diff options
Diffstat (limited to 'web/api/queries/weights.c')
-rw-r--r-- | web/api/queries/weights.c | 2103 |
1 files changed, 0 insertions, 2103 deletions
diff --git a/web/api/queries/weights.c b/web/api/queries/weights.c deleted file mode 100644 index 68af2250..00000000 --- a/web/api/queries/weights.c +++ /dev/null @@ -1,2103 +0,0 @@ -// SPDX-License-Identifier: GPL-3.0-or-later - -#include "daemon/common.h" -#include "database/KolmogorovSmirnovDist.h" - -#define MAX_POINTS 10000 -int enable_metric_correlations = CONFIG_BOOLEAN_YES; -int metric_correlations_version = 1; -WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2; - -typedef struct weights_stats { - NETDATA_DOUBLE max_base_high_ratio; - size_t db_points; - size_t result_points; - size_t db_queries; - size_t db_points_per_tier[RRD_STORAGE_TIERS]; - size_t binary_searches; -} WEIGHTS_STATS; - -// ---------------------------------------------------------------------------- -// parse and render metric correlations methods - -static struct { - const char *name; - WEIGHTS_METHOD value; -} weights_methods[] = { - { "ks2" , WEIGHTS_METHOD_MC_KS2} - , { "volume" , WEIGHTS_METHOD_MC_VOLUME} - , { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE} - , { "value" , WEIGHTS_METHOD_VALUE} - , { NULL , 0 } -}; - -WEIGHTS_METHOD weights_string_to_method(const char *method) { - for(int i = 0; weights_methods[i].name ;i++) - if(strcmp(method, weights_methods[i].name) == 0) - return weights_methods[i].value; - - return default_metric_correlations_method; -} - -const char *weights_method_to_string(WEIGHTS_METHOD method) { - for(int i = 0; weights_methods[i].name ;i++) - if(weights_methods[i].value == method) - return weights_methods[i].name; - - return "unknown"; -} - -// ---------------------------------------------------------------------------- -// The results per dimension are aggregated into a dictionary - -typedef enum { - RESULT_IS_BASE_HIGH_RATIO = (1 << 0), - RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1), -} RESULT_FLAGS; - -struct register_result { - RESULT_FLAGS flags; - RRDHOST *host; - RRDCONTEXT_ACQUIRED *rca; - RRDINSTANCE_ACQUIRED *ria; - RRDMETRIC_ACQUIRED *rma; - NETDATA_DOUBLE value; - STORAGE_POINT highlighted; - STORAGE_POINT baseline; - usec_t duration_ut; -}; - -static DICTIONARY *register_result_init() { - DICTIONARY *results = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct register_result)); - return results; -} - -static void register_result_destroy(DICTIONARY *results) { - dictionary_destroy(results); -} - -static void register_result(DICTIONARY *results, RRDHOST *host, RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, - RRDMETRIC_ACQUIRED *rma, NETDATA_DOUBLE value, RESULT_FLAGS flags, - STORAGE_POINT *highlighted, STORAGE_POINT *baseline, WEIGHTS_STATS *stats, - bool register_zero, usec_t duration_ut) { - - if(!netdata_double_isnumber(value)) return; - - // make it positive - NETDATA_DOUBLE v = fabsndd(value); - - // no need to store zero scored values - if(unlikely(fpclassify(v) == FP_ZERO && !register_zero)) - return; - - // keep track of the max of the baseline / highlight ratio - if((flags & RESULT_IS_BASE_HIGH_RATIO) && v > stats->max_base_high_ratio) - stats->max_base_high_ratio = v; - - struct register_result t = { - .flags = flags, - .host = host, - .rca = rca, - .ria = ria, - .rma = rma, - .value = v, - .duration_ut = duration_ut, - }; - - if(highlighted) - t.highlighted = *highlighted; - - if(baseline) - t.baseline = *baseline; - - // we can use the pointer address or RMA as a unique key for each metric - char buf[20 + 1]; - ssize_t len = snprintfz(buf, sizeof(buf) - 1, "%p", rma); - dictionary_set_advanced(results, buf, len + 1, &t, sizeof(struct register_result), NULL); -} - -// ---------------------------------------------------------------------------- -// Generation of JSON output for the results - -static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions __maybe_unused, usec_t duration, - WEIGHTS_STATS *stats) { - - buffer_json_member_add_time_t(wb, "after", after); - buffer_json_member_add_time_t(wb, "before", before); - buffer_json_member_add_time_t(wb, "duration", before - after); - buffer_json_member_add_uint64(wb, "points", points); - - if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) { - buffer_json_member_add_time_t(wb, "baseline_after", baseline_after); - buffer_json_member_add_time_t(wb, "baseline_before", baseline_before); - buffer_json_member_add_time_t(wb, "baseline_duration", baseline_before - baseline_after); - buffer_json_member_add_uint64(wb, "baseline_points", points << shifts); - } - - buffer_json_member_add_object(wb, "statistics"); - { - buffer_json_member_add_double(wb, "query_time_ms", (double) duration / (double) USEC_PER_MS); - buffer_json_member_add_uint64(wb, "db_queries", stats->db_queries); - buffer_json_member_add_uint64(wb, "query_result_points", stats->result_points); - buffer_json_member_add_uint64(wb, "binary_searches", stats->binary_searches); - buffer_json_member_add_uint64(wb, "db_points_read", stats->db_points); - - buffer_json_member_add_array(wb, "db_points_per_tier"); - { - for (size_t tier = 0; tier < storage_tiers; tier++) - buffer_json_add_array_item_uint64(wb, stats->db_points_per_tier[tier]); - } - buffer_json_array_close(wb); - } - buffer_json_object_close(wb); - - buffer_json_member_add_string(wb, "group", time_grouping_tostring(group)); - buffer_json_member_add_string(wb, "method", weights_method_to_string(method)); - web_client_api_request_v1_data_options_to_buffer_json_array(wb, "options", options); -} - -static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions, usec_t duration, - WEIGHTS_STATS *stats) { - - buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT); - - results_header_to_json(results, wb, after, before, baseline_after, baseline_before, - points, method, group, options, shifts, examined_dimensions, duration, stats); - - buffer_json_member_add_object(wb, "correlated_charts"); - - size_t charts = 0, total_dimensions = 0; - struct register_result *t; - RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison - dfe_start_read(results, t) { - if(t->ria != last_ria) { - last_ria = t->ria; - - if(charts) { - buffer_json_object_close(wb); // dimensions - buffer_json_object_close(wb); // chart:id - } - - buffer_json_member_add_object(wb, rrdinstance_acquired_id(t->ria)); - buffer_json_member_add_string(wb, "context", rrdcontext_acquired_id(t->rca)); - buffer_json_member_add_object(wb, "dimensions"); - charts++; - } - buffer_json_member_add_double(wb, rrdmetric_acquired_name(t->rma), t->value); - total_dimensions++; - } - dfe_done(t); - - // close dimensions and chart - if (total_dimensions) { - buffer_json_object_close(wb); // dimensions - buffer_json_object_close(wb); // chart:id - } - - buffer_json_object_close(wb); - - buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions); - buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions); - buffer_json_finalize(wb); - - return total_dimensions; -} - -static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions, usec_t duration, - WEIGHTS_STATS *stats) { - - buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT); - - results_header_to_json(results, wb, after, before, baseline_after, baseline_before, - points, method, group, options, shifts, examined_dimensions, duration, stats); - - buffer_json_member_add_object(wb, "contexts"); - - size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0; - NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0; - struct register_result *t; - RRDCONTEXT_ACQUIRED *last_rca = NULL; - RRDINSTANCE_ACQUIRED *last_ria = NULL; - dfe_start_read(results, t) { - - if(t->rca != last_rca) { - last_rca = t->rca; - - if(contexts) { - buffer_json_object_close(wb); // dimensions - buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims); - buffer_json_object_close(wb); // chart:id - buffer_json_object_close(wb); // charts - buffer_json_member_add_double(wb, "weight", contexts_total_weight / (double) context_dims); - buffer_json_object_close(wb); // context - } - - buffer_json_member_add_object(wb, rrdcontext_acquired_id(t->rca)); - buffer_json_member_add_object(wb, "charts"); - - contexts++; - charts = 0; - context_dims = 0; - contexts_total_weight = 0.0; - - last_ria = NULL; - } - - if(t->ria != last_ria) { - last_ria = t->ria; - - if(charts) { - buffer_json_object_close(wb); // dimensions - buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims); - buffer_json_object_close(wb); // chart:id - } - - buffer_json_member_add_object(wb, rrdinstance_acquired_id(t->ria)); - buffer_json_member_add_object(wb, "dimensions"); - - charts++; - chart_dims = 0; - charts_total_weight = 0.0; - } - - buffer_json_member_add_double(wb, rrdmetric_acquired_name(t->rma), t->value); - charts_total_weight += t->value; - contexts_total_weight += t->value; - chart_dims++; - context_dims++; - total_dimensions++; - } - dfe_done(t); - - // close dimensions and chart - if (total_dimensions) { - buffer_json_object_close(wb); // dimensions - buffer_json_member_add_double(wb, "weight", charts_total_weight / (double) chart_dims); - buffer_json_object_close(wb); // chart:id - buffer_json_object_close(wb); // charts - buffer_json_member_add_double(wb, "weight", contexts_total_weight / (double) context_dims); - buffer_json_object_close(wb); // context - } - - buffer_json_object_close(wb); - - buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions); - buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions); - buffer_json_finalize(wb); - - return total_dimensions; -} - -struct query_weights_data { - QUERY_WEIGHTS_REQUEST *qwr; - - SIMPLE_PATTERN *scope_nodes_sp; - SIMPLE_PATTERN *scope_contexts_sp; - SIMPLE_PATTERN *nodes_sp; - SIMPLE_PATTERN *contexts_sp; - SIMPLE_PATTERN *instances_sp; - SIMPLE_PATTERN *dimensions_sp; - SIMPLE_PATTERN *labels_sp; - SIMPLE_PATTERN *alerts_sp; - - usec_t timeout_us; - bool timed_out; - bool interrupted; - - struct query_timings timings; - - size_t examined_dimensions; - bool register_zero; - - DICTIONARY *results; - WEIGHTS_STATS stats; - - uint32_t shifts; - - struct query_versions versions; -}; - -#define AGGREGATED_WEIGHT_EMPTY (struct aggregated_weight) { \ - .min = NAN, \ - .max = NAN, \ - .sum = NAN, \ - .count = 0, \ - .hsp = STORAGE_POINT_UNSET, \ - .bsp = STORAGE_POINT_UNSET, \ -} - -#define merge_into_aw(aw, t) do { \ - if(!(aw).count) { \ - (aw).count = 1; \ - (aw).min = (aw).max = (aw).sum = (t)->value; \ - (aw).hsp = (t)->highlighted; \ - if(baseline) \ - (aw).bsp = (t)->baseline; \ - } \ - else { \ - (aw).count++; \ - (aw).sum += (t)->value; \ - if((t)->value < (aw).min) \ - (aw).min = (t)->value; \ - if((t)->value > (aw).max) \ - (aw).max = (t)->value; \ - storage_point_merge_to((aw).hsp, (t)->highlighted); \ - if(baseline) \ - storage_point_merge_to((aw).bsp, (t)->baseline); \ - } \ -} while(0) - -static void results_header_to_json_v2(DICTIONARY *results __maybe_unused, BUFFER *wb, struct query_weights_data *qwd, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions __maybe_unused, usec_t duration __maybe_unused, - WEIGHTS_STATS *stats, bool group_by) { - - buffer_json_member_add_object(wb, "request"); - buffer_json_member_add_string(wb, "method", weights_method_to_string(method)); - web_client_api_request_v1_data_options_to_buffer_json_array(wb, "options", options); - - buffer_json_member_add_object(wb, "scope"); - buffer_json_member_add_string(wb, "scope_nodes", qwd->qwr->scope_nodes ? qwd->qwr->scope_nodes : "*"); - buffer_json_member_add_string(wb, "scope_contexts", qwd->qwr->scope_contexts ? qwd->qwr->scope_contexts : "*"); - buffer_json_object_close(wb); - - buffer_json_member_add_object(wb, "selectors"); - buffer_json_member_add_string(wb, "nodes", qwd->qwr->nodes ? qwd->qwr->nodes : "*"); - buffer_json_member_add_string(wb, "contexts", qwd->qwr->contexts ? qwd->qwr->contexts : "*"); - buffer_json_member_add_string(wb, "instances", qwd->qwr->instances ? qwd->qwr->instances : "*"); - buffer_json_member_add_string(wb, "dimensions", qwd->qwr->dimensions ? qwd->qwr->dimensions : "*"); - buffer_json_member_add_string(wb, "labels", qwd->qwr->labels ? qwd->qwr->labels : "*"); - buffer_json_member_add_string(wb, "alerts", qwd->qwr->alerts ? qwd->qwr->alerts : "*"); - buffer_json_object_close(wb); - - buffer_json_member_add_object(wb, "window"); - buffer_json_member_add_time_t(wb, "after", qwd->qwr->after); - buffer_json_member_add_time_t(wb, "before", qwd->qwr->before); - buffer_json_member_add_uint64(wb, "points", qwd->qwr->points); - if(qwd->qwr->options & RRDR_OPTION_SELECTED_TIER) - buffer_json_member_add_uint64(wb, "tier", qwd->qwr->tier); - else - buffer_json_member_add_string(wb, "tier", NULL); - buffer_json_object_close(wb); - - if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) { - buffer_json_member_add_object(wb, "baseline"); - buffer_json_member_add_time_t(wb, "baseline_after", qwd->qwr->baseline_after); - buffer_json_member_add_time_t(wb, "baseline_before", qwd->qwr->baseline_before); - buffer_json_object_close(wb); - } - - buffer_json_member_add_object(wb, "aggregations"); - buffer_json_member_add_object(wb, "time"); - buffer_json_member_add_string(wb, "time_group", time_grouping_tostring(qwd->qwr->time_group_method)); - buffer_json_member_add_string(wb, "time_group_options", qwd->qwr->time_group_options); - buffer_json_object_close(wb); // time - - buffer_json_member_add_array(wb, "metrics"); - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_array(wb, "group_by"); - buffer_json_group_by_to_array(wb, qwd->qwr->group_by.group_by); - buffer_json_array_close(wb); - -// buffer_json_member_add_array(wb, "group_by_label"); -// buffer_json_array_close(wb); - - buffer_json_member_add_string(wb, "aggregation", group_by_aggregate_function_to_string(qwd->qwr->group_by.aggregation)); - } - buffer_json_object_close(wb); // 1st group by - buffer_json_array_close(wb); // array - buffer_json_object_close(wb); // aggregations - - buffer_json_member_add_uint64(wb, "timeout", qwd->qwr->timeout_ms); - buffer_json_object_close(wb); // request - - buffer_json_member_add_object(wb, "view"); - buffer_json_member_add_string(wb, "format", (group_by)?"grouped":"full"); - buffer_json_member_add_string(wb, "time_group", time_grouping_tostring(group)); - - buffer_json_member_add_object(wb, "window"); - buffer_json_member_add_time_t(wb, "after", after); - buffer_json_member_add_time_t(wb, "before", before); - buffer_json_member_add_time_t(wb, "duration", before - after); - buffer_json_member_add_uint64(wb, "points", points); - buffer_json_object_close(wb); - - if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) { - buffer_json_member_add_object(wb, "baseline"); - buffer_json_member_add_time_t(wb, "after", baseline_after); - buffer_json_member_add_time_t(wb, "before", baseline_before); - buffer_json_member_add_time_t(wb, "duration", baseline_before - baseline_after); - buffer_json_member_add_uint64(wb, "points", points << shifts); - buffer_json_object_close(wb); - } - - buffer_json_object_close(wb); // view - - buffer_json_member_add_object(wb, "db"); - { - buffer_json_member_add_uint64(wb, "db_queries", stats->db_queries); - buffer_json_member_add_uint64(wb, "query_result_points", stats->result_points); - buffer_json_member_add_uint64(wb, "binary_searches", stats->binary_searches); - buffer_json_member_add_uint64(wb, "db_points_read", stats->db_points); - - buffer_json_member_add_array(wb, "db_points_per_tier"); - { - for (size_t tier = 0; tier < storage_tiers; tier++) - buffer_json_add_array_item_uint64(wb, stats->db_points_per_tier[tier]); - } - buffer_json_array_close(wb); - } - buffer_json_object_close(wb); // db -} - -typedef enum { - WPT_DIMENSION = 0, - WPT_INSTANCE = 1, - WPT_CONTEXT = 2, - WPT_NODE = 3, - WPT_GROUP = 4, -} WEIGHTS_POINT_TYPE; - -struct aggregated_weight { - const char *name; - NETDATA_DOUBLE min; - NETDATA_DOUBLE max; - NETDATA_DOUBLE sum; - size_t count; - STORAGE_POINT hsp; - STORAGE_POINT bsp; -}; - -static inline void storage_point_to_json(BUFFER *wb, WEIGHTS_POINT_TYPE type, ssize_t di, ssize_t ii, ssize_t ci, ssize_t ni, struct aggregated_weight *aw, RRDR_OPTIONS options __maybe_unused, bool baseline) { - if(type != WPT_GROUP) { - buffer_json_add_array_item_array(wb); - buffer_json_add_array_item_uint64(wb, type); // "type" - buffer_json_add_array_item_int64(wb, ni); - if (type != WPT_NODE) { - buffer_json_add_array_item_int64(wb, ci); - if (type != WPT_CONTEXT) { - buffer_json_add_array_item_int64(wb, ii); - if (type != WPT_INSTANCE) - buffer_json_add_array_item_int64(wb, di); - else - buffer_json_add_array_item_string(wb, NULL); - } - else { - buffer_json_add_array_item_string(wb, NULL); - buffer_json_add_array_item_string(wb, NULL); - } - } - else { - buffer_json_add_array_item_string(wb, NULL); - buffer_json_add_array_item_string(wb, NULL); - buffer_json_add_array_item_string(wb, NULL); - } - buffer_json_add_array_item_double(wb, (aw->count) ? aw->sum / (NETDATA_DOUBLE)aw->count : 0.0); // "weight" - } - else { - buffer_json_member_add_array(wb, "v"); - buffer_json_add_array_item_array(wb); - buffer_json_add_array_item_double(wb, aw->min); // "min" - buffer_json_add_array_item_double(wb, (aw->count) ? aw->sum / (NETDATA_DOUBLE)aw->count : 0.0); // "avg" - buffer_json_add_array_item_double(wb, aw->max); // "max" - buffer_json_add_array_item_double(wb, aw->sum); // "sum" - buffer_json_add_array_item_uint64(wb, aw->count); // "count" - buffer_json_array_close(wb); - } - - buffer_json_add_array_item_array(wb); - buffer_json_add_array_item_double(wb, aw->hsp.min); // "min" - buffer_json_add_array_item_double(wb, (aw->hsp.count) ? aw->hsp.sum / (NETDATA_DOUBLE) aw->hsp.count : 0.0); // "avg" - buffer_json_add_array_item_double(wb, aw->hsp.max); // "max" - buffer_json_add_array_item_double(wb, aw->hsp.sum); // "sum" - buffer_json_add_array_item_uint64(wb, aw->hsp.count); // "count" - buffer_json_add_array_item_uint64(wb, aw->hsp.anomaly_count); // "anomaly_count" - buffer_json_array_close(wb); - - if(baseline) { - buffer_json_add_array_item_array(wb); - buffer_json_add_array_item_double(wb, aw->bsp.min); // "min" - buffer_json_add_array_item_double(wb, (aw->bsp.count) ? aw->bsp.sum / (NETDATA_DOUBLE) aw->bsp.count : 0.0); // "avg" - buffer_json_add_array_item_double(wb, aw->bsp.max); // "max" - buffer_json_add_array_item_double(wb, aw->bsp.sum); // "sum" - buffer_json_add_array_item_uint64(wb, aw->bsp.count); // "count" - buffer_json_add_array_item_uint64(wb, aw->bsp.anomaly_count); // "anomaly_count" - buffer_json_array_close(wb); - } - - buffer_json_array_close(wb); -} - -static void multinode_data_schema(BUFFER *wb, RRDR_OPTIONS options __maybe_unused, const char *key, bool baseline, bool group_by) { - buffer_json_member_add_object(wb, key); // schema - - buffer_json_member_add_string(wb, "type", "array"); - buffer_json_member_add_array(wb, "items"); - - if(group_by) { - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "weight"); - buffer_json_member_add_string(wb, "type", "array"); - buffer_json_member_add_array(wb, "labels"); - { - buffer_json_add_array_item_string(wb, "min"); - buffer_json_add_array_item_string(wb, "avg"); - buffer_json_add_array_item_string(wb, "max"); - buffer_json_add_array_item_string(wb, "sum"); - buffer_json_add_array_item_string(wb, "count"); - } - buffer_json_array_close(wb); - } - buffer_json_object_close(wb); - } - else { - buffer_json_add_array_item_object(wb); - buffer_json_member_add_string(wb, "name", "row_type"); - buffer_json_member_add_string(wb, "type", "integer"); - buffer_json_member_add_array(wb, "value"); - buffer_json_add_array_item_string(wb, "dimension"); - buffer_json_add_array_item_string(wb, "instance"); - buffer_json_add_array_item_string(wb, "context"); - buffer_json_add_array_item_string(wb, "node"); - buffer_json_array_close(wb); - buffer_json_object_close(wb); - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "ni"); - buffer_json_member_add_string(wb, "type", "integer"); - buffer_json_member_add_string(wb, "dictionary", "nodes"); - } - buffer_json_object_close(wb); - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "ci"); - buffer_json_member_add_string(wb, "type", "integer"); - buffer_json_member_add_string(wb, "dictionary", "contexts"); - } - buffer_json_object_close(wb); - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "ii"); - buffer_json_member_add_string(wb, "type", "integer"); - buffer_json_member_add_string(wb, "dictionary", "instances"); - } - buffer_json_object_close(wb); - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "di"); - buffer_json_member_add_string(wb, "type", "integer"); - buffer_json_member_add_string(wb, "dictionary", "dimensions"); - } - buffer_json_object_close(wb); - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "weight"); - buffer_json_member_add_string(wb, "type", "number"); - } - buffer_json_object_close(wb); - } - - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "timeframe"); - buffer_json_member_add_string(wb, "type", "array"); - buffer_json_member_add_array(wb, "labels"); - { - buffer_json_add_array_item_string(wb, "min"); - buffer_json_add_array_item_string(wb, "avg"); - buffer_json_add_array_item_string(wb, "max"); - buffer_json_add_array_item_string(wb, "sum"); - buffer_json_add_array_item_string(wb, "count"); - buffer_json_add_array_item_string(wb, "anomaly_count"); - } - buffer_json_array_close(wb); - buffer_json_member_add_object(wb, "calculations"); - buffer_json_member_add_string(wb, "anomaly rate", "anomaly_count * 100 / count"); - buffer_json_object_close(wb); - } - buffer_json_object_close(wb); - - if(baseline) { - buffer_json_add_array_item_object(wb); - { - buffer_json_member_add_string(wb, "name", "baseline timeframe"); - buffer_json_member_add_string(wb, "type", "array"); - buffer_json_member_add_array(wb, "labels"); - { - buffer_json_add_array_item_string(wb, "min"); - buffer_json_add_array_item_string(wb, "avg"); - buffer_json_add_array_item_string(wb, "max"); - buffer_json_add_array_item_string(wb, "sum"); - buffer_json_add_array_item_string(wb, "count"); - buffer_json_add_array_item_string(wb, "anomaly_count"); - } - buffer_json_array_close(wb); - buffer_json_member_add_object(wb, "calculations"); - buffer_json_member_add_string(wb, "anomaly rate", "anomaly_count * 100 / count"); - buffer_json_object_close(wb); - } - buffer_json_object_close(wb); - } - - buffer_json_array_close(wb); // items - buffer_json_object_close(wb); // schema -} - -struct dict_unique_node { - bool existing; - bool exposed; - uint32_t i; - RRDHOST *host; - usec_t duration_ut; -}; - -struct dict_unique_name_units { - bool existing; - bool exposed; - uint32_t i; - const char *units; -}; - -struct dict_unique_id_name { - bool existing; - bool exposed; - uint32_t i; - const char *id; - const char *name; -}; - -static inline struct dict_unique_node *dict_unique_node_add(DICTIONARY *dict, RRDHOST *host, ssize_t *max_id) { - struct dict_unique_node *dun = dictionary_set(dict, host->machine_guid, NULL, sizeof(struct dict_unique_node)); - if(!dun->existing) { - dun->existing = true; - dun->host = host; - dun->i = *max_id; - (*max_id)++; - } - - return dun; -} - -static inline struct dict_unique_name_units *dict_unique_name_units_add(DICTIONARY *dict, const char *name, const char *units, ssize_t *max_id) { - struct dict_unique_name_units *dun = dictionary_set(dict, name, NULL, sizeof(struct dict_unique_name_units)); - if(!dun->existing) { - dun->units = units; - dun->existing = true; - dun->i = *max_id; - (*max_id)++; - } - - return dun; -} - -static inline struct dict_unique_id_name *dict_unique_id_name_add(DICTIONARY *dict, const char *id, const char *name, ssize_t *max_id) { - char key[1024 + 1]; - snprintfz(key, sizeof(key) - 1, "%s:%s", id, name); - struct dict_unique_id_name *dun = dictionary_set(dict, key, NULL, sizeof(struct dict_unique_id_name)); - if(!dun->existing) { - dun->existing = true; - dun->i = *max_id; - (*max_id)++; - dun->id = id; - dun->name = name; - } - - return dun; -} - -static size_t registered_results_to_json_multinode_no_group_by( - DICTIONARY *results, BUFFER *wb, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions, struct query_weights_data *qwd, - WEIGHTS_STATS *stats, - struct query_versions *versions) { - buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT); - buffer_json_member_add_uint64(wb, "api", 2); - - results_header_to_json_v2(results, wb, qwd, after, before, baseline_after, baseline_before, - points, method, group, options, shifts, examined_dimensions, - qwd->timings.executed_ut - qwd->timings.received_ut, stats, false); - - version_hashes_api_v2(wb, versions); - - bool baseline = method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME; - multinode_data_schema(wb, options, "schema", baseline, false); - - DICTIONARY *dict_nodes = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_node)); - DICTIONARY *dict_contexts = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_name_units)); - DICTIONARY *dict_instances = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_id_name)); - DICTIONARY *dict_dimensions = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct dict_unique_id_name)); - - buffer_json_member_add_array(wb, "result"); - - struct aggregated_weight node_aw = AGGREGATED_WEIGHT_EMPTY, context_aw = AGGREGATED_WEIGHT_EMPTY, instance_aw = AGGREGATED_WEIGHT_EMPTY; - struct register_result *t; - RRDHOST *last_host = NULL; - RRDCONTEXT_ACQUIRED *last_rca = NULL; - RRDINSTANCE_ACQUIRED *last_ria = NULL; - struct dict_unique_name_units *context_dun = NULL; - struct dict_unique_node *node_dun = NULL; - struct dict_unique_id_name *instance_dun = NULL; - struct dict_unique_id_name *dimension_dun = NULL; - ssize_t di = -1, ii = -1, ci = -1, ni = -1; - ssize_t di_max = 0, ii_max = 0, ci_max = 0, ni_max = 0; - size_t total_dimensions = 0; - dfe_start_read(results, t) { - - // close instance - if(t->ria != last_ria && last_ria) { - storage_point_to_json(wb, WPT_INSTANCE, di, ii, ci, ni, &instance_aw, options, baseline); - instance_dun->exposed = true; - last_ria = NULL; - instance_aw = AGGREGATED_WEIGHT_EMPTY; - } - - // close context - if(t->rca != last_rca && last_rca) { - storage_point_to_json(wb, WPT_CONTEXT, di, ii, ci, ni, &context_aw, options, baseline); - context_dun->exposed = true; - last_rca = NULL; - context_aw = AGGREGATED_WEIGHT_EMPTY; - } - - // close node - if(t->host != last_host && last_host) { - storage_point_to_json(wb, WPT_NODE, di, ii, ci, ni, &node_aw, options, baseline); - node_dun->exposed = true; - last_host = NULL; - node_aw = AGGREGATED_WEIGHT_EMPTY; - } - - // open node - if(t->host != last_host) { - last_host = t->host; - node_dun = dict_unique_node_add(dict_nodes, t->host, &ni_max); - ni = node_dun->i; - } - - // open context - if(t->rca != last_rca) { - last_rca = t->rca; - context_dun = dict_unique_name_units_add(dict_contexts, rrdcontext_acquired_id(t->rca), - rrdcontext_acquired_units(t->rca), &ci_max); - ci = context_dun->i; - } - - // open instance - if(t->ria != last_ria) { - last_ria = t->ria; - instance_dun = dict_unique_id_name_add(dict_instances, rrdinstance_acquired_id(t->ria), rrdinstance_acquired_name(t->ria), &ii_max); - ii = instance_dun->i; - } - - dimension_dun = dict_unique_id_name_add(dict_dimensions, rrdmetric_acquired_id(t->rma), rrdmetric_acquired_name(t->rma), &di_max); - di = dimension_dun->i; - - struct aggregated_weight aw = { - .min = t->value, - .max = t->value, - .sum = t->value, - .count = 1, - .hsp = t->highlighted, - .bsp = t->baseline, - }; - - storage_point_to_json(wb, WPT_DIMENSION, di, ii, ci, ni, &aw, options, baseline); - node_dun->exposed = true; - context_dun->exposed = true; - instance_dun->exposed = true; - dimension_dun->exposed = true; - - merge_into_aw(instance_aw, t); - merge_into_aw(context_aw, t); - merge_into_aw(node_aw, t); - - node_dun->duration_ut += t->duration_ut; - total_dimensions++; - } - dfe_done(t); - - // close instance - if(last_ria) { - storage_point_to_json(wb, WPT_INSTANCE, di, ii, ci, ni, &instance_aw, options, baseline); - instance_dun->exposed = true; - } - - // close context - if(last_rca) { - storage_point_to_json(wb, WPT_CONTEXT, di, ii, ci, ni, &context_aw, options, baseline); - context_dun->exposed = true; - } - - // close node - if(last_host) { - storage_point_to_json(wb, WPT_NODE, di, ii, ci, ni, &node_aw, options, baseline); - node_dun->exposed = true; - } - - buffer_json_array_close(wb); // points - - buffer_json_member_add_object(wb, "dictionaries"); - buffer_json_member_add_array(wb, "nodes"); - { - struct dict_unique_node *dun; - dfe_start_read(dict_nodes, dun) { - if(!dun->exposed) - continue; - - buffer_json_add_array_item_object(wb); - buffer_json_node_add_v2(wb, dun->host, dun->i, dun->duration_ut, true); - buffer_json_object_close(wb); - } - dfe_done(dun); - } - buffer_json_array_close(wb); - - buffer_json_member_add_array(wb, "contexts"); - { - struct dict_unique_name_units *dun; - dfe_start_read(dict_contexts, dun) { - if(!dun->exposed) - continue; - - buffer_json_add_array_item_object(wb); - buffer_json_member_add_string(wb, "id", dun_dfe.name); - buffer_json_member_add_string(wb, "units", dun->units); - buffer_json_member_add_int64(wb, "ci", dun->i); - buffer_json_object_close(wb); - } - dfe_done(dun); - } - buffer_json_array_close(wb); - - buffer_json_member_add_array(wb, "instances"); - { - struct dict_unique_id_name *dun; - dfe_start_read(dict_instances, dun) { - if(!dun->exposed) - continue; - - buffer_json_add_array_item_object(wb); - buffer_json_member_add_string(wb, "id", dun->id); - if(dun->id != dun->name) - buffer_json_member_add_string(wb, "nm", dun->name); - buffer_json_member_add_int64(wb, "ii", dun->i); - buffer_json_object_close(wb); - } - dfe_done(dun); - } - buffer_json_array_close(wb); - - buffer_json_member_add_array(wb, "dimensions"); - { - struct dict_unique_id_name *dun; - dfe_start_read(dict_dimensions, dun) { - if(!dun->exposed) - continue; - - buffer_json_add_array_item_object(wb); - buffer_json_member_add_string(wb, "id", dun->id); - if(dun->id != dun->name) - buffer_json_member_add_string(wb, "nm", dun->name); - buffer_json_member_add_int64(wb, "di", dun->i); - buffer_json_object_close(wb); - } - dfe_done(dun); - } - buffer_json_array_close(wb); - - buffer_json_object_close(wb); //dictionaries - - buffer_json_agents_v2(wb, &qwd->timings, 0, false, true); - buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions); - buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions); - buffer_json_finalize(wb); - - dictionary_destroy(dict_nodes); - dictionary_destroy(dict_contexts); - dictionary_destroy(dict_instances); - dictionary_destroy(dict_dimensions); - - return total_dimensions; -} - -static size_t registered_results_to_json_multinode_group_by( - DICTIONARY *results, BUFFER *wb, - time_t after, time_t before, - time_t baseline_after, time_t baseline_before, - size_t points, WEIGHTS_METHOD method, - RRDR_TIME_GROUPING group, RRDR_OPTIONS options, uint32_t shifts, - size_t examined_dimensions, struct query_weights_data *qwd, - WEIGHTS_STATS *stats, - struct query_versions *versions) { - buffer_json_initialize(wb, "\"", "\"", 0, true, (options & RRDR_OPTION_MINIFY) ? BUFFER_JSON_OPTIONS_MINIFY : BUFFER_JSON_OPTIONS_DEFAULT); - buffer_json_member_add_uint64(wb, "api", 2); - - results_header_to_json_v2(results, wb, qwd, after, before, baseline_after, baseline_before, - points, method, group, options, shifts, examined_dimensions, - qwd->timings.executed_ut - qwd->timings.received_ut, stats, true); - - version_hashes_api_v2(wb, versions); - - bool baseline = method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME; - multinode_data_schema(wb, options, "v_schema", baseline, true); - - DICTIONARY *group_by = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE, - NULL, sizeof(struct aggregated_weight)); - - struct register_result *t; - size_t total_dimensions = 0; - BUFFER *key = buffer_create(0, NULL); - BUFFER *name = buffer_create(0, NULL); - dfe_start_read(results, t) { - - buffer_flush(key); - buffer_flush(name); - - if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_DIMENSION) { - buffer_strcat(key, rrdmetric_acquired_name(t->rma)); - buffer_strcat(name, rrdmetric_acquired_name(t->rma)); - } - if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_INSTANCE) { - if(buffer_strlen(key)) { - buffer_fast_strcat(key, ",", 1); - buffer_fast_strcat(name, ",", 1); - } - - buffer_strcat(key, rrdinstance_acquired_id(t->ria)); - buffer_strcat(name, rrdinstance_acquired_name(t->ria)); - - if(!(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_NODE)) { - buffer_fast_strcat(key, "@", 1); - buffer_fast_strcat(name, "@", 1); - buffer_strcat(key, t->host->machine_guid); - buffer_strcat(name, rrdhost_hostname(t->host)); - } - } - if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_NODE) { - if(buffer_strlen(key)) { - buffer_fast_strcat(key, ",", 1); - buffer_fast_strcat(name, ",", 1); - } - - buffer_strcat(key, t->host->machine_guid); - buffer_strcat(name, rrdhost_hostname(t->host)); - } - if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_CONTEXT) { - if(buffer_strlen(key)) { - buffer_fast_strcat(key, ",", 1); - buffer_fast_strcat(name, ",", 1); - } - - buffer_strcat(key, rrdcontext_acquired_id(t->rca)); - buffer_strcat(name, rrdcontext_acquired_id(t->rca)); - } - if(qwd->qwr->group_by.group_by & RRDR_GROUP_BY_UNITS) { - if(buffer_strlen(key)) { - buffer_fast_strcat(key, ",", 1); - buffer_fast_strcat(name, ",", 1); - } - - buffer_strcat(key, rrdcontext_acquired_units(t->rca)); - buffer_strcat(name, rrdcontext_acquired_units(t->rca)); - } - - struct aggregated_weight *aw = dictionary_set(group_by, buffer_tostring(key), NULL, sizeof(struct aggregated_weight)); - if(!aw->name) { - aw->name = strdupz(buffer_tostring(name)); - aw->min = aw->max = aw->sum = t->value; - aw->count = 1; - aw->hsp = t->highlighted; - aw->bsp = t->baseline; - } - else - merge_into_aw(*aw, t); - - total_dimensions++; - } - dfe_done(t); - buffer_free(key); key = NULL; - buffer_free(name); name = NULL; - - struct aggregated_weight *aw; - buffer_json_member_add_array(wb, "result"); - dfe_start_read(group_by, aw) { - const char *k = aw_dfe.name; - const char *n = aw->name; - - buffer_json_add_array_item_object(wb); - buffer_json_member_add_string(wb, "id", k); - - if(strcmp(k, n) != 0) - buffer_json_member_add_string(wb, "nm", n); - - storage_point_to_json(wb, WPT_GROUP, 0, 0, 0, 0, aw, options, baseline); - buffer_json_object_close(wb); - - freez((void *)aw->name); - } - dfe_done(aw); - buffer_json_array_close(wb); // result - - buffer_json_agents_v2(wb, &qwd->timings, 0, false, true); - buffer_json_member_add_uint64(wb, "correlated_dimensions", total_dimensions); - buffer_json_member_add_uint64(wb, "total_dimensions_count", examined_dimensions); - buffer_json_finalize(wb); - - dictionary_destroy(group_by); - - return total_dimensions; -} - -// ---------------------------------------------------------------------------- -// KS2 algorithm functions - -typedef long int DIFFS_NUMBERS; -#define DOUBLE_TO_INT_MULTIPLIER 100000 - -static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) { - // binary search to find the index the smallest index - // of the first value in the array that is greater than K - - int right = size; - while(left < right) { - int middle = (int)(((unsigned int)(left + right)) >> 1); - - if(arr[middle] > K) - right = middle; - - else - left = middle + 1; - } - - return left; -} - -int compare_diffs(const void *left, const void *right) { - DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left; - DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right; - - // https://stackoverflow.com/a/3886497/1114110 - return (lt > rt) - (lt < rt); -} - -static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) { - NETDATA_DOUBLE *last = &arr[size - 1]; - size_t added = 0; - - while(last > arr) { - NETDATA_DOUBLE second = *last--; - NETDATA_DOUBLE first = *last; - *diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER); - added++; - } - - return added; -} - -static double ks_2samp( - DIFFS_NUMBERS baseline_diffs[], int base_size, - DIFFS_NUMBERS highlight_diffs[], int high_size, - uint32_t base_shifts) { - - qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs); - qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs); - - // Now we should be calculating this: - // - // For each number in the diffs arrays, we should find the index of the - // number bigger than them in both arrays and calculate the % of this index - // vs the total array size. Once we have the 2 percentages, we should find - // the min and max across the delta of all of them. - // - // It should look like this: - // - // base_pcent = binary_search_bigger_than(...) / base_size; - // high_pcent = binary_search_bigger_than(...) / high_size; - // delta = base_pcent - high_pcent; - // if(delta < min) min = delta; - // if(delta > max) max = delta; - // - // This would require a lot of multiplications and divisions. - // - // To speed it up, we do the binary search to find the index of each number - // but, then we divide the base index by the power of two number (shifts) it - // is bigger than high index. So the 2 indexes are now comparable. - // We also keep track of the original indexes with min and max, to properly - // calculate their percentages once the loops finish. - - - // initialize min and max using the first number of baseline_diffs - DIFFS_NUMBERS K = baseline_diffs[0]; - int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K); - int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K); - int delta = base_idx - (high_idx << base_shifts); - int min = delta, max = delta; - int base_min_idx = base_idx; - int base_max_idx = base_idx; - int high_min_idx = high_idx; - int high_max_idx = high_idx; - - // do the baseline_diffs starting from 1 (we did position 0 above) - for(int i = 1; i < base_size; i++) { - K = baseline_diffs[i]; - base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted - high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K); - - delta = base_idx - (high_idx << base_shifts); - if(delta < min) { - min = delta; - base_min_idx = base_idx; - high_min_idx = high_idx; - } - else if(delta > max) { - max = delta; - base_max_idx = base_idx; - high_max_idx = high_idx; - } - } - - // do the highlight_diffs starting from 0 - for(int i = 0; i < high_size; i++) { - K = highlight_diffs[i]; - base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K); - high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted - - delta = base_idx - (high_idx << base_shifts); - if(delta < min) { - min = delta; - base_min_idx = base_idx; - high_min_idx = high_idx; - } - else if(delta > max) { - max = delta; - base_max_idx = base_idx; - high_max_idx = high_idx; - } - } - - // now we have the min, max and their indexes - // properly calculate min and max as dmin and dmax - double dbase_size = (double)base_size; - double dhigh_size = (double)high_size; - double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size); - double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size); - - dmin = -dmin; - if(islessequal(dmin, 0.0)) dmin = 0.0; - else if(isgreaterequal(dmin, 1.0)) dmin = 1.0; - - double d; - if(isgreaterequal(dmin, dmax)) d = dmin; - else d = dmax; - - double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size)); - - // under these conditions, KSfbar() crashes - if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d))) - return NAN; - - return KSfbar((int)en, d); -} - -static double kstwo( - NETDATA_DOUBLE baseline[], int baseline_points, - NETDATA_DOUBLE highlight[], int highlight_points, - uint32_t base_shifts) { - - // -1 in size, since the calculate_pairs_diffs() returns one less point - DIFFS_NUMBERS baseline_diffs[baseline_points - 1]; - DIFFS_NUMBERS highlight_diffs[highlight_points - 1]; - - int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points); - int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points); - - if(unlikely(!base_size || !high_size)) - return NAN; - - if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) { - netdata_log_error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries"); - return NAN; - } - - return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts); -} - -NETDATA_DOUBLE *rrd2rrdr_ks2( - ONEWAYALLOC *owa, RRDHOST *host, - RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, - time_t after, time_t before, size_t points, RRDR_OPTIONS options, - RRDR_TIME_GROUPING time_group_method, const char *time_group_options, size_t tier, - WEIGHTS_STATS *stats, - size_t *entries, - STORAGE_POINT *sp - ) { - - NETDATA_DOUBLE *ret = NULL; - - QUERY_TARGET_REQUEST qtr = { - .version = 1, - .host = host, - .rca = rca, - .ria = ria, - .rma = rma, - .after = after, - .before = before, - .points = points, - .options = options, - .time_group_method = time_group_method, - .time_group_options = time_group_options, - .tier = tier, - .query_source = QUERY_SOURCE_API_WEIGHTS, - .priority = STORAGE_PRIORITY_SYNCHRONOUS, - }; - - QUERY_TARGET *qt = query_target_create(&qtr); - RRDR *r = rrd2rrdr(owa, qt); - if(!r) - goto cleanup; - - stats->db_queries++; - stats->result_points += r->stats.result_points_generated; - stats->db_points += r->stats.db_points_read; - for(size_t tr = 0; tr < storage_tiers ; tr++) - stats->db_points_per_tier[tr] += r->internal.qt->db.tiers[tr].points; - - if(r->d != 1 || r->internal.qt->query.used != 1) { - netdata_log_error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu r->d and %zu qt->query.used", - r->internal.qt->id, r->d, (size_t)r->internal.qt->query.used); - goto cleanup; - } - - if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN)) - goto cleanup; - - if(unlikely(!(r->od[0] & RRDR_DIMENSION_QUERIED))) - goto cleanup; - - if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO))) - goto cleanup; - - if(rrdr_rows(r) < 2) - goto cleanup; - - *entries = rrdr_rows(r); - ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r)); - - if(sp) - *sp = r->internal.qt->query.array[0].query_points; - - // copy the points of the dimension to a contiguous array - // there is no need to check for empty values, since empty values are already zero - // https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43 - memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE)); - -cleanup: - rrdr_free(owa, r); - query_target_release(qt); - return ret; -} - -static void rrdset_metric_correlations_ks2( - RRDHOST *host, - RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, - DICTIONARY *results, - time_t baseline_after, time_t baseline_before, - time_t after, time_t before, - size_t points, RRDR_OPTIONS options, - RRDR_TIME_GROUPING time_group_method, const char *time_group_options, size_t tier, - uint32_t shifts, - WEIGHTS_STATS *stats, bool register_zero - ) { - - options |= RRDR_OPTION_NATURAL_POINTS; - - usec_t started_ut = now_monotonic_usec(); - ONEWAYALLOC *owa = onewayalloc_create(16 * 1024); - - size_t high_points = 0; - STORAGE_POINT highlighted_sp; - NETDATA_DOUBLE *highlight = rrd2rrdr_ks2( - owa, host, rca, ria, rma, after, before, points, - options, time_group_method, time_group_options, tier, stats, &high_points, &highlighted_sp); - - if(!highlight) - goto cleanup; - - size_t base_points = 0; - STORAGE_POINT baseline_sp; - NETDATA_DOUBLE *baseline = rrd2rrdr_ks2( - owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts, - options, time_group_method, time_group_options, tier, stats, &base_points, &baseline_sp); - - if(!baseline) - goto cleanup; - - stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1); - - double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts); - if(!isnan(prob) && !isinf(prob)) { - - // these conditions should never happen, but still let's check - if(unlikely(prob < 0.0)) { - netdata_log_error("Metric correlations: kstwo() returned a negative number: %f", prob); - prob = -prob; - } - if(unlikely(prob > 1.0)) { - netdata_log_error("Metric correlations: kstwo() returned a number above 1.0: %f", prob); - prob = 1.0; - } - - usec_t ended_ut = now_monotonic_usec(); - - // to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated - // so, we flip the result of kstwo() - register_result(results, host, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, &highlighted_sp, - &baseline_sp, stats, register_zero, ended_ut - started_ut); - } - -cleanup: - onewayalloc_destroy(owa); -} - -// ---------------------------------------------------------------------------- -// VOLUME algorithm functions - -static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats, size_t queries) { - stats->db_queries += queries; - stats->result_points += qv->result_points; - stats->db_points += qv->points_read; - for(size_t tier = 0; tier < storage_tiers ; tier++) - stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier]; -} - -static void rrdset_metric_correlations_volume( - RRDHOST *host, - RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, - DICTIONARY *results, - time_t baseline_after, time_t baseline_before, - time_t after, time_t before, - RRDR_OPTIONS options, RRDR_TIME_GROUPING time_group_method, const char *time_group_options, - size_t tier, - WEIGHTS_STATS *stats, bool register_zero) { - - options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS; - - QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before, - options, time_group_method, time_group_options, tier, 0, - QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS); - merge_query_value_to_stats(&baseline_average, stats, 1); - - if(!netdata_double_isnumber(baseline_average.value)) { - // this means no data for the baseline window, but we may have data for the highlighted one - assume zero - baseline_average.value = 0.0; - } - - QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before, - options, time_group_method, time_group_options, tier, 0, - QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS); - merge_query_value_to_stats(&highlight_average, stats, 1); - - if(!netdata_double_isnumber(highlight_average.value)) - return; - - if(baseline_average.value == highlight_average.value) { - // they are the same - let's move on - return; - } - - if((options & RRDR_OPTION_ANOMALY_BIT) && highlight_average.value < baseline_average.value) { - // when working on anomaly bits, we are looking for an increase in the anomaly rate - return; - } - - char highlight_countif_options[50 + 1]; - snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value); - QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before, - options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0, - QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS); - merge_query_value_to_stats(&highlight_countif, stats, 1); - - if(!netdata_double_isnumber(highlight_countif.value)) { - netdata_log_info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange..."); - return; - } - - // this represents the percentage of time - // the highlighted window was above/below the baseline window - // (above or below depending on their averages) - highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0 - - RESULT_FLAGS flags; - NETDATA_DOUBLE pcent = NAN; - if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) { - flags = RESULT_IS_BASE_HIGH_RATIO; - pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value; - } - else { - flags = RESULT_IS_PERCENTAGE_OF_TIME; - pcent = highlight_countif.value; - } - - register_result(results, host, rca, ria, rma, pcent, flags, &highlight_average.sp, &baseline_average.sp, stats, - register_zero, baseline_average.duration_ut + highlight_average.duration_ut + highlight_countif.duration_ut); -} - -// ---------------------------------------------------------------------------- -// VALUE / ANOMALY RATE algorithm functions - -static void rrdset_weights_value( - RRDHOST *host, - RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma, - DICTIONARY *results, - time_t after, time_t before, - RRDR_OPTIONS options, RRDR_TIME_GROUPING time_group_method, const char *time_group_options, - size_t tier, - WEIGHTS_STATS *stats, bool register_zero) { - - options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_NATURAL_POINTS; - - QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before, - options, time_group_method, time_group_options, tier, 0, - QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_SYNCHRONOUS); - - merge_query_value_to_stats(&qv, stats, 1); - - if(netdata_double_isnumber(qv.value)) - register_result(results, host, rca, ria, rma, qv.value, 0, &qv.sp, NULL, stats, register_zero, qv.duration_ut); -} - -static void rrdset_weights_multi_dimensional_value(struct query_weights_data *qwd) { - QUERY_TARGET_REQUEST qtr = { - .version = 1, - .scope_nodes = qwd->qwr->scope_nodes, - .scope_contexts = qwd->qwr->scope_contexts, - .nodes = qwd->qwr->nodes, - .contexts = qwd->qwr->contexts, - .instances = qwd->qwr->instances, - .dimensions = qwd->qwr->dimensions, - .labels = qwd->qwr->labels, - .alerts = qwd->qwr->alerts, - .after = qwd->qwr->after, - .before = qwd->qwr->before, - .points = 1, - .options = qwd->qwr->options | RRDR_OPTION_NATURAL_POINTS, - .time_group_method = qwd->qwr->time_group_method, - .time_group_options = qwd->qwr->time_group_options, - .tier = qwd->qwr->tier, - .timeout_ms = qwd->qwr->timeout_ms, - .query_source = QUERY_SOURCE_API_WEIGHTS, - .priority = STORAGE_PRIORITY_NORMAL, - }; - - ONEWAYALLOC *owa = onewayalloc_create(16 * 1024); - QUERY_TARGET *qt = query_target_create(&qtr); - RRDR *r = rrd2rrdr(owa, qt); - - if(!r || rrdr_rows(r) != 1 || !r->d || r->d != r->internal.qt->query.used) - goto cleanup; - - QUERY_VALUE qv = { - .after = r->view.after, - .before = r->view.before, - .points_read = r->stats.db_points_read, - .result_points = r->stats.result_points_generated, - }; - - size_t queries = 0; - for(size_t d = 0; d < r->d ;d++) { - if(!rrdr_dimension_should_be_exposed(r->od[d], qwd->qwr->options)) - continue; - - long i = 0; // only one row - NETDATA_DOUBLE *cn = &r->v[ i * r->d ]; - NETDATA_DOUBLE *ar = &r->ar[ i * r->d ]; - - qv.value = cn[d]; - qv.anomaly_rate = ar[d]; - storage_point_merge_to(qv.sp, r->internal.qt->query.array[d].query_points); - - if(netdata_double_isnumber(qv.value)) { - QUERY_METRIC *qm = query_metric(r->internal.qt, d); - QUERY_DIMENSION *qd = query_dimension(r->internal.qt, qm->link.query_dimension_id); - QUERY_INSTANCE *qi = query_instance(r->internal.qt, qm->link.query_instance_id); - QUERY_CONTEXT *qc = query_context(r->internal.qt, qm->link.query_context_id); - QUERY_NODE *qn = query_node(r->internal.qt, qm->link.query_node_id); - - register_result(qwd->results, qn->rrdhost, qc->rca, qi->ria, qd->rma, qv.value, 0, &qv.sp, - NULL, &qwd->stats, qwd->register_zero, qm->duration_ut); - } - - queries++; - } - - merge_query_value_to_stats(&qv, &qwd->stats, queries); - -cleanup: - rrdr_free(owa, r); - query_target_release(qt); - onewayalloc_destroy(owa); -} - -// ---------------------------------------------------------------------------- - -int compare_netdata_doubles(const void *left, const void *right) { - NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left; - NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right; - - // https://stackoverflow.com/a/3886497/1114110 - return (lt > rt) - (lt < rt); -} - -static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) { - // binary search to find the index the smallest index - // of the first value in the array that is greater than K - - int right = size; - while(left < right) { - int middle = (int)(((unsigned int)(left + right)) >> 1); - - if(arr[middle] > K) - right = middle; - - else - left = middle + 1; - } - - return left; -} - -// ---------------------------------------------------------------------------- -// spread the results evenly according to their value - -static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) { - struct register_result *t; - - // count the dimensions - size_t dimensions = dictionary_entries(results); - if(!dimensions) return 0; - - if(stats->max_base_high_ratio == 0.0) - stats->max_base_high_ratio = 1.0; - - // create an array of the right size and copy all the values in it - NETDATA_DOUBLE slots[dimensions]; - dimensions = 0; - dfe_start_read(results, t) { - if(t->flags & RESULT_IS_PERCENTAGE_OF_TIME) - t->value = t->value * stats->max_base_high_ratio; - - slots[dimensions++] = t->value; - } - dfe_done(t); - - if(!dimensions) return 0; // Coverity fix - - // sort the array with the values of all dimensions - qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles); - - // skip the duplicates in the sorted array - NETDATA_DOUBLE last_value = NAN; - size_t unique_values = 0; - for(size_t i = 0; i < dimensions ;i++) { - if(likely(slots[i] != last_value)) - slots[unique_values++] = last_value = slots[i]; - } - - // this cannot happen, but coverity thinks otherwise... - if(!unique_values) - unique_values = dimensions; - - // calculate the weight of each slot, using the number of unique values - NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values; - - dfe_start_read(results, t) { - int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value); - NETDATA_DOUBLE v = slot * slot_weight; - if(unlikely(v > 1.0)) v = 1.0; - v = 1.0 - v; - t->value = v; - } - dfe_done(t); - - return dimensions; -} - -// ---------------------------------------------------------------------------- -// The main function - -static ssize_t weights_for_rrdmetric(void *data, RRDHOST *host, RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma) { - struct query_weights_data *qwd = data; - QUERY_WEIGHTS_REQUEST *qwr = qwd->qwr; - - if(qwd->qwr->interrupt_callback && qwd->qwr->interrupt_callback(qwd->qwr->interrupt_callback_data)) { - qwd->interrupted = true; - return -1; - } - - qwd->examined_dimensions++; - - switch(qwr->method) { - case WEIGHTS_METHOD_VALUE: - rrdset_weights_value( - host, rca, ria, rma, - qwd->results, - qwr->after, qwr->before, - qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier, - &qwd->stats, qwd->register_zero - ); - break; - - case WEIGHTS_METHOD_ANOMALY_RATE: - qwr->options |= RRDR_OPTION_ANOMALY_BIT; - rrdset_weights_value( - host, rca, ria, rma, - qwd->results, - qwr->after, qwr->before, - qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier, - &qwd->stats, qwd->register_zero - ); - break; - - case WEIGHTS_METHOD_MC_VOLUME: - rrdset_metric_correlations_volume( - host, rca, ria, rma, - qwd->results, - qwr->baseline_after, qwr->baseline_before, - qwr->after, qwr->before, - qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier, - &qwd->stats, qwd->register_zero - ); - break; - - default: - case WEIGHTS_METHOD_MC_KS2: - rrdset_metric_correlations_ks2( - host, rca, ria, rma, - qwd->results, - qwr->baseline_after, qwr->baseline_before, - qwr->after, qwr->before, qwr->points, - qwr->options, qwr->time_group_method, qwr->time_group_options, qwr->tier, qwd->shifts, - &qwd->stats, qwd->register_zero - ); - break; - } - - qwd->timings.executed_ut = now_monotonic_usec(); - if(qwd->timings.executed_ut - qwd->timings.received_ut > qwd->timeout_us) { - qwd->timed_out = true; - return -1; - } - - return 1; -} - -static ssize_t weights_do_context_callback(void *data, RRDCONTEXT_ACQUIRED *rca, bool queryable_context) { - if(!queryable_context) - return false; - - struct query_weights_data *qwd = data; - - bool has_retention = false; - switch(qwd->qwr->method) { - case WEIGHTS_METHOD_VALUE: - case WEIGHTS_METHOD_ANOMALY_RATE: - has_retention = rrdcontext_retention_match(rca, qwd->qwr->after, qwd->qwr->before); - break; - - case WEIGHTS_METHOD_MC_KS2: - case WEIGHTS_METHOD_MC_VOLUME: - has_retention = rrdcontext_retention_match(rca, qwd->qwr->after, qwd->qwr->before); - if(has_retention) - has_retention = rrdcontext_retention_match(rca, qwd->qwr->baseline_after, qwd->qwr->baseline_before); - break; - } - - if(!has_retention) - return 0; - - ssize_t ret = weights_foreach_rrdmetric_in_context(rca, - qwd->instances_sp, - NULL, - qwd->labels_sp, - qwd->alerts_sp, - qwd->dimensions_sp, - true, true, qwd->qwr->version, - weights_for_rrdmetric, qwd); - return ret; -} - -ssize_t weights_do_node_callback(void *data, RRDHOST *host, bool queryable) { - if(!queryable) - return 0; - - struct query_weights_data *qwd = data; - - ssize_t ret = query_scope_foreach_context(host, qwd->qwr->scope_contexts, - qwd->scope_contexts_sp, qwd->contexts_sp, - weights_do_context_callback, queryable, qwd); - - return ret; -} - -int web_api_v12_weights(BUFFER *wb, QUERY_WEIGHTS_REQUEST *qwr) { - - char *error = NULL; - int resp = HTTP_RESP_OK; - - // if the user didn't give a timeout - // assume 60 seconds - if(!qwr->timeout_ms) - qwr->timeout_ms = 5 * 60 * MSEC_PER_SEC; - - // if the timeout is less than 1 second - // make it at least 1 second - if(qwr->timeout_ms < (long)(1 * MSEC_PER_SEC)) - qwr->timeout_ms = 1 * MSEC_PER_SEC; - - struct query_weights_data qwd = { - .qwr = qwr, - - .scope_nodes_sp = string_to_simple_pattern(qwr->scope_nodes), - .scope_contexts_sp = string_to_simple_pattern(qwr->scope_contexts), - .nodes_sp = string_to_simple_pattern(qwr->nodes), - .contexts_sp = string_to_simple_pattern(qwr->contexts), - .instances_sp = string_to_simple_pattern(qwr->instances), - .dimensions_sp = string_to_simple_pattern(qwr->dimensions), - .labels_sp = string_to_simple_pattern(qwr->labels), - .alerts_sp = string_to_simple_pattern(qwr->alerts), - .timeout_us = qwr->timeout_ms * USEC_PER_MS, - .timed_out = false, - .examined_dimensions = 0, - .register_zero = true, - .results = register_result_init(), - .stats = {}, - .shifts = 0, - .timings = { - .received_ut = now_monotonic_usec(), - } - }; - - if(!rrdr_relative_window_to_absolute_query(&qwr->after, &qwr->before, NULL, false)) - buffer_no_cacheable(wb); - else - buffer_cacheable(wb); - - if (qwr->before <= qwr->after) { - resp = HTTP_RESP_BAD_REQUEST; - error = "Invalid selected time-range."; - goto cleanup; - } - - if(qwr->method == WEIGHTS_METHOD_MC_KS2 || qwr->method == WEIGHTS_METHOD_MC_VOLUME) { - if(!qwr->points) qwr->points = 500; - - if(qwr->baseline_before <= API_RELATIVE_TIME_MAX) - qwr->baseline_before += qwr->after; - - rrdr_relative_window_to_absolute_query(&qwr->baseline_after, &qwr->baseline_before, NULL, false); - - if (qwr->baseline_before <= qwr->baseline_after) { - resp = HTTP_RESP_BAD_REQUEST; - error = "Invalid baseline time-range."; - goto cleanup; - } - - // baseline should be a power of two multiple of highlight - long long base_delta = qwr->baseline_before - qwr->baseline_after; - long long high_delta = qwr->before - qwr->after; - uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta); - - // check if the multiplier is a power of two - // https://stackoverflow.com/a/600306/1114110 - if((multiplier & (multiplier - 1)) != 0) { - // it is not power of two - // let's find the closest power of two - // https://stackoverflow.com/a/466242/1114110 - multiplier--; - multiplier |= multiplier >> 1; - multiplier |= multiplier >> 2; - multiplier |= multiplier >> 4; - multiplier |= multiplier >> 8; - multiplier |= multiplier >> 16; - multiplier++; - } - - // convert the multiplier to the number of shifts - // we need to do, to divide baseline numbers to match - // the highlight ones - while(multiplier > 1) { - qwd.shifts++; - multiplier = multiplier >> 1; - } - - // if the baseline size will not comply to MAX_POINTS - // lower the window of the baseline - while(qwd.shifts && (qwr->points << qwd.shifts) > MAX_POINTS) - qwd.shifts--; - - // if the baseline size still does not comply to MAX_POINTS - // lower the resolution of the highlight and the baseline - while((qwr->points << qwd.shifts) > MAX_POINTS) - qwr->points = qwr->points >> 1; - - if(qwr->points < 15) { - resp = HTTP_RESP_BAD_REQUEST; - error = "Too few points available, at least 15 are needed."; - goto cleanup; - } - - // adjust the baseline to be multiplier times bigger than the highlight - qwr->baseline_after = qwr->baseline_before - (high_delta << qwd.shifts); - } - - if(qwr->options & RRDR_OPTION_NONZERO) { - qwd.register_zero = false; - - // remove it to run the queries without it - qwr->options &= ~RRDR_OPTION_NONZERO; - } - - if(qwr->host && qwr->version == 1) - weights_do_node_callback(&qwd, qwr->host, true); - else { - if((qwd.qwr->method == WEIGHTS_METHOD_VALUE || qwd.qwr->method == WEIGHTS_METHOD_ANOMALY_RATE) && (qwd.contexts_sp || qwd.scope_contexts_sp)) { - rrdset_weights_multi_dimensional_value(&qwd); - } - else { - query_scope_foreach_host(qwd.scope_nodes_sp, qwd.nodes_sp, - weights_do_node_callback, &qwd, - &qwd.versions, - NULL); - } - } - - if(!qwd.register_zero) { - // put it back, to show it in the response - qwr->options |= RRDR_OPTION_NONZERO; - } - - if(qwd.timed_out) { - error = "timed out"; - resp = HTTP_RESP_GATEWAY_TIMEOUT; - goto cleanup; - } - - if(qwd.interrupted) { - error = "interrupted"; - resp = HTTP_RESP_CLIENT_CLOSED_REQUEST; - goto cleanup; - } - - if(!qwd.register_zero) - qwr->options |= RRDR_OPTION_NONZERO; - - if(!(qwr->options & RRDR_OPTION_RETURN_RAW) && qwr->method != WEIGHTS_METHOD_VALUE) - spread_results_evenly(qwd.results, &qwd.stats); - - usec_t ended_usec = qwd.timings.executed_ut = now_monotonic_usec(); - - // generate the json output we need - buffer_flush(wb); - - size_t added_dimensions = 0; - switch(qwr->format) { - case WEIGHTS_FORMAT_CHARTS: - added_dimensions = - registered_results_to_json_charts( - qwd.results, wb, - qwr->after, qwr->before, - qwr->baseline_after, qwr->baseline_before, - qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts, - qwd.examined_dimensions, - ended_usec - qwd.timings.received_ut, &qwd.stats); - break; - - case WEIGHTS_FORMAT_CONTEXTS: - added_dimensions = - registered_results_to_json_contexts( - qwd.results, wb, - qwr->after, qwr->before, - qwr->baseline_after, qwr->baseline_before, - qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts, - qwd.examined_dimensions, - ended_usec - qwd.timings.received_ut, &qwd.stats); - break; - - default: - case WEIGHTS_FORMAT_MULTINODE: - // we don't support these groupings in weights - qwr->group_by.group_by &= ~(RRDR_GROUP_BY_LABEL|RRDR_GROUP_BY_SELECTED|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE); - if(qwr->group_by.group_by == RRDR_GROUP_BY_NONE) { - added_dimensions = - registered_results_to_json_multinode_no_group_by( - qwd.results, wb, - qwr->after, qwr->before, - qwr->baseline_after, qwr->baseline_before, - qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts, - qwd.examined_dimensions, - &qwd, &qwd.stats, &qwd.versions); - } - else { - added_dimensions = - registered_results_to_json_multinode_group_by( - qwd.results, wb, - qwr->after, qwr->before, - qwr->baseline_after, qwr->baseline_before, - qwr->points, qwr->method, qwr->time_group_method, qwr->options, qwd.shifts, - qwd.examined_dimensions, - &qwd, &qwd.stats, &qwd.versions); - } - break; - } - - if(!added_dimensions && qwr->version < 2) { - error = "no results produced."; - resp = HTTP_RESP_NOT_FOUND; - } - -cleanup: - simple_pattern_free(qwd.scope_nodes_sp); - simple_pattern_free(qwd.scope_contexts_sp); - simple_pattern_free(qwd.nodes_sp); - simple_pattern_free(qwd.contexts_sp); - simple_pattern_free(qwd.instances_sp); - simple_pattern_free(qwd.dimensions_sp); - simple_pattern_free(qwd.labels_sp); - simple_pattern_free(qwd.alerts_sp); - - register_result_destroy(qwd.results); - - if(error) { - buffer_flush(wb); - buffer_sprintf(wb, "{\"error\": \"%s\" }", error); - } - - return resp; -} - -// ---------------------------------------------------------------------------- -// unittest - -/* - -Unit tests against the output of this: - -https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449 - -import matplotlib.pyplot as plt -import pandas as pd -import numpy as np -import scipy as sp -from scipy import stats - -data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ]) -data2 = np.array([365, -123, 0]) -data1 = np.sort(data1) -data2 = np.sort(data2) -n1 = data1.shape[0] -n2 = data2.shape[0] -data_all = np.concatenate([data1, data2]) -cdf1 = np.searchsorted(data1, data_all, side='right') / n1 -cdf2 = np.searchsorted(data2, data_all, side='right') / n2 -print(data_all) -print("\ndata1", data1, cdf1) -print("\ndata2", data2, cdf2) -cddiffs = cdf1 - cdf2 -print("\ncddiffs", cddiffs) -minS = np.clip(-np.min(cddiffs), 0, 1) -maxS = np.max(cddiffs) -print("\nmin", minS) -print("max", maxS) -m, n = sorted([float(n1), float(n2)], reverse=True) -en = m * n / (m + n) -d = max(minS, maxS) -prob = stats.distributions.kstwo.sf(d, np.round(en)) -print("\nprob", prob) - -*/ - -static int double_expect(double v, const char *str, const char *descr) { - char buf[100 + 1]; - snprintfz(buf, sizeof(buf) - 1, "%0.6f", v); - int ret = strcmp(buf, str) ? 1 : 0; - - fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf); - return ret; -} - -static int mc_unittest1(void) { - int bs = 3, hs = 3; - DIFFS_NUMBERS base[3] = { 1, 2, 3 }; - DIFFS_NUMBERS high[3] = { 3, 4, 6 }; - - double prob = ks_2samp(base, bs, high, hs, 0); - return double_expect(prob, "0.222222", "3x3"); -} - -static int mc_unittest2(void) { - int bs = 6, hs = 3; - DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 }; - DIFFS_NUMBERS high[3] = { 3, 4, 6 }; - - double prob = ks_2samp(base, bs, high, hs, 1); - return double_expect(prob, "0.500000", "6x3"); -} - -static int mc_unittest3(void) { - int bs = 12, hs = 3; - DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 }; - DIFFS_NUMBERS high[3] = { 3, 4, 6 }; - - double prob = ks_2samp(base, bs, high, hs, 2); - return double_expect(prob, "0.347222", "12x3"); -} - -static int mc_unittest4(void) { - int bs = 12, hs = 3; - DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 }; - DIFFS_NUMBERS high[3] = { 365, -123, 0 }; - - double prob = ks_2samp(base, bs, high, hs, 2); - return double_expect(prob, "0.777778", "12x3"); -} - -int mc_unittest(void) { - int errors = 0; - - errors += mc_unittest1(); - errors += mc_unittest2(); - errors += mc_unittest3(); - errors += mc_unittest4(); - - return errors; -} - |