculate_percentage_of_group(RRDR *r) {
+ if(!r->vh)
+ return;
+
+ if(query_target_aggregatable(r->internal.qt) && query_has_group_by_aggregation_percentage(r->internal.qt))
+ return;
+
+ for(size_t i = 0; i < r->n ;i++) {
+ NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
+ NETDATA_DOUBLE *ch = &r->vh[ i * r->d ];
+
+ for(size_t d = 0; d < r->d ;d++) {
+ NETDATA_DOUBLE n = cn[d];
+ NETDATA_DOUBLE h = ch[d];
+
+ if(isnan(n))
+ cn[d] = 0.0;
+
+ else if(isnan(h))
+ cn[d] = 100.0;
+
+ else
+ cn[d] = n * 100.0 / (n + h);
+ }
+ }
+}
+
+static void rrd2rrdr_convert_values_to_percentage_of_total(RRDR *r) {
+ if(!(r->internal.qt->window.options & RRDR_OPTION_PERCENTAGE) || query_target_aggregatable(r->internal.qt))
+ return;
+
+ size_t global_min_max_values = 0;
+ NETDATA_DOUBLE global_min = NAN, global_max = NAN;
+
+ for(size_t i = 0; i != r->n ;i++) {
+ NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
+ RRDR_VALUE_FLAGS *co = &r->o[ i * r->d ];
+
+ NETDATA_DOUBLE total = 0;
+ for (size_t d = 0; d < r->d; d++) {
+ if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
+ continue;
+
+ if(co[d] & RRDR_VALUE_EMPTY)
+ continue;
+
+ total += cn[d];
+ }
+
+ if(total == 0.0)
+ total = 1.0;
+
+ for (size_t d = 0; d < r->d; d++) {
+ if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
+ continue;
+
+ if(co[d] & RRDR_VALUE_EMPTY)
+ continue;
+
+ NETDATA_DOUBLE n = cn[d];
+ n = cn[d] = n * 100.0 / total;
+
+ if(unlikely(!global_min_max_values++))
+ global_min = global_max = n;
+ else {
+ if(n < global_min)
+ global_min = n;
+ if(n > global_max)
+ global_max = n;
+ }
+ }
+ }
+
+ r->view.min = global_min;
+ r->view.max = global_max;
+
+ if(!r->dview)
+ // v1 query
+ return;
+
+ // v2 query
+
+ for (size_t d = 0; d < r->d; d++) {
+ if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
+ continue;
+
+ size_t count = 0;
+ NETDATA_DOUBLE min = 0.0, max = 0.0, sum = 0.0, ars = 0.0;
+ for(size_t i = 0; i != r->rows ;i++) { // we use r->rows to respect trimming
+ size_t idx = i * r->d + d;
+
+ RRDR_VALUE_FLAGS o = r->o[ idx ];
+
+ if (o & RRDR_VALUE_EMPTY)
+ continue;
+
+ NETDATA_DOUBLE ar = r->ar[ idx ];
+ ars += ar;
+
+ NETDATA_DOUBLE n = r->v[ idx ];
+ sum += n;
+
+ if(!count++)
+ min = max = n;
+ else {
+ if(n < min)
+ min = n;
+ if(n > max)
+ max = n;
+ }
+ }
+
+ r->dview[d] = (STORAGE_POINT) {
+ .sum = sum,
+ .count = count,
+ .min = min,
+ .max = max,
+ .anomaly_count = (size_t)(ars * (NETDATA_DOUBLE)count),
+ };
+ }
+}
+
+static RRDR *rrd2rrdr_group_by_finalize(RRDR *r_tmp) {
+ QUERY_TARGET *qt = r_tmp->internal.qt;
+
+ if(!r_tmp->group_by.r) {
+ // v1 query
+ rrd2rrdr_convert_values_to_percentage_of_total(r_tmp);
+ return r_tmp;
+ }
+ // v2 query
+
+ // do the additional passes on RRDRs
+ RRDR *last_r = r_tmp->group_by.r;
+ rrdr2rrdr_group_by_calculate_percentage_of_group(last_r);
+
+ RRDR *r = last_r->group_by.r;
+ size_t pass = 0;
+ while(r) {
+ pass++;
+ for(size_t d = 0; d < last_r->d ;d++) {
+ rrd2rrdr_group_by_add_metric(r, last_r->dgbs[d], last_r, d,
+ qt->request.group_by[pass].aggregation,
+ &last_r->dqp[d], pass);
+ }
+ rrdr2rrdr_group_by_calculate_percentage_of_group(r);
+
+ last_r = r;
+ r = last_r->group_by.r;
+ }
+
+ // free all RRDRs except the last one
+ r = r_tmp;
+ while(r != last_r) {
+ r_tmp = r->group_by.r;
+ r->group_by.r = NULL;
+ rrdr_free(r->internal.owa, r);
+ r = r_tmp;
+ }
+ r = last_r;
+
+ // find the final aggregation
+ RRDR_GROUP_BY_FUNCTION aggregation = qt->request.group_by[0].aggregation;
+ for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++)
+ if(qt->request.group_by[g].group_by != RRDR_GROUP_BY_NONE)
+ aggregation = qt->request.group_by[g].aggregation;
+
+ if(!query_target_aggregatable(qt) && r->partial_data_trimming.expected_after < qt->window.before)
+ rrdr2rrdr_group_by_partial_trimming(r);
+
+ // apply averaging, remove RRDR_VALUE_EMPTY, find the non-zero dimensions, min and max
+ size_t global_min_max_values = 0;
+ size_t dimensions_nonzero = 0;
+ NETDATA_DOUBLE global_min = NAN, global_max = NAN;
+ for (size_t d = 0; d < r->d; d++) {
+ if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
+ continue;
+
+ size_t points_nonzero = 0;
+ NETDATA_DOUBLE min = 0, max = 0, sum = 0, ars = 0;
+ size_t count = 0;
+
+ for(size_t i = 0; i != r->n ;i++) {
+ size_t idx = i * r->d + d;
+
+ NETDATA_DOUBLE *cn = &r->v[ idx ];
+ RRDR_VALUE_FLAGS *co = &r->o[ idx ];
+ NETDATA_DOUBLE *ar = &r->ar[ idx ];
+ uint32_t gbc = r->gbc[ idx ];
+
+ if(likely(gbc)) {
+ *co &= ~RRDR_VALUE_EMPTY;
+
+ if(gbc != r->dgbc[d])
+ *co |= RRDR_VALUE_PARTIAL;
+
+ NETDATA_DOUBLE n;
+
+ sum += *cn;
+ ars += *ar;
+
+ if(aggregation == RRDR_GROUP_BY_FUNCTION_AVERAGE && !query_target_aggregatable(qt))
+ n = (*cn /= gbc);
+ else
+ n = *cn;
+
+ if(!query_target_aggregatable(qt))
+ *ar /= gbc;
+
+ if(islessgreater(n, 0.0))
+ points_nonzero++;
+
+ if(unlikely(!count))
+ min = max = n;
+ else {
+ if(n < min)
+ min = n;
+
+ if(n > max)
+ max = n;
+ }
+
+ if(unlikely(!global_min_max_values++))
+ global_min = global_max = n;
+ else {
+ if(n < global_min)
+ global_min = n;
+
+ if(n > global_max)
+ global_max = n;
+ }
+
+ count += gbc;
+ }
+ }
+
+ if(points_nonzero) {
+ r->od[d] |= RRDR_DIMENSION_NONZERO;
+ dimensions_nonzero++;
+ }
+
+ r->dview[d] = (STORAGE_POINT) {
+ .sum = sum,
+ .count = count,
+ .min = min,
+ .max = max,
+ .anomaly_count = (size_t)(ars * RRDR_DVIEW_ANOMALY_COUNT_MULTIPLIER / 100.0),
+ };
+ }
+
+ r->view.min = global_min;
+ r->view.max = global_max;
+
+ if(!dimensions_nonzero && (qt->window.options & RRDR_OPTION_NONZERO)) {
+ // all dimensions are zero
+ // remove the nonzero option
+ qt->window.options &= ~RRDR_OPTION_NONZERO;
+ }
+
+ rrd2rrdr_convert_values_to_percentage_of_total(r);
+
+ // update query instance counts in query host and query context
+ {
+ size_t h = 0, c = 0, i = 0;
+ for(; h < qt->nodes.used ; h++) {
+ QUERY_NODE *qn = &qt->nodes.array[h];
+
+ for(; c < qt->contexts.used ;c++) {
+ QUERY_CONTEXT *qc = &qt->contexts.array[c];
+
+ if(!rrdcontext_acquired_belongs_to_host(qc->rca, qn->rrdhost))
+ break;
+
+ for(; i < qt->instances.used ;i++) {
+ QUERY_INSTANCE *qi = &qt->instances.array[i];
+
+ if(!rrdinstance_acquired_belongs_to_context(qi->ria, qc->rca))
+ break;
+
+ if(qi->metrics.queried) {
+ qc->instances.queried++;
+ qn->instances.queried++;
+ }
+ else if(qi->metrics.failed) {
+ qc->instances.failed++;
+ qn->instances.failed++;
+ }
+ }
+ }
+ }
+ }
+
+ return r;
+}
+
+// ----------------------------------------------------------------------------
+// query entry point
+
+RRDR *rrd2rrdr_legacy(
+ ONEWAYALLOC *owa,
+ RRDSET *st, size_t points, time_t after, time_t before,
+ RRDR_TIME_GROUPING group_method, time_t resampling_time, RRDR_OPTIONS options, const char *dimensions,
+ const char *group_options, time_t timeout_ms, size_t tier, QUERY_SOURCE query_source,
+ STORAGE_PRIORITY priority) {
+
+ QUERY_TARGET_REQUEST qtr = {
+ .version = 1,
+ .st = st,
+ .points = points,
+ .after = after,
+ .before = before,
+ .time_group_method = group_method,
+ .resampling_time = resampling_time,
+ .options = options,
+ .dimensions = dimensions,
+ .time_group_options = group_options,
+ .timeout_ms = timeout_ms,
+ .tier = tier,
+ .query_source = query_source,
+ .priority = priority,
+ };
+
+ QUERY_TARGET *qt = query_target_create(&qtr);
+ RRDR *r = rrd2rrdr(owa, qt);
+ if(!r) {
+ query_target_release(qt);
+ return NULL;
+ }
+
+ r->internal.release_with_rrdr_qt = qt;
+ return r;
+}
+
+RRDR *rrd2rrdr(ONEWAYALLOC *owa, QUERY_TARGET *qt) {
+ if(!qt || !owa)
+ return NULL;
+
+ // qt.window members are the WANTED ones.
+ // qt.request members are the REQUESTED ones.
+
+ RRDR *r_tmp = rrd2rrdr_group_by_initialize(owa, qt);
+ if(!r_tmp)
+ return NULL;
+
+ // the RRDR we group-by at
+ RRDR *r = (r_tmp->group_by.r) ? r_tmp->group_by.r : r_tmp;
+
+ // the final RRDR to return to callers
+ RRDR *last_r = r_tmp;
+ while(last_r->group_by.r)
+ last_r = last_r->group_by.r;
+
+ if(qt->window.relative)
+ last_r->view.flags |= RRDR_RESULT_FLAG_RELATIVE;
+ else
+ last_r->view.flags |= RRDR_RESULT_FLAG_ABSOLUTE;
+
+ // -------------------------------------------------------------------------
+ // assign the processor functions
+ rrdr_set_grouping_function(r_tmp, qt->window.time_group_method);
+
+ // allocate any memory required by the grouping method
+ r_tmp->time_grouping.create(r_tmp, qt->window.time_group_options);
+
+ // -------------------------------------------------------------------------
+ // do the work for each dimension
+
+ time_t max_after = 0, min_before = 0;
+ size_t max_rows = 0;
+
+ long dimensions_used = 0, dimensions_nonzero = 0;
+ size_t last_db_points_read = 0;
+ size_t last_result_points_generated = 0;
+
+ internal_fatal(released_ops, "QUERY: released_ops should be NULL when the query starts");
+
+ query_progress_set_finish_line(qt->request.transaction, qt->query.used);
+
+ QUERY_ENGINE_OPS **ops = NULL;
+ if(qt->query.used)
+ ops = onewayalloc_callocz(owa, qt->query.used, sizeof(QUERY_ENGINE_OPS *));
+
+ size_t capacity = libuv_worker_threads * 10;
+ size_t max_queries_to_prepare = (qt->query.used > (capacity - 1)) ? (capacity - 1) : qt->query.used;
+ size_t queries_prepared = 0;
+ while(queries_prepared < max_queries_to_prepare) {
+ // preload another query
+ ops[queries_prepared] = rrd2rrdr_query_ops_prep(r_tmp, queries_prepared);
+ queries_prepared++;
+ }
+
+ QUERY_NODE *last_qn = NULL;
+ usec_t last_ut = now_monotonic_usec();
+ usec_t last_qn_ut = last_ut;
+
+ for(size_t d = 0; d < qt->query.used ; d++) {
+ QUERY_METRIC *qm = query_metric(qt, d);
+ QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
+ QUERY_INSTANCE *qi = query_instance(qt, qm->link.query_instance_id);
+ QUERY_CONTEXT *qc = query_context(qt, qm->link.query_context_id);
+ QUERY_NODE *qn = query_node(qt, qm->link.query_node_id);
+
+ usec_t now_ut = last_ut;
+ if(qn != last_qn) {
+ if(last_qn)
+ last_qn->duration_ut = now_ut - last_qn_ut;
+
+ last_qn = qn;
+ last_qn_ut = now_ut;
+ }
+
+ if(queries_prepared < qt->query.used) {
+ // preload another query
+ ops[queries_prepared] = rrd2rrdr_query_ops_prep(r_tmp, queries_prepared);
+ queries_prepared++;
+ }
+
+ size_t dim_in_rrdr_tmp = (r_tmp != r) ? 0 : d;
+
+ // set the query target dimension options to rrdr
+ r_tmp->od[dim_in_rrdr_tmp] = qm->status;
+
+ // reset the grouping for the new dimension
+ r_tmp->time_grouping.reset(r_tmp);
+
+ if(ops[d]) {
+ rrd2rrdr_query_execute(r_tmp, dim_in_rrdr_tmp, ops[d]);
+ r_tmp->od[dim_in_rrdr_tmp] |= RRDR_DIMENSION_QUERIED;
+
+ now_ut = now_monotonic_usec();
+ qm->duration_ut = now_ut - last_ut;
+ last_ut = now_ut;
+
+ if(r_tmp != r) {
+ // copy back whatever got updated from the temporary r
+
+ // the query updates RRDR_DIMENSION_NONZERO
+ qm->status = r_tmp->od[dim_in_rrdr_tmp];
+
+ // the query updates these
+ r->view.min = r_tmp->view.min;
+ r->view.max = r_tmp->view.max;
+ r->view.after = r_tmp->view.after;
+ r->view.before = r_tmp->view.before;
+ r->rows = r_tmp->rows;
+
+ rrd2rrdr_group_by_add_metric(r, qm->grouped_as.first_slot, r_tmp, dim_in_rrdr_tmp,
+ qt->request.group_by[0].aggregation, &qm->query_points, 0);
+ }
+
+ rrd2rrdr_query_ops_release(ops[d]); // reuse this ops allocation
+ ops[d] = NULL;
+
+ qi->metrics.queried++;
+ qc->metrics.queried++;
+ qn->metrics.queried++;
+
+ qd->status |= QUERY_STATUS_QUERIED;
+ qm->status |= RRDR_DIMENSION_QUERIED;
+
+ if(qt->request.version >= 2) {
+ // we need to make the query points positive now
+ // since we will aggregate it across multiple dimensions
+ storage_point_make_positive(qm->query_points);
+ storage_point_merge_to(qi->query_points, qm->query_points);
+ storage_point_merge_to(qc->query_points, qm->query_points);
+ storage_point_merge_to(qn->query_points, qm->query_points);
+ storage_point_merge_to(qt->query_points, qm->query_points);
+ }
+ }
+ else {
+ qi->metrics.failed++;
+ qc->metrics.failed++;
+ qn->metrics.failed++;
+
+ qd->status |= QUERY_STATUS_FAILED;
+ qm->status |= RRDR_DIMENSION_FAILED;
+
+ continue;
+ }
+
+ global_statistics_rrdr_query_completed(
+ 1,
+ r_tmp->stats.db_points_read - last_db_points_read,
+ r_tmp->stats.result_points_generated - last_result_points_generated,
+ qt->request.query_source);
+
+ last_db_points_read = r_tmp->stats.db_points_read;
+ last_result_points_generated = r_tmp->stats.result_points_generated;
+
+ if(qm->status & RRDR_DIMENSION_NONZERO)
+ dimensions_nonzero++;
+
+ // verify all dimensions are aligned
+ if(unlikely(!dimensions_used)) {
+ min_before = r->view.before;
+ max_after = r->view.after;
+ max_rows = r->rows;
+ }
+ else {
+ if(r->view.after != max_after) {
+ internal_error(true, "QUERY: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
+ rrdinstance_acquired_id(qi->ria), (size_t)max_after, rrdmetric_acquired_id(qd->rma), (size_t)r->view.after);
+
+ r->view.after = (r->view.after > max_after) ? r->view.after : max_after;
+ }
+
+ if(r->view.before != min_before) {
+ internal_error(true, "QUERY: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
+ rrdinstance_acquired_id(qi->ria), (size_t)min_before, rrdmetric_acquired_id(qd->rma), (size_t)r->view.before);
+
+ r->view.before = (r->view.before < min_before) ? r->view.before : min_before;
+ }
+
+ if(r->rows != max_rows) {
+ internal_error(true, "QUERY: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
+ rrdinstance_acquired_id(qi->ria), (size_t)max_rows, rrdmetric_acquired_id(qd->rma), (size_t)r->rows);
+
+ r->rows = (r->rows > max_rows) ? r->rows : max_rows;
+ }
+ }
+
+ dimensions_used++;
+
+ bool cancel = false;
+ if (qt->request.interrupt_callback && qt->request.interrupt_callback(qt->request.interrupt_callback_data)) {
+ cancel = true;
+ nd_log(NDLS_ACCESS, NDLP_NOTICE, "QUERY INTERRUPTED");
+ }
+
+ if (qt->request.timeout_ms && ((NETDATA_DOUBLE)(now_ut - qt->timings.received_ut) / 1000.0) > (NETDATA_DOUBLE)qt->request.timeout_ms) {
+ cancel = true;
+ nd_log(NDLS_ACCESS, NDLP_WARNING, "QUERY CANCELED RUNTIME EXCEEDED %0.2f ms (LIMIT %lld ms)",
+ (NETDATA_DOUBLE)(now_ut - qt->timings.received_ut) / 1000.0, (long long)qt->request.timeout_ms);
+ }
+
+ if(cancel) {
+ r->view.flags |= RRDR_RESULT_FLAG_CANCEL;
+
+ for(size_t i = d + 1; i < queries_prepared ; i++) {
+ if(ops[i]) {
+ query_planer_finalize_remaining_plans(ops[i]);
+ rrd2rrdr_query_ops_release(ops[i]);
+ ops[i] = NULL;
+ }
+ }
+
+ break;
+ }
+ else
+ query_progress_done_step(qt->request.transaction, 1);
+ }
+
+ // free all resources used by the grouping method
+ r_tmp->time_grouping.free(r_tmp);
+
+ // get the final RRDR to send to the caller
+ r = rrd2rrdr_group_by_finalize(r_tmp);
+
+#ifdef NETDATA_INTERNAL_CHECKS
+ if (dimensions_used && !(r->view.flags & RRDR_RESULT_FLAG_CANCEL)) {
+ if(r->internal.log)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ r->internal.log);
+
+ if(r->rows != qt->window.points)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ "got 'points' is not wanted 'points'");
+
+ if(qt->window.aligned && (r->view.before % query_view_update_every(qt)) != 0)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ "'before' is not aligned but alignment is required");
+
+ // 'after' should not be aligned, since we start inside the first group
+ //if(qt->window.aligned && (r->after % group) != 0)
+ // rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group, qt->window.after, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
+
+ if(r->view.before != qt->window.before)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ "chart is not aligned to requested 'before'");
+
+ if(r->view.before != qt->window.before)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ "got 'before' is not wanted 'before'");
+
+ // reported 'after' varies, depending on group
+ if(r->view.after != qt->window.after)
+ rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
+ qt->window.after, qt->request.after, qt->window.before, qt->request.before,
+ qt->request.points, qt->window.points, /*after_slot, before_slot,*/
+ "got 'after' is not wanted 'after'");
+
+ }
+#endif
+
+ // free the query pipelining ops
+ for(size_t d = 0; d < qt->query.used ; d++) {
+ rrd2rrdr_query_ops_release(ops[d]);
+ ops[d] = NULL;
+ }
+ rrd2rrdr_query_ops_freeall(r);
+ internal_fatal(released_ops, "QUERY: released_ops should be NULL when the query ends");
+
+ onewayalloc_freez(owa, ops);
+
+ if(likely(dimensions_used && (qt->window.options & RRDR_OPTION_NONZERO) && !dimensions_nonzero))
+ // when all the dimensions are zero, we should return all of them
+ qt->window.options &= ~RRDR_OPTION_NONZERO;
+
+ qt->timings.executed_ut = now_monotonic_usec();
+
+ return r;
+}