summaryrefslogtreecommitdiffstats
path: root/fluent-bit/lib/librdkafka-2.1.0/src/snappy.c
blob: e3988b186bb7253a7ff6f9c7a87ace1e9d2ff6f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
/*
 * C port of the snappy compressor from Google.
 * This is a very fast compressor with comparable compression to lzo.
 * Works best on 64bit little-endian, but should be good on others too.
 * Ported by Andi Kleen.
 * Uptodate with snappy 1.1.0
 */

/*
 * Copyright 2005 Google Inc. All Rights Reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
#endif

#ifndef SG
#define SG /* Scatter-Gather / iovec support in Snappy */
#endif

#ifdef __KERNEL__
#include <linux/kernel.h>
#ifdef SG
#include <linux/uio.h>
#endif
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/snappy.h>
#include <linux/vmalloc.h>
#include <asm/unaligned.h>
#else
#include "snappy.h"
#include "snappy_compat.h"
#endif

#include "rd.h"

#ifdef _MSC_VER
#define inline __inline
#endif

static inline u64 get_unaligned64(const void *b)
{
	u64 ret;
	memcpy(&ret, b, sizeof(u64));
	return ret;
}
static inline u32 get_unaligned32(const void *b)
{
	u32 ret;
	memcpy(&ret, b, sizeof(u32));
	return ret;
}
#define get_unaligned_le32(x) (le32toh(get_unaligned32((u32 *)(x))))

static inline void put_unaligned64(u64 v, void *b)
{
	memcpy(b, &v, sizeof(v));
}
static inline void put_unaligned32(u32 v, void *b)
{
	memcpy(b, &v, sizeof(v));
}
static inline void put_unaligned16(u16 v, void *b)
{
	memcpy(b, &v, sizeof(v));
}
#define put_unaligned_le16(v,x) (put_unaligned16(htole16(v), (u16 *)(x)))


#define CRASH_UNLESS(x) BUG_ON(!(x))
#define CHECK(cond) CRASH_UNLESS(cond)
#define CHECK_LE(a, b) CRASH_UNLESS((a) <= (b))
#define CHECK_GE(a, b) CRASH_UNLESS((a) >= (b))
#define CHECK_EQ(a, b) CRASH_UNLESS((a) == (b))
#define CHECK_NE(a, b) CRASH_UNLESS((a) != (b))
#define CHECK_LT(a, b) CRASH_UNLESS((a) < (b))
#define CHECK_GT(a, b) CRASH_UNLESS((a) > (b))

#define UNALIGNED_LOAD32(_p) get_unaligned32((u32 *)(_p))
#define UNALIGNED_LOAD64(_p) get_unaligned64((u64 *)(_p))

#define UNALIGNED_STORE16(_p, _val) put_unaligned16(_val, (u16 *)(_p))
#define UNALIGNED_STORE32(_p, _val) put_unaligned32(_val, (u32 *)(_p))
#define UNALIGNED_STORE64(_p, _val) put_unaligned64(_val, (u64 *)(_p))

/*
 * This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64
 * on some platforms, in particular ARM.
 */
static inline void unaligned_copy64(const void *src, void *dst)
{
	if (sizeof(void *) == 8) {
		UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src));
	} else {
		const char *src_char = (const char *)(src);
		char *dst_char = (char *)(dst);

		UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char));
		UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4));
	}
}

#ifdef NDEBUG

#define DCHECK(cond) do {} while(0)
#define DCHECK_LE(a, b) do {} while(0)
#define DCHECK_GE(a, b) do {} while(0)
#define DCHECK_EQ(a, b) do {} while(0)
#define DCHECK_NE(a, b) do {} while(0)
#define DCHECK_LT(a, b) do {} while(0)
#define DCHECK_GT(a, b) do {} while(0)

#else

#define DCHECK(cond) CHECK(cond)
#define DCHECK_LE(a, b) CHECK_LE(a, b)
#define DCHECK_GE(a, b) CHECK_GE(a, b)
#define DCHECK_EQ(a, b) CHECK_EQ(a, b)
#define DCHECK_NE(a, b) CHECK_NE(a, b)
#define DCHECK_LT(a, b) CHECK_LT(a, b)
#define DCHECK_GT(a, b) CHECK_GT(a, b)

#endif

static inline bool is_little_endian(void)
{
#ifdef __LITTLE_ENDIAN__
	return true;
#endif
	return false;
}

#if defined(__xlc__) // xlc compiler on AIX
#define rd_clz(n)   __cntlz4(n)
#define rd_ctz(n)   __cnttz4(n)
#define rd_ctz64(n) __cnttz8(n)

#elif defined(__SUNPRO_C) // Solaris Studio compiler on sun  
/*
 * Source for following definitions is Hacker’s Delight, Second Edition by Henry S. Warren
 * http://www.hackersdelight.org/permissions.htm
 */
u32 rd_clz(u32 x) {
   u32 n;

   if (x == 0) return(32);
   n = 1;
   if ((x >> 16) == 0) {n = n +16; x = x <<16;}
   if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
   if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
   if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
   n = n - (x >> 31);
   return n;
}

u32 rd_ctz(u32 x) {
   u32 y;
   u32 n;

   if (x == 0) return 32;
   n = 31;
   y = x <<16;  if (y != 0) {n = n -16; x = y;}
   y = x << 8;  if (y != 0) {n = n - 8; x = y;}
   y = x << 4;  if (y != 0) {n = n - 4; x = y;}
   y = x << 2;  if (y != 0) {n = n - 2; x = y;}
   y = x << 1;  if (y != 0) {n = n - 1;}
   return n;
}

u64 rd_ctz64(u64 x) {
   u64 y;
   u64 n;

   if (x == 0) return 64;
   n = 63;
   y = x <<32;  if (y != 0) {n = n -32; x = y;}
   y = x <<16;  if (y != 0) {n = n -16; x = y;}
   y = x << 8;  if (y != 0) {n = n - 8; x = y;}
   y = x << 4;  if (y != 0) {n = n - 4; x = y;}
   y = x << 2;  if (y != 0) {n = n - 2; x = y;}
   y = x << 1;  if (y != 0) {n = n - 1;}
   return n;
}
#elif !defined(_MSC_VER)
#define rd_clz(n)   __builtin_clz(n)
#define rd_ctz(n)   __builtin_ctz(n)
#define rd_ctz64(n) __builtin_ctzll(n)
#else
#include <intrin.h>
static int inline rd_clz(u32 x) {
	int r = 0;
	if (_BitScanForward(&r, x))
		return 31 - r;
	else
		return 32;
}

static int inline rd_ctz(u32 x) {
	int r = 0;
	if (_BitScanForward(&r, x))
		return r;
	else
		return 32;
}

static int inline rd_ctz64(u64 x) {
#ifdef _M_X64
	int r = 0;
	if (_BitScanReverse64(&r, x))
		return r;
	else
		return 64;
#else
	int r;
	if ((r = rd_ctz(x & 0xffffffff)) < 32)
		return r;
	return 32 + rd_ctz(x >> 32);
#endif
}
#endif


static inline int log2_floor(u32 n)
{
	return n == 0 ? -1 : 31 ^ rd_clz(n);
}

static inline RD_UNUSED int find_lsb_set_non_zero(u32 n)
{
	return rd_ctz(n);
}

static inline RD_UNUSED int find_lsb_set_non_zero64(u64 n)
{
	return rd_ctz64(n);
}

#define kmax32 5

/*
 * Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
 *  Never reads a character at or beyond limit.  If a valid/terminated varint32
 * was found in the range, stores it in *OUTPUT and returns a pointer just
 * past the last byte of the varint32. Else returns NULL.  On success,
 * "result <= limit".
 */
static inline const char *varint_parse32_with_limit(const char *p,
						    const char *l,
						    u32 * OUTPUT)
{
	const unsigned char *ptr = (const unsigned char *)(p);
	const unsigned char *limit = (const unsigned char *)(l);
	u32 b, result;

	if (ptr >= limit)
		return NULL;
	b = *(ptr++);
	result = b & 127;
	if (b < 128)
		goto done;
	if (ptr >= limit)
		return NULL;
	b = *(ptr++);
	result |= (b & 127) << 7;
	if (b < 128)
		goto done;
	if (ptr >= limit)
		return NULL;
	b = *(ptr++);
	result |= (b & 127) << 14;
	if (b < 128)
		goto done;
	if (ptr >= limit)
		return NULL;
	b = *(ptr++);
	result |= (b & 127) << 21;
	if (b < 128)
		goto done;
	if (ptr >= limit)
		return NULL;
	b = *(ptr++);
	result |= (b & 127) << 28;
	if (b < 16)
		goto done;
	return NULL;		/* Value is too long to be a varint32 */
done:
	*OUTPUT = result;
	return (const char *)(ptr);
}

/*
 * REQUIRES   "ptr" points to a buffer of length sufficient to hold "v".
 *  EFFECTS    Encodes "v" into "ptr" and returns a pointer to the
 *            byte just past the last encoded byte.
 */
static inline char *varint_encode32(char *sptr, u32 v)
{
	/* Operate on characters as unsigneds */
	unsigned char *ptr = (unsigned char *)(sptr);
	static const int B = 128;

	if (v < (1 << 7)) {
		*(ptr++) = v;
	} else if (v < (1 << 14)) {
		*(ptr++) = v | B;
		*(ptr++) = v >> 7;
	} else if (v < (1 << 21)) {
		*(ptr++) = v | B;
		*(ptr++) = (v >> 7) | B;
		*(ptr++) = v >> 14;
	} else if (v < (1 << 28)) {
		*(ptr++) = v | B;
		*(ptr++) = (v >> 7) | B;
		*(ptr++) = (v >> 14) | B;
		*(ptr++) = v >> 21;
	} else {
		*(ptr++) = v | B;
		*(ptr++) = (v >> 7) | B;
		*(ptr++) = (v >> 14) | B;
		*(ptr++) = (v >> 21) | B;
		*(ptr++) = v >> 28;
	}
	return (char *)(ptr);
}

#ifdef SG

static inline void *n_bytes_after_addr(void *addr, size_t n_bytes)
{
    return (void *) ((char *)addr + n_bytes);
}

struct source {
	struct iovec *iov;
	int iovlen;
	int curvec;
	int curoff;
	size_t total;
};

/* Only valid at beginning when nothing is consumed */
static inline int available(struct source *s)
{
	return (int) s->total;
}

static inline const char *peek(struct source *s, size_t *len)
{
	if (likely(s->curvec < s->iovlen)) {
		struct iovec *iv = &s->iov[s->curvec];
		if ((unsigned)s->curoff < (size_t)iv->iov_len) { 
			*len = iv->iov_len - s->curoff;
			return n_bytes_after_addr(iv->iov_base, s->curoff);
		}
	}
	*len = 0;
	return NULL;
}

static inline void skip(struct source *s, size_t n)
{
	struct iovec *iv = &s->iov[s->curvec];
	s->curoff += (int) n;
	DCHECK_LE((unsigned)s->curoff, (size_t)iv->iov_len);
	if ((unsigned)s->curoff >= (size_t)iv->iov_len &&
	    s->curvec + 1 < s->iovlen) {
		s->curoff = 0;
		s->curvec++;
	}
}

struct sink {
	struct iovec *iov;
	int iovlen;
	unsigned curvec;
	unsigned curoff;
	unsigned written;
};

static inline void append(struct sink *s, const char *data, size_t n)
{
	struct iovec *iov = &s->iov[s->curvec];
	char *dst = n_bytes_after_addr(iov->iov_base, s->curoff);
	size_t nlen = min_t(size_t, iov->iov_len - s->curoff, n);
	if (data != dst)
		memcpy(dst, data, nlen);
	s->written += (int) n;
	s->curoff += (int) nlen;
	while ((n -= nlen) > 0) {
		data += nlen;
		s->curvec++;
		DCHECK_LT((signed)s->curvec, s->iovlen);
		iov++;
		nlen = min_t(size_t, (size_t)iov->iov_len, n);
		memcpy(iov->iov_base, data, nlen);
		s->curoff = (int) nlen;
	}
}

static inline void *sink_peek(struct sink *s, size_t n)
{
	struct iovec *iov = &s->iov[s->curvec];
	if (s->curvec < (size_t)iov->iov_len && iov->iov_len - s->curoff >= n)
		return n_bytes_after_addr(iov->iov_base, s->curoff);
	return NULL;
}

#else

struct source {
	const char *ptr;
	size_t left;
};

static inline int available(struct source *s)
{
	return s->left;
}

static inline const char *peek(struct source *s, size_t * len)
{
	*len = s->left;
	return s->ptr;
}

static inline void skip(struct source *s, size_t n)
{
	s->left -= n;
	s->ptr += n;
}

struct sink {
	char *dest;
};

static inline void append(struct sink *s, const char *data, size_t n)
{
	if (data != s->dest)
		memcpy(s->dest, data, n);
	s->dest += n;
}

#define sink_peek(s, n) sink_peek_no_sg(s)

static inline void *sink_peek_no_sg(const struct sink *s)
{
	return s->dest;
}

#endif

struct writer {
	char *base;
	char *op;
	char *op_limit;
};

/* Called before decompression */
static inline void writer_set_expected_length(struct writer *w, size_t len)
{
	w->op_limit = w->op + len;
}

/* Called after decompression */
static inline bool writer_check_length(struct writer *w)
{
	return w->op == w->op_limit;
}

/*
 * Copy "len" bytes from "src" to "op", one byte at a time.  Used for
 *  handling COPY operations where the input and output regions may
 * overlap.  For example, suppose:
 *    src    == "ab"
 *    op     == src + 2
 *    len    == 20
 * After IncrementalCopy(src, op, len), the result will have
 * eleven copies of "ab"
 *    ababababababababababab
 * Note that this does not match the semantics of either memcpy()
 * or memmove().
 */
static inline void incremental_copy(const char *src, char *op, ssize_t len)
{
	DCHECK_GT(len, 0);
	do {
		*op++ = *src++;
	} while (--len > 0);
}

/*
 * Equivalent to IncrementalCopy except that it can write up to ten extra
 *  bytes after the end of the copy, and that it is faster.
 *
 * The main part of this loop is a simple copy of eight bytes at a time until
 * we've copied (at least) the requested amount of bytes.  However, if op and
 * src are less than eight bytes apart (indicating a repeating pattern of
 * length < 8), we first need to expand the pattern in order to get the correct
 * results. For instance, if the buffer looks like this, with the eight-byte
 * <src> and <op> patterns marked as intervals:
 *
 *    abxxxxxxxxxxxx
 *    [------]           src
 *      [------]         op
 *
 * a single eight-byte copy from <src> to <op> will repeat the pattern once,
 * after which we can move <op> two bytes without moving <src>:
 *
 *    ababxxxxxxxxxx
 *    [------]           src
 *        [------]       op
 *
 * and repeat the exercise until the two no longer overlap.
 *
 * This allows us to do very well in the special case of one single byte
 * repeated many times, without taking a big hit for more general cases.
 *
 * The worst case of extra writing past the end of the match occurs when
 * op - src == 1 and len == 1; the last copy will read from byte positions
 * [0..7] and write to [4..11], whereas it was only supposed to write to
 * position 1. Thus, ten excess bytes.
 */

#define kmax_increment_copy_overflow  10

static inline void incremental_copy_fast_path(const char *src, char *op,
					      ssize_t len)
{
	while (op - src < 8) {
		unaligned_copy64(src, op);
		len -= op - src;
		op += op - src;
	}
	while (len > 0) {
		unaligned_copy64(src, op);
		src += 8;
		op += 8;
		len -= 8;
	}
}

static inline bool writer_append_from_self(struct writer *w, u32 offset,
					   u32 len)
{
	char *const op = w->op;
	CHECK_LE(op, w->op_limit);
	const u32 space_left = (u32) (w->op_limit - op);

	if ((unsigned)(op - w->base) <= offset - 1u)	/* -1u catches offset==0 */
		return false;
	if (len <= 16 && offset >= 8 && space_left >= 16) {
		/* Fast path, used for the majority (70-80%) of dynamic
		 * invocations. */
		unaligned_copy64(op - offset, op);
		unaligned_copy64(op - offset + 8, op + 8);
	} else {
		if (space_left >= len + kmax_increment_copy_overflow) {
			incremental_copy_fast_path(op - offset, op, len);
		} else {
			if (space_left < len) {
				return false;
			}
			incremental_copy(op - offset, op, len);
		}
	}

	w->op = op + len;
	return true;
}

static inline bool writer_append(struct writer *w, const char *ip, u32 len)
{
	char *const op = w->op;
	CHECK_LE(op, w->op_limit);
	const u32 space_left = (u32) (w->op_limit - op);
	if (space_left < len)
		return false;
	memcpy(op, ip, len);
	w->op = op + len;
	return true;
}

static inline bool writer_try_fast_append(struct writer *w, const char *ip, 
					  u32 available_bytes, u32 len)
{
	char *const op = w->op;
	const int space_left = (int) (w->op_limit - op);
	if (len <= 16 && available_bytes >= 16 && space_left >= 16) {
		/* Fast path, used for the majority (~95%) of invocations */
		unaligned_copy64(ip, op);
		unaligned_copy64(ip + 8, op + 8);
		w->op = op + len;
		return true;
	}
	return false;
}

/*
 * Any hash function will produce a valid compressed bitstream, but a good
 * hash function reduces the number of collisions and thus yields better
 * compression for compressible input, and more speed for incompressible
 * input. Of course, it doesn't hurt if the hash function is reasonably fast
 * either, as it gets called a lot.
 */
static inline u32 hash_bytes(u32 bytes, int shift)
{
	u32 kmul = 0x1e35a7bd;
	return (bytes * kmul) >> shift;
}

static inline u32 hash(const char *p, int shift)
{
	return hash_bytes(UNALIGNED_LOAD32(p), shift);
}

/*
 * Compressed data can be defined as:
 *    compressed := item* literal*
 *    item       := literal* copy
 *
 * The trailing literal sequence has a space blowup of at most 62/60
 * since a literal of length 60 needs one tag byte + one extra byte
 * for length information.
 *
 * Item blowup is trickier to measure.  Suppose the "copy" op copies
 * 4 bytes of data.  Because of a special check in the encoding code,
 * we produce a 4-byte copy only if the offset is < 65536.  Therefore
 * the copy op takes 3 bytes to encode, and this type of item leads
 * to at most the 62/60 blowup for representing literals.
 *
 * Suppose the "copy" op copies 5 bytes of data.  If the offset is big
 * enough, it will take 5 bytes to encode the copy op.  Therefore the
 * worst case here is a one-byte literal followed by a five-byte copy.
 * I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
 *
 * This last factor dominates the blowup, so the final estimate is:
 */
size_t rd_kafka_snappy_max_compressed_length(size_t source_len)
{
	return 32 + source_len + source_len / 6;
}
EXPORT_SYMBOL(rd_kafka_snappy_max_compressed_length);

enum {
	LITERAL = 0,
	COPY_1_BYTE_OFFSET = 1,	/* 3 bit length + 3 bits of offset in opcode */
	COPY_2_BYTE_OFFSET = 2,
	COPY_4_BYTE_OFFSET = 3
};

static inline char *emit_literal(char *op,
				 const char *literal,
				 int len, bool allow_fast_path)
{
	int n = len - 1;	/* Zero-length literals are disallowed */

	if (n < 60) {
		/* Fits in tag byte */
		*op++ = LITERAL | (n << 2);

/*
 * The vast majority of copies are below 16 bytes, for which a
 * call to memcpy is overkill. This fast path can sometimes
 * copy up to 15 bytes too much, but that is okay in the
 * main loop, since we have a bit to go on for both sides:
 *
 *   - The input will always have kInputMarginBytes = 15 extra
 *     available bytes, as long as we're in the main loop, and
 *     if not, allow_fast_path = false.
 *   - The output will always have 32 spare bytes (see
 *     MaxCompressedLength).
 */
		if (allow_fast_path && len <= 16) {
			unaligned_copy64(literal, op);
			unaligned_copy64(literal + 8, op + 8);
			return op + len;
		}
	} else {
		/* Encode in upcoming bytes */
		char *base = op;
		int count = 0;
		op++;
		while (n > 0) {
			*op++ = n & 0xff;
			n >>= 8;
			count++;
		}
		DCHECK(count >= 1);
		DCHECK(count <= 4);
		*base = LITERAL | ((59 + count) << 2);
	}
	memcpy(op, literal, len);
	return op + len;
}

static inline char *emit_copy_less_than64(char *op, int offset, int len)
{
	DCHECK_LE(len, 64);
	DCHECK_GE(len, 4);
	DCHECK_LT(offset, 65536);

	if ((len < 12) && (offset < 2048)) {
		int len_minus_4 = len - 4;
		DCHECK(len_minus_4 < 8);	/* Must fit in 3 bits */
		*op++ =
		    COPY_1_BYTE_OFFSET + ((len_minus_4) << 2) + ((offset >> 8)
								 << 5);
		*op++ = offset & 0xff;
	} else {
		*op++ = COPY_2_BYTE_OFFSET + ((len - 1) << 2);
		put_unaligned_le16(offset, op);
		op += 2;
	}
	return op;
}

static inline char *emit_copy(char *op, int offset, int len)
{
	/*
	 * Emit 64 byte copies but make sure to keep at least four bytes
	 * reserved
	 */
	while (len >= 68) {
		op = emit_copy_less_than64(op, offset, 64);
		len -= 64;
	}

	/*
	 * Emit an extra 60 byte copy if have too much data to fit in
	 * one copy
	 */
	if (len > 64) {
		op = emit_copy_less_than64(op, offset, 60);
		len -= 60;
	}

	/* Emit remainder */
	op = emit_copy_less_than64(op, offset, len);
	return op;
}

/**
 * rd_kafka_snappy_uncompressed_length - return length of uncompressed output.
 * @start: compressed buffer
 * @n: length of compressed buffer.
 * @result: Write the length of the uncompressed output here.
 *
 * Returns true when successfull, otherwise false.
 */
bool rd_kafka_snappy_uncompressed_length(const char *start, size_t n, size_t * result)
{
	u32 v = 0;
	const char *limit = start + n;
	if (varint_parse32_with_limit(start, limit, &v) != NULL) {
		*result = v;
		return true;
	} else {
		return false;
	}
}
EXPORT_SYMBOL(rd_kafka_snappy_uncompressed_length);

/*
 * The size of a compression block. Note that many parts of the compression
 * code assumes that kBlockSize <= 65536; in particular, the hash table
 * can only store 16-bit offsets, and EmitCopy() also assumes the offset
 * is 65535 bytes or less. Note also that if you change this, it will
 * affect the framing format
 * Note that there might be older data around that is compressed with larger
 * block sizes, so the decompression code should not rely on the
 * non-existence of long backreferences.
 */
#define kblock_log 16
#define kblock_size (1 << kblock_log)

/* 
 * This value could be halfed or quartered to save memory 
 * at the cost of slightly worse compression.
 */
#define kmax_hash_table_bits 14
#define kmax_hash_table_size (1U << kmax_hash_table_bits)

/*
 * Use smaller hash table when input.size() is smaller, since we
 * fill the table, incurring O(hash table size) overhead for
 * compression, and if the input is short, we won't need that
 * many hash table entries anyway.
 */
static u16 *get_hash_table(struct snappy_env *env, size_t input_size,
			      int *table_size)
{
	unsigned htsize = 256;

	DCHECK(kmax_hash_table_size >= 256);
	while (htsize < kmax_hash_table_size && htsize < input_size)
		htsize <<= 1;
	CHECK_EQ(0, htsize & (htsize - 1));
	CHECK_LE(htsize, kmax_hash_table_size);

	u16 *table;
	table = env->hash_table;

	*table_size = htsize;
	memset(table, 0, htsize * sizeof(*table));
	return table;
}

/*
 * Return the largest n such that
 *
 *   s1[0,n-1] == s2[0,n-1]
 *   and n <= (s2_limit - s2).
 *
 * Does not read *s2_limit or beyond.
 * Does not read *(s1 + (s2_limit - s2)) or beyond.
 * Requires that s2_limit >= s2.
 *
 * Separate implementation for x86_64, for speed.  Uses the fact that
 * x86_64 is little endian.
 */
#if defined(__LITTLE_ENDIAN__) && BITS_PER_LONG == 64
static inline int find_match_length(const char *s1,
				    const char *s2, const char *s2_limit)
{
	int matched = 0;

	DCHECK_GE(s2_limit, s2);
	/*
	 * Find out how long the match is. We loop over the data 64 bits at a
	 * time until we find a 64-bit block that doesn't match; then we find
	 * the first non-matching bit and use that to calculate the total
	 * length of the match.
	 */
	while (likely(s2 <= s2_limit - 8)) {
		if (unlikely
		    (UNALIGNED_LOAD64(s2) == UNALIGNED_LOAD64(s1 + matched))) {
			s2 += 8;
			matched += 8;
		} else {
			/*
			 * On current (mid-2008) Opteron models there
			 * is a 3% more efficient code sequence to
			 * find the first non-matching byte.  However,
			 * what follows is ~10% better on Intel Core 2
			 * and newer, and we expect AMD's bsf
			 * instruction to improve.
			 */
			u64 x =
			    UNALIGNED_LOAD64(s2) ^ UNALIGNED_LOAD64(s1 +
								    matched);
			int matching_bits = find_lsb_set_non_zero64(x);
			matched += matching_bits >> 3;
			return matched;
		}
	}
	while (likely(s2 < s2_limit)) {
		if (likely(s1[matched] == *s2)) {
			++s2;
			++matched;
		} else {
			return matched;
		}
	}
	return matched;
}
#else
static inline int find_match_length(const char *s1,
				    const char *s2, const char *s2_limit)
{
	/* Implementation based on the x86-64 version, above. */
	DCHECK_GE(s2_limit, s2);
	int matched = 0;

	while (s2 <= s2_limit - 4 &&
	       UNALIGNED_LOAD32(s2) == UNALIGNED_LOAD32(s1 + matched)) {
		s2 += 4;
		matched += 4;
	}
	if (is_little_endian() && s2 <= s2_limit - 4) {
		u32 x =
		    UNALIGNED_LOAD32(s2) ^ UNALIGNED_LOAD32(s1 + matched);
		int matching_bits = find_lsb_set_non_zero(x);
		matched += matching_bits >> 3;
	} else {
		while ((s2 < s2_limit) && (s1[matched] == *s2)) {
			++s2;
			++matched;
		}
	}
	return matched;
}
#endif

/*
 * For 0 <= offset <= 4, GetU32AtOffset(GetEightBytesAt(p), offset) will
 *  equal UNALIGNED_LOAD32(p + offset).  Motivation: On x86-64 hardware we have
 * empirically found that overlapping loads such as
 *  UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
 * are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to u32.
 *
 * We have different versions for 64- and 32-bit; ideally we would avoid the
 * two functions and just inline the UNALIGNED_LOAD64 call into
 * GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
 * enough to avoid loading the value multiple times then. For 64-bit, the load
 * is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
 * done at GetUint32AtOffset() time.
 */

#if BITS_PER_LONG == 64

typedef u64 eight_bytes_reference;

static inline eight_bytes_reference get_eight_bytes_at(const char* ptr)
{
	return UNALIGNED_LOAD64(ptr);
}

static inline u32 get_u32_at_offset(u64 v, int offset)
{
	DCHECK_GE(offset, 0);
	DCHECK_LE(offset, 4);
	return v >> (is_little_endian()? 8 * offset : 32 - 8 * offset);
}

#else

typedef const char *eight_bytes_reference;

static inline eight_bytes_reference get_eight_bytes_at(const char* ptr) 
{
	return ptr;
}

static inline u32 get_u32_at_offset(const char *v, int offset) 
{
	DCHECK_GE(offset, 0);
	DCHECK_LE(offset, 4);
	return UNALIGNED_LOAD32(v + offset);
}
#endif

/*
 * Flat array compression that does not emit the "uncompressed length"
 *  prefix. Compresses "input" string to the "*op" buffer.
 *
 * REQUIRES: "input" is at most "kBlockSize" bytes long.
 * REQUIRES: "op" points to an array of memory that is at least
 * "MaxCompressedLength(input.size())" in size.
 * REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
 * REQUIRES: "table_size" is a power of two
 *
 * Returns an "end" pointer into "op" buffer.
 * "end - op" is the compressed size of "input".
 */

static char *compress_fragment(const char *const input,
			       const size_t input_size,
			       char *op, u16 * table, const unsigned table_size)
{
	/* "ip" is the input pointer, and "op" is the output pointer. */
	const char *ip = input;
	CHECK_LE(input_size, kblock_size);
	CHECK_EQ(table_size & (table_size - 1), 0);
	const int shift = 32 - log2_floor(table_size);
	DCHECK_EQ(UINT_MAX >> shift, table_size - 1);
	const char *ip_end = input + input_size;
	const char *baseip = ip;
	/*
	 * Bytes in [next_emit, ip) will be emitted as literal bytes.  Or
	 *  [next_emit, ip_end) after the main loop.
	 */
	const char *next_emit = ip;

	const unsigned kinput_margin_bytes = 15;

	if (likely(input_size >= kinput_margin_bytes)) {
		const char *const ip_limit = input + input_size -
			kinput_margin_bytes;

		u32 next_hash;
		for (next_hash = hash(++ip, shift);;) {
			DCHECK_LT(next_emit, ip);
/*
 * The body of this loop calls EmitLiteral once and then EmitCopy one or
 * more times.  (The exception is that when we're close to exhausting
 * the input we goto emit_remainder.)
 *
 * In the first iteration of this loop we're just starting, so
 * there's nothing to copy, so calling EmitLiteral once is
 * necessary.  And we only start a new iteration when the
 * current iteration has determined that a call to EmitLiteral will
 * precede the next call to EmitCopy (if any).
 *
 * Step 1: Scan forward in the input looking for a 4-byte-long match.
 * If we get close to exhausting the input then goto emit_remainder.
 *
 * Heuristic match skipping: If 32 bytes are scanned with no matches
 * found, start looking only at every other byte. If 32 more bytes are
 * scanned, look at every third byte, etc.. When a match is found,
 * immediately go back to looking at every byte. This is a small loss
 * (~5% performance, ~0.1% density) for lcompressible data due to more
 * bookkeeping, but for non-compressible data (such as JPEG) it's a huge
 * win since the compressor quickly "realizes" the data is incompressible
 * and doesn't bother looking for matches everywhere.
 *
 * The "skip" variable keeps track of how many bytes there are since the
 * last match; dividing it by 32 (ie. right-shifting by five) gives the
 * number of bytes to move ahead for each iteration.
 */
			u32 skip_bytes = 32;

			const char *next_ip = ip;
			const char *candidate;
			do {
				ip = next_ip;
				u32 hval = next_hash;
				DCHECK_EQ(hval, hash(ip, shift));
				u32 bytes_between_hash_lookups = skip_bytes++ >> 5;
				next_ip = ip + bytes_between_hash_lookups;
				if (unlikely(next_ip > ip_limit)) {
					goto emit_remainder;
				}
				next_hash = hash(next_ip, shift);
				candidate = baseip + table[hval];
				DCHECK_GE(candidate, baseip);
				DCHECK_LT(candidate, ip);

				table[hval] = (u16) (ip - baseip);
			} while (likely(UNALIGNED_LOAD32(ip) !=
					UNALIGNED_LOAD32(candidate)));

/*
 * Step 2: A 4-byte match has been found.  We'll later see if more
 * than 4 bytes match.  But, prior to the match, input
 * bytes [next_emit, ip) are unmatched.  Emit them as "literal bytes."
 */
			DCHECK_LE(next_emit + 16, ip_end);
			op = emit_literal(op, next_emit, (int) (ip - next_emit), true);

/*
 * Step 3: Call EmitCopy, and then see if another EmitCopy could
 * be our next move.  Repeat until we find no match for the
 * input immediately after what was consumed by the last EmitCopy call.
 *
 * If we exit this loop normally then we need to call EmitLiteral next,
 * though we don't yet know how big the literal will be.  We handle that
 * by proceeding to the next iteration of the main loop.  We also can exit
 * this loop via goto if we get close to exhausting the input.
 */
			eight_bytes_reference input_bytes;
			u32 candidate_bytes = 0;

			do {
/*
 * We have a 4-byte match at ip, and no need to emit any
 *  "literal bytes" prior to ip.
 */
				const char *base = ip;
				int matched = 4 +
				    find_match_length(candidate + 4, ip + 4,
						      ip_end);
				ip += matched;
				int offset = (int) (base - candidate);
				DCHECK_EQ(0, memcmp(base, candidate, matched));
				op = emit_copy(op, offset, matched);
/*
 * We could immediately start working at ip now, but to improve
 * compression we first update table[Hash(ip - 1, ...)].
 */
				const char *insert_tail = ip - 1;
				next_emit = ip;
				if (unlikely(ip >= ip_limit)) {
					goto emit_remainder;
				}
				input_bytes = get_eight_bytes_at(insert_tail);
				u32 prev_hash =
				    hash_bytes(get_u32_at_offset
					       (input_bytes, 0), shift);
				table[prev_hash] = (u16) (ip - baseip - 1);
				u32 cur_hash =
				    hash_bytes(get_u32_at_offset
					       (input_bytes, 1), shift);
				candidate = baseip + table[cur_hash];
				candidate_bytes = UNALIGNED_LOAD32(candidate);
				table[cur_hash] = (u16) (ip - baseip);
			} while (get_u32_at_offset(input_bytes, 1) ==
				 candidate_bytes);

			next_hash =
			    hash_bytes(get_u32_at_offset(input_bytes, 2),
				       shift);
			++ip;
		}
	}

emit_remainder:
	/* Emit the remaining bytes as a literal */
	if (next_emit < ip_end)
		op = emit_literal(op, next_emit, (int) (ip_end - next_emit), false);

	return op;
}

/*
 * -----------------------------------------------------------------------
 *  Lookup table for decompression code.  Generated by ComputeTable() below.
 * -----------------------------------------------------------------------
 */

/* Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits */
static const u32 wordmask[] = {
	0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
};

/*
 * Data stored per entry in lookup table:
 *       Range   Bits-used       Description
 *      ------------------------------------
 *      1..64   0..7            Literal/copy length encoded in opcode byte
 *      0..7    8..10           Copy offset encoded in opcode byte / 256
 *      0..4    11..13          Extra bytes after opcode
 *
 * We use eight bits for the length even though 7 would have sufficed
 * because of efficiency reasons:
 *      (1) Extracting a byte is faster than a bit-field
 *      (2) It properly aligns copy offset so we do not need a <<8
 */
static const u16 char_table[256] = {
	0x0001, 0x0804, 0x1001, 0x2001, 0x0002, 0x0805, 0x1002, 0x2002,
	0x0003, 0x0806, 0x1003, 0x2003, 0x0004, 0x0807, 0x1004, 0x2004,
	0x0005, 0x0808, 0x1005, 0x2005, 0x0006, 0x0809, 0x1006, 0x2006,
	0x0007, 0x080a, 0x1007, 0x2007, 0x0008, 0x080b, 0x1008, 0x2008,
	0x0009, 0x0904, 0x1009, 0x2009, 0x000a, 0x0905, 0x100a, 0x200a,
	0x000b, 0x0906, 0x100b, 0x200b, 0x000c, 0x0907, 0x100c, 0x200c,
	0x000d, 0x0908, 0x100d, 0x200d, 0x000e, 0x0909, 0x100e, 0x200e,
	0x000f, 0x090a, 0x100f, 0x200f, 0x0010, 0x090b, 0x1010, 0x2010,
	0x0011, 0x0a04, 0x1011, 0x2011, 0x0012, 0x0a05, 0x1012, 0x2012,
	0x0013, 0x0a06, 0x1013, 0x2013, 0x0014, 0x0a07, 0x1014, 0x2014,
	0x0015, 0x0a08, 0x1015, 0x2015, 0x0016, 0x0a09, 0x1016, 0x2016,
	0x0017, 0x0a0a, 0x1017, 0x2017, 0x0018, 0x0a0b, 0x1018, 0x2018,
	0x0019, 0x0b04, 0x1019, 0x2019, 0x001a, 0x0b05, 0x101a, 0x201a,
	0x001b, 0x0b06, 0x101b, 0x201b, 0x001c, 0x0b07, 0x101c, 0x201c,
	0x001d, 0x0b08, 0x101d, 0x201d, 0x001e, 0x0b09, 0x101e, 0x201e,
	0x001f, 0x0b0a, 0x101f, 0x201f, 0x0020, 0x0b0b, 0x1020, 0x2020,
	0x0021, 0x0c04, 0x1021, 0x2021, 0x0022, 0x0c05, 0x1022, 0x2022,
	0x0023, 0x0c06, 0x1023, 0x2023, 0x0024, 0x0c07, 0x1024, 0x2024,
	0x0025, 0x0c08, 0x1025, 0x2025, 0x0026, 0x0c09, 0x1026, 0x2026,
	0x0027, 0x0c0a, 0x1027, 0x2027, 0x0028, 0x0c0b, 0x1028, 0x2028,
	0x0029, 0x0d04, 0x1029, 0x2029, 0x002a, 0x0d05, 0x102a, 0x202a,
	0x002b, 0x0d06, 0x102b, 0x202b, 0x002c, 0x0d07, 0x102c, 0x202c,
	0x002d, 0x0d08, 0x102d, 0x202d, 0x002e, 0x0d09, 0x102e, 0x202e,
	0x002f, 0x0d0a, 0x102f, 0x202f, 0x0030, 0x0d0b, 0x1030, 0x2030,
	0x0031, 0x0e04, 0x1031, 0x2031, 0x0032, 0x0e05, 0x1032, 0x2032,
	0x0033, 0x0e06, 0x1033, 0x2033, 0x0034, 0x0e07, 0x1034, 0x2034,
	0x0035, 0x0e08, 0x1035, 0x2035, 0x0036, 0x0e09, 0x1036, 0x2036,
	0x0037, 0x0e0a, 0x1037, 0x2037, 0x0038, 0x0e0b, 0x1038, 0x2038,
	0x0039, 0x0f04, 0x1039, 0x2039, 0x003a, 0x0f05, 0x103a, 0x203a,
	0x003b, 0x0f06, 0x103b, 0x203b, 0x003c, 0x0f07, 0x103c, 0x203c,
	0x0801, 0x0f08, 0x103d, 0x203d, 0x1001, 0x0f09, 0x103e, 0x203e,
	0x1801, 0x0f0a, 0x103f, 0x203f, 0x2001, 0x0f0b, 0x1040, 0x2040
};

struct snappy_decompressor {
	struct source *reader;	/* Underlying source of bytes to decompress */
	const char *ip;		/* Points to next buffered byte */
	const char *ip_limit;	/* Points just past buffered bytes */
	u32 peeked;		/* Bytes peeked from reader (need to skip) */
	bool eof;		/* Hit end of input without an error? */
	char scratch[5];	/* Temporary buffer for peekfast boundaries */
};

static void
init_snappy_decompressor(struct snappy_decompressor *d, struct source *reader)
{
	d->reader = reader;
	d->ip = NULL;
	d->ip_limit = NULL;
	d->peeked = 0;
	d->eof = false;
}

static void exit_snappy_decompressor(struct snappy_decompressor *d)
{
	skip(d->reader, d->peeked);
}

/*
 * Read the uncompressed length stored at the start of the compressed data.
 * On succcess, stores the length in *result and returns true.
 * On failure, returns false.
 */
static bool read_uncompressed_length(struct snappy_decompressor *d,
				     u32 * result)
{
	DCHECK(d->ip == NULL);	/*
				 * Must not have read anything yet
				 * Length is encoded in 1..5 bytes
				 */
	*result = 0;
	u32 shift = 0;
	while (true) {
		if (shift >= 32)
			return false;
		size_t n;
		const char *ip = peek(d->reader, &n);
		if (n == 0)
			return false;
		const unsigned char c = *(const unsigned char *)(ip);
		skip(d->reader, 1);
		*result |= (u32) (c & 0x7f) << shift;
		if (c < 128) {
			break;
		}
		shift += 7;
	}
	return true;
}

static bool refill_tag(struct snappy_decompressor *d);

/*
 * Process the next item found in the input.
 * Returns true if successful, false on error or end of input.
 */
static void decompress_all_tags(struct snappy_decompressor *d,
				struct writer *writer)
{
	const char *ip = d->ip;

	/*
	 * We could have put this refill fragment only at the beginning of the loop.
	 * However, duplicating it at the end of each branch gives the compiler more
	 * scope to optimize the <ip_limit_ - ip> expression based on the local
	 * context, which overall increases speed.
	 */
#define MAYBE_REFILL() \
        if (d->ip_limit - ip < 5) {		\
		d->ip = ip;			\
		if (!refill_tag(d)) return;	\
		ip = d->ip;			\
        }


	MAYBE_REFILL();
	for (;;) {
		if (d->ip_limit - ip < 5) {
			d->ip = ip;
			if (!refill_tag(d))
				return;
			ip = d->ip;
		}

		const unsigned char c = *(const unsigned char *)(ip++);

		if ((c & 0x3) == LITERAL) {
			u32 literal_length = (c >> 2) + 1;
			if (writer_try_fast_append(writer, ip, (u32) (d->ip_limit - ip), 
						   literal_length)) {
				DCHECK_LT(literal_length, 61);
				ip += literal_length;
				MAYBE_REFILL();
				continue;
			}
			if (unlikely(literal_length >= 61)) {
				/* Long literal */
				const u32 literal_ll = literal_length - 60;
				literal_length = (get_unaligned_le32(ip) &
						  wordmask[literal_ll]) + 1;
				ip += literal_ll;
			}

			u32 avail = (u32) (d->ip_limit - ip);
			while (avail < literal_length) {
				if (!writer_append(writer, ip, avail))
					return;
				literal_length -= avail;
				skip(d->reader, d->peeked);
				size_t n;
				ip = peek(d->reader, &n);
				avail = (u32) n;
				d->peeked = avail;
				if (avail == 0)
					return;	/* Premature end of input */
				d->ip_limit = ip + avail;
			}
			if (!writer_append(writer, ip, literal_length))
				return;
			ip += literal_length;
			MAYBE_REFILL();
		} else {
			const u32 entry = char_table[c];
			const u32 trailer = get_unaligned_le32(ip) &
				wordmask[entry >> 11];
			const u32 length = entry & 0xff;
			ip += entry >> 11;

			/*
			 * copy_offset/256 is encoded in bits 8..10.
			 * By just fetching those bits, we get
			 * copy_offset (since the bit-field starts at
			 * bit 8).
			 */
			const u32 copy_offset = entry & 0x700;
			if (!writer_append_from_self(writer,
						     copy_offset + trailer,
						     length))
				return;
			MAYBE_REFILL();
		}
	}
}

#undef MAYBE_REFILL

static bool refill_tag(struct snappy_decompressor *d)
{
	const char *ip = d->ip;

	if (ip == d->ip_limit) {
		size_t n;
		/* Fetch a new fragment from the reader */
		skip(d->reader, d->peeked); /* All peeked bytes are used up */
		ip = peek(d->reader, &n);
		d->peeked = (u32) n;
		if (n == 0) {
			d->eof = true;
			return false;
		}
		d->ip_limit = ip + n;
	}

	/* Read the tag character */
	DCHECK_LT(ip, d->ip_limit);
	const unsigned char c = *(const unsigned char *)(ip);
	const u32 entry = char_table[c];
	const u32 needed = (entry >> 11) + 1;	/* +1 byte for 'c' */
	DCHECK_LE(needed, sizeof(d->scratch));

	/* Read more bytes from reader if needed */
	u32 nbuf = (u32) (d->ip_limit - ip);

	if (nbuf < needed) {
		/*
		 * Stitch together bytes from ip and reader to form the word
		 * contents.  We store the needed bytes in "scratch".  They
		 * will be consumed immediately by the caller since we do not
		 * read more than we need.
		 */
		memmove(d->scratch, ip, nbuf);
		skip(d->reader, d->peeked); /* All peeked bytes are used up */
		d->peeked = 0;
		while (nbuf < needed) {
			size_t length;
			const char *src = peek(d->reader, &length);
			if (length == 0)
				return false;
			u32 to_add = min_t(u32, needed - nbuf, (u32) length);
			memcpy(d->scratch + nbuf, src, to_add);
			nbuf += to_add;
			skip(d->reader, to_add);
		}
		DCHECK_EQ(nbuf, needed);
		d->ip = d->scratch;
		d->ip_limit = d->scratch + needed;
	} else if (nbuf < 5) {
		/*
		 * Have enough bytes, but move into scratch so that we do not
		 * read past end of input
		 */
		memmove(d->scratch, ip, nbuf);
		skip(d->reader, d->peeked); /* All peeked bytes are used up */
		d->peeked = 0;
		d->ip = d->scratch;
		d->ip_limit = d->scratch + nbuf;
	} else {
		/* Pass pointer to buffer returned by reader. */
		d->ip = ip;
	}
	return true;
}

static int internal_uncompress(struct source *r,
			       struct writer *writer, u32 max_len)
{
	struct snappy_decompressor decompressor;
	u32 uncompressed_len = 0;

	init_snappy_decompressor(&decompressor, r);

	if (!read_uncompressed_length(&decompressor, &uncompressed_len))
		return -EIO;
	/* Protect against possible DoS attack */
	if ((u64) (uncompressed_len) > max_len)
		return -EIO;

	writer_set_expected_length(writer, uncompressed_len);

	/* Process the entire input */
	decompress_all_tags(&decompressor, writer);

	exit_snappy_decompressor(&decompressor);
	if (decompressor.eof && writer_check_length(writer))
		return 0;
	return -EIO;
}

static inline int sn_compress(struct snappy_env *env, struct source *reader,
			   struct sink *writer)
{
	int err;
	size_t written = 0;
	int N = available(reader);
	char ulength[kmax32];
	char *p = varint_encode32(ulength, N);

	append(writer, ulength, p - ulength);
	written += (p - ulength);

	while (N > 0) {
		/* Get next block to compress (without copying if possible) */
		size_t fragment_size;
		const char *fragment = peek(reader, &fragment_size);
		if (fragment_size == 0) {
			err = -EIO;
			goto out;
		}
		const unsigned num_to_read = min_t(int, N, kblock_size);
		size_t bytes_read = fragment_size;

		int pending_advance = 0;
		if (bytes_read >= num_to_read) {
			/* Buffer returned by reader is large enough */
			pending_advance = num_to_read;
			fragment_size = num_to_read;
		}
		else {
			memcpy(env->scratch, fragment, bytes_read);
			skip(reader, bytes_read);

			while (bytes_read < num_to_read) {
				fragment = peek(reader, &fragment_size);
				size_t n =
				    min_t(size_t, fragment_size,
					  num_to_read - bytes_read);
				memcpy((char *)(env->scratch) + bytes_read, fragment, n);
				bytes_read += n;
				skip(reader, n);
			}
			DCHECK_EQ(bytes_read, num_to_read);
			fragment = env->scratch;
			fragment_size = num_to_read;
		}
		if (fragment_size < num_to_read)
			return -EIO;

		/* Get encoding table for compression */
		int table_size;
		u16 *table = get_hash_table(env, num_to_read, &table_size);

		/* Compress input_fragment and append to dest */
		char *dest;
		dest = sink_peek(writer, rd_kafka_snappy_max_compressed_length(num_to_read));
		if (!dest) {
			/*
			 * Need a scratch buffer for the output,
			 * because the byte sink doesn't have enough
			 * in one piece.
			 */
			dest = env->scratch_output;
		}
		char *end = compress_fragment(fragment, fragment_size,
					      dest, table, table_size);
		append(writer, dest, end - dest);
		written += (end - dest);

		N -= num_to_read;
		skip(reader, pending_advance);
	}

	err = 0;
out:
	return err;
}

#ifdef SG

int rd_kafka_snappy_compress_iov(struct snappy_env *env,
                                 const struct iovec *iov_in, size_t iov_in_cnt,
                                 size_t input_length,
                                 struct iovec *iov_out) {
        struct source reader = {
                .iov = (struct iovec *)iov_in,
                .iovlen = (int)iov_in_cnt,
                .total = input_length
        };
        struct sink writer = {
                .iov = iov_out,
                .iovlen = 1
        };
        int err = sn_compress(env, &reader, &writer);

        iov_out->iov_len = writer.written;

        return err;
}
EXPORT_SYMBOL(rd_kafka_snappy_compress_iov);

/**
 * rd_kafka_snappy_compress - Compress a buffer using the snappy compressor.
 * @env: Preallocated environment
 * @input: Input buffer
 * @input_length: Length of input_buffer
 * @compressed: Output buffer for compressed data
 * @compressed_length: The real length of the output written here.
 *
 * Return 0 on success, otherwise an negative error code.
 *
 * The output buffer must be at least
 * rd_kafka_snappy_max_compressed_length(input_length) bytes long.
 *
 * Requires a preallocated environment from rd_kafka_snappy_init_env.
 * The environment does not keep state over individual calls
 * of this function, just preallocates the memory.
 */
int rd_kafka_snappy_compress(struct snappy_env *env,
		    const char *input,
		    size_t input_length,
		    char *compressed, size_t *compressed_length)
{
	struct iovec iov_in = {
		.iov_base = (char *)input,
		.iov_len = input_length,
	};
	struct iovec iov_out = {
		.iov_base = compressed,
		.iov_len = 0xffffffff,
	};
        return rd_kafka_snappy_compress_iov(env,
                                            &iov_in, 1, input_length,
                                            &iov_out);
}
EXPORT_SYMBOL(rd_kafka_snappy_compress);

int rd_kafka_snappy_uncompress_iov(struct iovec *iov_in, int iov_in_len,
			   size_t input_len, char *uncompressed)
{
	struct source reader = {
		.iov = iov_in,
		.iovlen = iov_in_len,
		.total = input_len
	};
	struct writer output = {
		.base = uncompressed,
		.op = uncompressed
	};
	return internal_uncompress(&reader, &output, 0xffffffff);
}
EXPORT_SYMBOL(rd_kafka_snappy_uncompress_iov);

/**
 * rd_kafka_snappy_uncompress - Uncompress a snappy compressed buffer
 * @compressed: Input buffer with compressed data
 * @n: length of compressed buffer
 * @uncompressed: buffer for uncompressed data
 *
 * The uncompressed data buffer must be at least
 * rd_kafka_snappy_uncompressed_length(compressed) bytes long.
 *
 * Return 0 on success, otherwise an negative error code.
 */
int rd_kafka_snappy_uncompress(const char *compressed, size_t n, char *uncompressed)
{
	struct iovec iov = {
		.iov_base = (char *)compressed,
		.iov_len = n
	};
	return rd_kafka_snappy_uncompress_iov(&iov, 1, n, uncompressed);
}
EXPORT_SYMBOL(rd_kafka_snappy_uncompress);


/**
 * @brief Decompress Snappy message with Snappy-java framing.
 *
 * @returns a malloced buffer with the uncompressed data, or NULL on failure.
 */
char *rd_kafka_snappy_java_uncompress (const char *inbuf, size_t inlen,
                                       size_t *outlenp,
                                       char *errstr, size_t errstr_size) {
        int pass;
        char *outbuf = NULL;

        /**
         * Traverse all chunks in two passes:
         *  pass 1: calculate total uncompressed length
         *  pass 2: uncompress
         *
         * Each chunk is prefixed with 4: length */

        for (pass = 1 ; pass <= 2 ; pass++) {
                ssize_t of = 0;  /* inbuf offset */
                ssize_t uof = 0; /* outbuf offset */

                while (of + 4 <= (ssize_t)inlen) {
                        uint32_t clen; /* compressed length */
                        size_t ulen; /* uncompressed length */
                        int r;

                        memcpy(&clen, inbuf+of, 4);
                        clen = be32toh(clen);
                        of += 4;

                        if (unlikely(clen > inlen - of)) {
                                rd_snprintf(errstr, errstr_size,
                                            "Invalid snappy-java chunk length "
                                            "%"PRId32" > %"PRIdsz
                                            " available bytes",
                                            clen, (ssize_t)inlen - of);
                                return NULL;
                        }

                        /* Acquire uncompressed length */
                        if (unlikely(!rd_kafka_snappy_uncompressed_length(
                                             inbuf+of, clen, &ulen))) {
                                rd_snprintf(errstr, errstr_size,
                                            "Failed to get length of "
                                            "(snappy-java framed) Snappy "
                                            "compressed payload "
                                            "(clen %"PRId32")",
                                            clen);
                                return NULL;
                        }

                        if (pass == 1) {
                                /* pass 1: calculate total length */
                                of  += clen;
                                uof += ulen;
                                continue;
                        }

                        /* pass 2: Uncompress to outbuf */
                        if (unlikely((r = rd_kafka_snappy_uncompress(
                                              inbuf+of, clen, outbuf+uof)))) {
                                rd_snprintf(errstr, errstr_size,
                                            "Failed to decompress Snappy-java "
                                            "framed payload of size %"PRId32
                                            ": %s",
                                            clen,
                                            rd_strerror(-r/*negative errno*/));
                                rd_free(outbuf);
                                return NULL;
                        }

                        of  += clen;
                        uof += ulen;
                }

                if (unlikely(of != (ssize_t)inlen)) {
                        rd_snprintf(errstr, errstr_size,
                                    "%"PRIusz" trailing bytes in Snappy-java "
                                    "framed compressed data",
                                    inlen - of);
                        if (outbuf)
                                rd_free(outbuf);
                        return NULL;
                }

                if (pass == 1) {
                        if (uof <= 0) {
                                rd_snprintf(errstr, errstr_size,
                                            "Empty Snappy-java framed data");
                                return NULL;
                        }

                        /* Allocate memory for uncompressed data */
                        outbuf = rd_malloc(uof);
                        if (unlikely(!outbuf)) {
                                rd_snprintf(errstr, errstr_size,
                                           "Failed to allocate memory "
                                            "(%"PRIdsz") for "
                                            "uncompressed Snappy data: %s",
                                            uof, rd_strerror(errno));
                                return NULL;
                        }

                } else {
                        /* pass 2 */
                        *outlenp = uof;
                }
        }

        return outbuf;
}



#else
/**
 * rd_kafka_snappy_compress - Compress a buffer using the snappy compressor.
 * @env: Preallocated environment
 * @input: Input buffer
 * @input_length: Length of input_buffer
 * @compressed: Output buffer for compressed data
 * @compressed_length: The real length of the output written here.
 *
 * Return 0 on success, otherwise an negative error code.
 *
 * The output buffer must be at least
 * rd_kafka_snappy_max_compressed_length(input_length) bytes long.
 *
 * Requires a preallocated environment from rd_kafka_snappy_init_env.
 * The environment does not keep state over individual calls
 * of this function, just preallocates the memory.
 */
int rd_kafka_snappy_compress(struct snappy_env *env,
		    const char *input,
		    size_t input_length,
		    char *compressed, size_t *compressed_length)
{
	struct source reader = {
		.ptr = input,
		.left = input_length
	};
	struct sink writer = {
		.dest = compressed,
	};
	int err = sn_compress(env, &reader, &writer);

	/* Compute how many bytes were added */
	*compressed_length = (writer.dest - compressed);
	return err;
}
EXPORT_SYMBOL(rd_kafka_snappy_compress);

/**
 * rd_kafka_snappy_uncompress - Uncompress a snappy compressed buffer
 * @compressed: Input buffer with compressed data
 * @n: length of compressed buffer
 * @uncompressed: buffer for uncompressed data
 *
 * The uncompressed data buffer must be at least
 * rd_kafka_snappy_uncompressed_length(compressed) bytes long.
 *
 * Return 0 on success, otherwise an negative error code.
 */
int rd_kafka_snappy_uncompress(const char *compressed, size_t n, char *uncompressed)
{
	struct source reader = {
		.ptr = compressed,
		.left = n
	};
	struct writer output = {
		.base = uncompressed,
		.op = uncompressed
	};
	return internal_uncompress(&reader, &output, 0xffffffff);
}
EXPORT_SYMBOL(rd_kafka_snappy_uncompress);
#endif

static inline void clear_env(struct snappy_env *env)
{
    memset(env, 0, sizeof(*env));
}

#ifdef SG
/**
 * rd_kafka_snappy_init_env_sg - Allocate snappy compression environment
 * @env: Environment to preallocate
 * @sg: Input environment ever does scather gather
 *
 * If false is passed to sg then multiple entries in an iovec
 * are not legal.
 * Returns 0 on success, otherwise negative errno.
 * Must run in process context.
 */
int rd_kafka_snappy_init_env_sg(struct snappy_env *env, bool sg)
{
	if (rd_kafka_snappy_init_env(env) < 0)
		goto error;

	if (sg) {
		env->scratch = vmalloc(kblock_size);
		if (!env->scratch)
			goto error;
		env->scratch_output =
			vmalloc(rd_kafka_snappy_max_compressed_length(kblock_size));
		if (!env->scratch_output)
			goto error;
	}
	return 0;
error:
	rd_kafka_snappy_free_env(env);
	return -ENOMEM;
}
EXPORT_SYMBOL(rd_kafka_snappy_init_env_sg);
#endif

/**
 * rd_kafka_snappy_init_env - Allocate snappy compression environment
 * @env: Environment to preallocate
 *
 * Passing multiple entries in an iovec is not allowed
 * on the environment allocated here.
 * Returns 0 on success, otherwise negative errno.
 * Must run in process context.
 */
int rd_kafka_snappy_init_env(struct snappy_env *env)
{
    clear_env(env);
	env->hash_table = vmalloc(sizeof(u16) * kmax_hash_table_size);
	if (!env->hash_table)
		return -ENOMEM;
	return 0;
}
EXPORT_SYMBOL(rd_kafka_snappy_init_env);

/**
 * rd_kafka_snappy_free_env - Free an snappy compression environment
 * @env: Environment to free.
 *
 * Must run in process context.
 */
void rd_kafka_snappy_free_env(struct snappy_env *env)
{
	vfree(env->hash_table);
#ifdef SG
	vfree(env->scratch);
	vfree(env->scratch_output);
#endif
	clear_env(env);
}
EXPORT_SYMBOL(rd_kafka_snappy_free_env);

#ifdef __GNUC__
#pragma GCC diagnostic pop /* -Wcast-align ignore */
#endif