summaryrefslogtreecommitdiffstats
path: root/src/web/api/queries/trimmed_mean
diff options
context:
space:
mode:
Diffstat (limited to 'src/web/api/queries/trimmed_mean')
-rw-r--r--src/web/api/queries/trimmed_mean/README.md60
-rw-r--r--src/web/api/queries/trimmed_mean/trimmed_mean.c7
-rw-r--r--src/web/api/queries/trimmed_mean/trimmed_mean.h169
3 files changed, 236 insertions, 0 deletions
diff --git a/src/web/api/queries/trimmed_mean/README.md b/src/web/api/queries/trimmed_mean/README.md
new file mode 100644
index 000000000..969023292
--- /dev/null
+++ b/src/web/api/queries/trimmed_mean/README.md
@@ -0,0 +1,60 @@
+<!--
+title: "Trimmed Mean"
+sidebar_label: "Trimmed Mean"
+description: "Use trimmed-mean in API queries and health entities to find the average value from a sample, eliminating any unwanted spikes in the returned metrics."
+custom_edit_url: https://github.com/netdata/netdata/edit/master/src/web/api/queries/trimmed_mean/README.md
+learn_status: "Published"
+learn_topic_type: "References"
+learn_rel_path: "Developers/Web/Api/Queries"
+-->
+
+# Trimmed Mean
+
+The trimmed mean is the average value of a series excluding the smallest and biggest points.
+
+Netdata applies linear interpolation on the last point, if the percentage requested to be excluded does not give a
+round number of points.
+
+The following percentile aliases are defined:
+
+- `trimmed-mean1`
+- `trimmed-mean2`
+- `trimmed-mean3`
+- `trimmed-mean5`
+- `trimmed-mean10`
+- `trimmed-mean15`
+- `trimmed-mean20`
+- `trimmed-mean25`
+
+The default `trimmed-mean` is an alias for `trimmed-mean5`.
+Any percentage may be requested using the `group_options` query parameter.
+
+## how to use
+
+Use it in alerts like this:
+
+```
+ alarm: my_alert
+ on: my_chart
+lookup: trimmed-mean5 -1m unaligned of my_dimension
+ warn: $this > 1000
+```
+
+`trimmed-mean` does not change the units. For example, if the chart units is `requests/sec`, the result
+will be again expressed in the same units.
+
+It can also be used in APIs and badges as `&group=trimmed-mean` in the URL and the additional parameter `group_options`
+may be used to request any percentage (e.g. `&group=trimmed-mean&group_options=29`).
+
+## Examples
+
+Examining last 1 minute `successful` web server responses:
+
+- ![](https://registry.my-netdata.io/api/v1/badge.svg?chart=web_log_nginx.response_statuses&options=unaligned&dimensions=success&group=min&after=-60&label=min)
+- ![](https://registry.my-netdata.io/api/v1/badge.svg?chart=web_log_nginx.response_statuses&options=unaligned&dimensions=success&group=average&after=-60&label=average)
+- ![](https://registry.my-netdata.io/api/v1/badge.svg?chart=web_log_nginx.response_statuses&options=unaligned&dimensions=success&group=trimmed-mean5&after=-60&label=trimmed-mean5&value_color=orange)
+- ![](https://registry.my-netdata.io/api/v1/badge.svg?chart=web_log_nginx.response_statuses&options=unaligned&dimensions=success&group=max&after=-60&label=max)
+
+## References
+
+- <https://en.wikipedia.org/wiki/Truncated_mean>.
diff --git a/src/web/api/queries/trimmed_mean/trimmed_mean.c b/src/web/api/queries/trimmed_mean/trimmed_mean.c
new file mode 100644
index 000000000..c50db7ed6
--- /dev/null
+++ b/src/web/api/queries/trimmed_mean/trimmed_mean.c
@@ -0,0 +1,7 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#include "trimmed_mean.h"
+
+// ----------------------------------------------------------------------------
+// median
+
diff --git a/src/web/api/queries/trimmed_mean/trimmed_mean.h b/src/web/api/queries/trimmed_mean/trimmed_mean.h
new file mode 100644
index 000000000..3c09015bf
--- /dev/null
+++ b/src/web/api/queries/trimmed_mean/trimmed_mean.h
@@ -0,0 +1,169 @@
+// SPDX-License-Identifier: GPL-3.0-or-later
+
+#ifndef NETDATA_API_QUERIES_TRIMMED_MEAN_H
+#define NETDATA_API_QUERIES_TRIMMED_MEAN_H
+
+#include "../query.h"
+#include "../rrdr.h"
+
+struct tg_trimmed_mean {
+ size_t series_size;
+ size_t next_pos;
+ NETDATA_DOUBLE percent;
+
+ NETDATA_DOUBLE *series;
+};
+
+static inline void tg_trimmed_mean_create_internal(RRDR *r, const char *options, NETDATA_DOUBLE def) {
+ long entries = r->view.group;
+ if(entries < 10) entries = 10;
+
+ struct tg_trimmed_mean *g = (struct tg_trimmed_mean *)onewayalloc_callocz(r->internal.owa, 1, sizeof(struct tg_trimmed_mean));
+ g->series = onewayalloc_mallocz(r->internal.owa, entries * sizeof(NETDATA_DOUBLE));
+ g->series_size = (size_t)entries;
+
+ g->percent = def;
+ if(options && *options) {
+ g->percent = str2ndd(options, NULL);
+ if(!netdata_double_isnumber(g->percent)) g->percent = 0.0;
+ if(g->percent < 0.0) g->percent = 0.0;
+ if(g->percent > 50.0) g->percent = 50.0;
+ }
+
+ g->percent = 1.0 - ((g->percent / 100.0) * 2.0);
+ r->time_grouping.data = g;
+}
+
+static inline void tg_trimmed_mean_create_1(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 1.0);
+}
+static inline void tg_trimmed_mean_create_2(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 2.0);
+}
+static inline void tg_trimmed_mean_create_3(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 3.0);
+}
+static inline void tg_trimmed_mean_create_5(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 5.0);
+}
+static inline void tg_trimmed_mean_create_10(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 10.0);
+}
+static inline void tg_trimmed_mean_create_15(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 15.0);
+}
+static inline void tg_trimmed_mean_create_20(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 20.0);
+}
+static inline void tg_trimmed_mean_create_25(RRDR *r, const char *options) {
+ tg_trimmed_mean_create_internal(r, options, 25.0);
+}
+
+// resets when switches dimensions
+// so, clear everything to restart
+static inline void tg_trimmed_mean_reset(RRDR *r) {
+ struct tg_trimmed_mean *g = (struct tg_trimmed_mean *)r->time_grouping.data;
+ g->next_pos = 0;
+}
+
+static inline void tg_trimmed_mean_free(RRDR *r) {
+ struct tg_trimmed_mean *g = (struct tg_trimmed_mean *)r->time_grouping.data;
+ if(g) onewayalloc_freez(r->internal.owa, g->series);
+
+ onewayalloc_freez(r->internal.owa, r->time_grouping.data);
+ r->time_grouping.data = NULL;
+}
+
+static inline void tg_trimmed_mean_add(RRDR *r, NETDATA_DOUBLE value) {
+ struct tg_trimmed_mean *g = (struct tg_trimmed_mean *)r->time_grouping.data;
+
+ if(unlikely(g->next_pos >= g->series_size)) {
+ g->series = onewayalloc_doublesize( r->internal.owa, g->series, g->series_size * sizeof(NETDATA_DOUBLE));
+ g->series_size *= 2;
+ }
+
+ g->series[g->next_pos++] = value;
+}
+
+static inline NETDATA_DOUBLE tg_trimmed_mean_flush(RRDR *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr) {
+ struct tg_trimmed_mean *g = (struct tg_trimmed_mean *)r->time_grouping.data;
+
+ NETDATA_DOUBLE value;
+ size_t available_slots = g->next_pos;
+
+ if(unlikely(!available_slots)) {
+ value = 0.0;
+ *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
+ }
+ else if(available_slots == 1) {
+ value = g->series[0];
+ }
+ else {
+ sort_series(g->series, available_slots);
+
+ NETDATA_DOUBLE min = g->series[0];
+ NETDATA_DOUBLE max = g->series[available_slots - 1];
+
+ if (min != max) {
+ size_t slots_to_use = (size_t)((NETDATA_DOUBLE)available_slots * g->percent);
+ if(!slots_to_use) slots_to_use = 1;
+
+ NETDATA_DOUBLE percent_to_use = (NETDATA_DOUBLE)slots_to_use / (NETDATA_DOUBLE)available_slots;
+ NETDATA_DOUBLE percent_delta = g->percent - percent_to_use;
+
+ NETDATA_DOUBLE percent_interpolation_slot = 0.0;
+ NETDATA_DOUBLE percent_last_slot = 0.0;
+ if(percent_delta > 0.0) {
+ NETDATA_DOUBLE percent_to_use_plus_1_slot = (NETDATA_DOUBLE)(slots_to_use + 1) / (NETDATA_DOUBLE)available_slots;
+ NETDATA_DOUBLE percent_1slot = percent_to_use_plus_1_slot - percent_to_use;
+
+ percent_interpolation_slot = percent_delta / percent_1slot;
+ percent_last_slot = 1 - percent_interpolation_slot;
+ }
+
+ int start_slot, stop_slot, step, last_slot, interpolation_slot;
+ if(min >= 0.0 && max >= 0.0) {
+ start_slot = (int)((available_slots - slots_to_use) / 2);
+ stop_slot = start_slot + (int)slots_to_use;
+ last_slot = stop_slot - 1;
+ interpolation_slot = stop_slot;
+ step = 1;
+ }
+ else {
+ start_slot = (int)available_slots - 1 - (int)((available_slots - slots_to_use) / 2);
+ stop_slot = start_slot - (int)slots_to_use;
+ last_slot = stop_slot + 1;
+ interpolation_slot = stop_slot;
+ step = -1;
+ }
+
+ value = 0.0;
+ for(int slot = start_slot; slot != stop_slot ; slot += step)
+ value += g->series[slot];
+
+ size_t counted = slots_to_use;
+ if(percent_interpolation_slot > 0.0 && interpolation_slot >= 0 && interpolation_slot < (int)available_slots) {
+ value += g->series[interpolation_slot] * percent_interpolation_slot;
+ value += g->series[last_slot] * percent_last_slot;
+ counted++;
+ }
+
+ value = value / (NETDATA_DOUBLE)counted;
+ }
+ else
+ value = min;
+ }
+
+ if(unlikely(!netdata_double_isnumber(value))) {
+ value = 0.0;
+ *rrdr_value_options_ptr |= RRDR_VALUE_EMPTY;
+ }
+
+ //log_series_to_stderr(g->series, g->next_pos, value, "trimmed_mean");
+
+ g->next_pos = 0;
+
+ return value;
+}
+
+#endif //NETDATA_API_QUERIES_TRIMMED_MEAN_H