1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "daemon/common.h"
#include "KolmogorovSmirnovDist.h"
#define MAX_POINTS 10000
int enable_metric_correlations = CONFIG_BOOLEAN_NO;
int metric_correlations_version = 1;
struct charts {
RRDSET *st;
struct charts *next;
};
struct per_dim {
char *dimension;
calculated_number baseline[MAX_POINTS];
calculated_number highlight[MAX_POINTS];
double baseline_diffs[MAX_POINTS];
double highlight_diffs[MAX_POINTS];
};
int find_index(double arr[], long int n, double K, long int start)
{
for (long int i = start; i < n; i++) {
if (K<arr[i]){
return i;
}
}
return n;
}
int compare(const void *left, const void *right) {
double lt = *(double *)left;
double rt = *(double *)right;
if(unlikely(lt < rt)) return -1;
if(unlikely(lt > rt)) return 1;
return 0;
}
void kstwo(double data1[], long int n1, double data2[], long int n2, double *d, double *prob)
{
double en1, en2, en, data_all[MAX_POINTS*2], cdf1[MAX_POINTS], cdf2[MAX_POINTS], cddiffs[MAX_POINTS];
double min = 0.0, max = 0.0;
qsort(data1, n1, sizeof(double), compare);
qsort(data2, n2, sizeof(double), compare);
for (int i = 0; i < n1; i++)
data_all[i] = data1[i];
for (int i = 0; i < n2; i++)
data_all[n1 + i] = data2[i];
en1 = (double)n1;
en2 = (double)n2;
*d = 0.0;
cddiffs[0]=0; //for uninitialized warning
for (int i=0; i<n1+n2;i++)
cdf1[i] = find_index(data1, n1, data_all[i], 0) / en1; //TODO, use the start to reduce loops
for (int i=0; i<n1+n2;i++)
cdf2[i] = find_index(data2, n2, data_all[i], 0) / en2;
for ( int i=0;i<n2+n1;i++)
cddiffs[i] = cdf1[i] - cdf2[i];
min = cddiffs[0];
for ( int i=0;i<n2+n1;i++) {
if (cddiffs[i] < min)
min = cddiffs[i];
}
//clip min
if (fabs(min) < 0) min = 0;
else if (fabs(min) > 1) min = 1;
max = fabs(cddiffs[0]);
for ( int i=0;i<n2+n1;i++)
if (cddiffs[i] >= max) max = cddiffs[i];
if (fabs(min) < max)
*d = max;
else
*d = fabs(min);
en = (en1*en2 / (en1 + en2));
*prob = KSfbar(round(en), *d);
}
void fill_nan (struct per_dim *d, long int hp, long int bp)
{
int k;
for (k = 0; k < bp; k++) {
if (isnan(d->baseline[k])) {
d->baseline[k] = 0.0;
}
}
for (k = 0; k < hp; k++) {
if (isnan(d->highlight[k])) {
d->highlight[k] = 0.0;
}
}
}
//TODO check counters
void run_diffs_and_rev (struct per_dim *d, long int hp, long int bp)
{
int k, j;
for (k = 0, j = bp; k < bp - 1; k++, j--)
d->baseline_diffs[k] = (double)d->baseline[j - 2] - (double)d->baseline[j - 1];
for (k = 0, j = hp; k < hp - 1; k++, j--) {
d->highlight_diffs[k] = (double)d->highlight[j - 2] - (double)d->highlight[j - 1];
}
}
int run_metric_correlations (BUFFER *wb, RRDSET *st, long long baseline_after, long long baseline_before, long long highlight_after, long long highlight_before, long long max_points)
{
uint32_t options = 0x00000000;
int group_method = RRDR_GROUPING_AVERAGE;
long group_time = 0;
struct context_param *context_param_list = NULL;
long c;
int i=0, j=0;
int b_dims = 0;
long int baseline_points = 0, highlight_points = 0;
struct per_dim *pd = NULL;
//TODO get everything in one go, when baseline is right before highlight
//get baseline
ONEWAYALLOC *owa = onewayalloc_create(0);
RRDR *rb = rrd2rrdr(owa, st, max_points, baseline_after, baseline_before, group_method, group_time, options, NULL, context_param_list, 0);
if(!rb) {
info("Cannot generate metric correlations output with these parameters on this chart.");
onewayalloc_destroy(owa);
return 0;
} else {
baseline_points = rrdr_rows(rb);
pd = mallocz(sizeof(struct per_dim) * rb->d);
b_dims = rb->d;
for (c = 0; c != rrdr_rows(rb) ; ++c) {
RRDDIM *d;
for (j = 0, d = rb->st->dimensions ; d && j < rb->d ; ++j, d = d->next) {
calculated_number *cn = &rb->v[ c * rb->d ];
if (!c) {
//TODO use points from query
pd[j].dimension = strdupz (d->name);
pd[j].baseline[c] = cn[j];
} else {
pd[j].baseline[c] = cn[j];
}
}
}
}
rrdr_free(owa, rb);
onewayalloc_destroy(owa);
if (!pd)
return 0;
//get highlight
owa = onewayalloc_create(0);
RRDR *rh = rrd2rrdr(owa, st, max_points, highlight_after, highlight_before, group_method, group_time, options, NULL, context_param_list, 0);
if(!rh) {
info("Cannot generate metric correlations output with these parameters on this chart.");
freez(pd);
onewayalloc_destroy(owa);
return 0;
} else {
if (rh->d != b_dims) {
//TODO handle different dims
rrdr_free(owa, rh);
onewayalloc_destroy(owa);
freez(pd);
return 0;
}
highlight_points = rrdr_rows(rh);
for (c = 0; c != rrdr_rows(rh) ; ++c) {
RRDDIM *d;
for (j = 0, d = rh->st->dimensions ; d && j < rh->d ; ++j, d = d->next) {
calculated_number *cn = &rh->v[ c * rh->d ];
pd[j].highlight[c] = cn[j];
}
}
}
rrdr_free(owa, rh);
onewayalloc_destroy(owa);
for (i = 0; i < b_dims; i++) {
fill_nan(&pd[i], highlight_points, baseline_points);
}
for (i = 0; i < b_dims; i++) {
run_diffs_and_rev(&pd[i], highlight_points, baseline_points);
}
double d=0, prob=0;
for (i=0;i < j ;i++) {
if (baseline_points && highlight_points) {
kstwo(pd[i].baseline_diffs, baseline_points-1, pd[i].highlight_diffs, highlight_points-1, &d, &prob);
buffer_sprintf(wb, "\t\t\t\t\"%s\": %f", pd[i].dimension, prob);
if (i != j-1)
buffer_sprintf(wb, ",\n");
else
buffer_sprintf(wb, "\n");
}
}
freez(pd);
return j;
}
void metric_correlations (RRDHOST *host, BUFFER *wb, long long baseline_after, long long baseline_before, long long highlight_after, long long highlight_before, long long max_points)
{
info ("Running metric correlations, highlight_after: %lld, highlight_before: %lld, baseline_after: %lld, baseline_before: %lld, max_points: %lld", highlight_after, highlight_before, baseline_after, baseline_before, max_points);
if (!enable_metric_correlations) {
error("Metric correlations functionality is not enabled.");
buffer_strcat(wb, "{\"error\": \"Metric correlations functionality is not enabled.\" }");
return;
}
if (highlight_before <= highlight_after || baseline_before <= baseline_after) {
error("Invalid baseline or highlight ranges.");
buffer_strcat(wb, "{\"error\": \"Invalid baseline or highlight ranges.\" }");
return;
}
long long dims = 0, total_dims = 0;
RRDSET *st;
size_t c = 0;
BUFFER *wdims = buffer_create(1000);
if (!max_points || max_points > MAX_POINTS)
max_points = MAX_POINTS;
//dont lock here and wait for results
//get the charts and run mc after
//should not be a problem for the query
struct charts *charts = NULL;
rrdhost_rdlock(host);
rrdset_foreach_read(st, host) {
if (rrdset_is_available_for_viewers(st)) {
rrdset_rdlock(st);
struct charts *chart = callocz(1, sizeof(struct charts));
chart->st = st;
chart->next = NULL;
if (charts) {
chart->next = charts;
}
charts = chart;
}
}
rrdhost_unlock(host);
buffer_strcat(wb, "{\n\t\"correlated_charts\": {");
for (struct charts *ch = charts; ch; ch = ch->next) {
buffer_flush(wdims);
dims = run_metric_correlations(wdims, ch->st, baseline_after, baseline_before, highlight_after, highlight_before, max_points);
if (dims) {
if (c)
buffer_strcat(wb, "\t\t},");
buffer_strcat(wb, "\n\t\t\"");
buffer_strcat(wb, ch->st->id);
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\"context\": \"");
buffer_strcat(wb, ch->st->context);
buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
buffer_sprintf(wb, "%s", buffer_tostring(wdims));
buffer_strcat(wb, "\t\t\t}\n");
total_dims += dims;
c++;
}
}
buffer_strcat(wb, "\t\t}\n");
buffer_sprintf(wb, "\t},\n\t\"total_dimensions_count\": %lld\n}", total_dims);
if (!total_dims) {
buffer_flush(wb);
buffer_strcat(wb, "{\"error\": \"No results from metric correlations.\" }");
}
struct charts* ch;
while(charts){
ch = charts;
charts = charts->next;
rrdset_unlock(ch->st);
free(ch);
}
buffer_free(wdims);
info ("Done running metric correlations");
}
|