summaryrefslogtreecommitdiffstats
path: root/fluent-bit/lib/librdkafka-2.1.0/src/tinycthread.c
blob: b0ec8e95674e34274742485c1a6fa6534b302db7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/* -*- mode: c; tab-width: 2; indent-tabs-mode: nil; -*-
Copyright (c) 2012 Marcus Geelnard
Copyright (c) 2013-2014 Evan Nemerson

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

    1. The origin of this software must not be misrepresented; you must not
    claim that you wrote the original software. If you use this software
    in a product, an acknowledgment in the product documentation would be
    appreciated but is not required.

    2. Altered source versions must be plainly marked as such, and must not be
    misrepresented as being the original software.

    3. This notice may not be removed or altered from any source
    distribution.
*/

#include "rd.h"
#include <stdlib.h>

#if !WITH_C11THREADS

/* Platform specific includes */
#if defined(_TTHREAD_POSIX_)
  #include <signal.h>
  #include <sched.h>
  #include <unistd.h>
  #include <sys/time.h>
  #include <errno.h>
#elif defined(_TTHREAD_WIN32_)
  #include <process.h>
  #include <sys/timeb.h>
#endif


/* Standard, good-to-have defines */
#ifndef NULL
  #define NULL (void*)0
#endif
#ifndef TRUE
  #define TRUE 1
#endif
#ifndef FALSE
  #define FALSE 0
#endif

#ifdef __cplusplus
extern "C" {
#endif

static RD_TLS int thrd_is_detached;


int mtx_init(mtx_t *mtx, int type)
{
#if defined(_TTHREAD_WIN32_)
  mtx->mAlreadyLocked = FALSE;
  mtx->mRecursive = type & mtx_recursive;
  mtx->mTimed = type & mtx_timed;
  if (!mtx->mTimed)
  {
    InitializeCriticalSection(&(mtx->mHandle.cs));
  }
  else
  {
    mtx->mHandle.mut = CreateMutex(NULL, FALSE, NULL);
    if (mtx->mHandle.mut == NULL)
    {
      return thrd_error;
    }
  }
  return thrd_success;
#else
  int ret;
  pthread_mutexattr_t attr;
  pthread_mutexattr_init(&attr);
  if (type & mtx_recursive)
  {
    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
  }
  ret = pthread_mutex_init(mtx, &attr);
  pthread_mutexattr_destroy(&attr);
  return ret == 0 ? thrd_success : thrd_error;
#endif
}

void mtx_destroy(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
  if (!mtx->mTimed)
  {
    DeleteCriticalSection(&(mtx->mHandle.cs));
  }
  else
  {
    CloseHandle(mtx->mHandle.mut);
  }
#else
  pthread_mutex_destroy(mtx);
#endif
}

int mtx_lock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
  if (!mtx->mTimed)
  {
    EnterCriticalSection(&(mtx->mHandle.cs));
  }
  else
  {
    switch (WaitForSingleObject(mtx->mHandle.mut, INFINITE))
    {
      case WAIT_OBJECT_0:
        break;
      case WAIT_ABANDONED:
      default:
        return thrd_error;
    }
  }

  if (!mtx->mRecursive)
  {
    rd_assert(!mtx->mAlreadyLocked); /* Would deadlock */
    mtx->mAlreadyLocked = TRUE;
  }
  return thrd_success;
#else
  return pthread_mutex_lock(mtx) == 0 ? thrd_success : thrd_error;
#endif
}

int mtx_timedlock(mtx_t *mtx, const struct timespec *ts)
{
#if defined(_TTHREAD_WIN32_)
  struct timespec current_ts;
  DWORD timeoutMs;

  if (!mtx->mTimed)
  {
    return thrd_error;
  }

  timespec_get(&current_ts, TIME_UTC);

  if ((current_ts.tv_sec > ts->tv_sec) || ((current_ts.tv_sec == ts->tv_sec) && (current_ts.tv_nsec >= ts->tv_nsec)))
  {
    timeoutMs = 0;
  }
  else
  {
    timeoutMs  = (DWORD)(ts->tv_sec  - current_ts.tv_sec)  * 1000;
    timeoutMs += (ts->tv_nsec - current_ts.tv_nsec) / 1000000;
    timeoutMs += 1;
  }

  /* TODO: the timeout for WaitForSingleObject doesn't include time
     while the computer is asleep. */
  switch (WaitForSingleObject(mtx->mHandle.mut, timeoutMs))
  {
    case WAIT_OBJECT_0:
      break;
    case WAIT_TIMEOUT:
      return thrd_timedout;
    case WAIT_ABANDONED:
    default:
      return thrd_error;
  }

  if (!mtx->mRecursive)
  {
    rd_assert(!mtx->mAlreadyLocked); /* Would deadlock */
    mtx->mAlreadyLocked = TRUE;
  }

  return thrd_success;
#elif defined(_POSIX_TIMEOUTS) && (_POSIX_TIMEOUTS >= 200112L) && defined(_POSIX_THREADS) && (_POSIX_THREADS >= 200112L)
  switch (pthread_mutex_timedlock(mtx, ts)) {
    case 0:
      return thrd_success;
    case ETIMEDOUT:
      return thrd_timedout;
    default:
      return thrd_error;
  }
#else
  int rc;
  struct timespec cur, dur;

  /* Try to acquire the lock and, if we fail, sleep for 5ms. */
  while ((rc = pthread_mutex_trylock (mtx)) == EBUSY) {
    timespec_get(&cur, TIME_UTC);

    if ((cur.tv_sec > ts->tv_sec) || ((cur.tv_sec == ts->tv_sec) && (cur.tv_nsec >= ts->tv_nsec)))
    {
      break;
    }

    dur.tv_sec = ts->tv_sec - cur.tv_sec;
    dur.tv_nsec = ts->tv_nsec - cur.tv_nsec;
    if (dur.tv_nsec < 0)
    {
      dur.tv_sec--;
      dur.tv_nsec += 1000000000;
    }

    if ((dur.tv_sec != 0) || (dur.tv_nsec > 5000000))
    {
      dur.tv_sec = 0;
      dur.tv_nsec = 5000000;
    }

    nanosleep(&dur, NULL);
  }

  switch (rc) {
    case 0:
      return thrd_success;
    case ETIMEDOUT:
    case EBUSY:
      return thrd_timedout;
    default:
      return thrd_error;
  }
#endif
}

int mtx_trylock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
  int ret;

  if (!mtx->mTimed)
  {
    ret = TryEnterCriticalSection(&(mtx->mHandle.cs)) ? thrd_success : thrd_busy;
  }
  else
  {
    ret = (WaitForSingleObject(mtx->mHandle.mut, 0) == WAIT_OBJECT_0) ? thrd_success : thrd_busy;
  }

  if ((!mtx->mRecursive) && (ret == thrd_success))
  {
    if (mtx->mAlreadyLocked)
    {
      LeaveCriticalSection(&(mtx->mHandle.cs));
      ret = thrd_busy;
    }
    else
    {
      mtx->mAlreadyLocked = TRUE;
    }
  }
  return ret;
#else
  return (pthread_mutex_trylock(mtx) == 0) ? thrd_success : thrd_busy;
#endif
}

int mtx_unlock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
  mtx->mAlreadyLocked = FALSE;
  if (!mtx->mTimed)
  {
    LeaveCriticalSection(&(mtx->mHandle.cs));
  }
  else
  {
    if (!ReleaseMutex(mtx->mHandle.mut))
    {
      return thrd_error;
    }
  }
  return thrd_success;
#else
  return pthread_mutex_unlock(mtx) == 0 ? thrd_success : thrd_error;;
#endif
}

#if defined(_TTHREAD_WIN32_)
#define _CONDITION_EVENT_ONE 0
#define _CONDITION_EVENT_ALL 1
#endif

int cnd_init(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
  cond->mWaitersCount = 0;

  /* Init critical section */
  InitializeCriticalSection(&cond->mWaitersCountLock);

  /* Init events */
  cond->mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL);
  if (cond->mEvents[_CONDITION_EVENT_ONE] == NULL)
  {
    cond->mEvents[_CONDITION_EVENT_ALL] = NULL;
    return thrd_error;
  }
  cond->mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL);
  if (cond->mEvents[_CONDITION_EVENT_ALL] == NULL)
  {
    CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]);
    cond->mEvents[_CONDITION_EVENT_ONE] = NULL;
    return thrd_error;
  }

  return thrd_success;
#else
  return pthread_cond_init(cond, NULL) == 0 ? thrd_success : thrd_error;
#endif
}

void cnd_destroy(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
  if (cond->mEvents[_CONDITION_EVENT_ONE] != NULL)
  {
    CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]);
  }
  if (cond->mEvents[_CONDITION_EVENT_ALL] != NULL)
  {
    CloseHandle(cond->mEvents[_CONDITION_EVENT_ALL]);
  }
  DeleteCriticalSection(&cond->mWaitersCountLock);
#else
  pthread_cond_destroy(cond);
#endif
}

int cnd_signal(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
  int haveWaiters;

  /* Are there any waiters? */
  EnterCriticalSection(&cond->mWaitersCountLock);
  haveWaiters = (cond->mWaitersCount > 0);
  LeaveCriticalSection(&cond->mWaitersCountLock);

  /* If we have any waiting threads, send them a signal */
  if(haveWaiters)
  {
    if (SetEvent(cond->mEvents[_CONDITION_EVENT_ONE]) == 0)
    {
      return thrd_error;
    }
  }

  return thrd_success;
#else
  return pthread_cond_signal(cond) == 0 ? thrd_success : thrd_error;
#endif
}

int cnd_broadcast(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
  int haveWaiters;

  /* Are there any waiters? */
  EnterCriticalSection(&cond->mWaitersCountLock);
  haveWaiters = (cond->mWaitersCount > 0);
  LeaveCriticalSection(&cond->mWaitersCountLock);

  /* If we have any waiting threads, send them a signal */
  if(haveWaiters)
  {
    if (SetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0)
    {
      return thrd_error;
    }
  }

  return thrd_success;
#else
  return pthread_cond_broadcast(cond) == 0 ? thrd_success : thrd_error;
#endif
}

#if defined(_TTHREAD_WIN32_)
int _cnd_timedwait_win32(cnd_t *cond, mtx_t *mtx, DWORD timeout)
{
  int result, lastWaiter;

  /* Increment number of waiters */
  EnterCriticalSection(&cond->mWaitersCountLock);
  ++ cond->mWaitersCount;
  LeaveCriticalSection(&cond->mWaitersCountLock);

  /* Release the mutex while waiting for the condition (will decrease
     the number of waiters when done)... */
  mtx_unlock(mtx);

  /* Wait for either event to become signaled due to cnd_signal() or
     cnd_broadcast() being called */
  result = WaitForMultipleObjects(2, cond->mEvents, FALSE, timeout);

  /* Check if we are the last waiter */
  EnterCriticalSection(&cond->mWaitersCountLock);
  -- cond->mWaitersCount;
  lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) &&
               (cond->mWaitersCount == 0);
  LeaveCriticalSection(&cond->mWaitersCountLock);

  /* If we are the last waiter to be notified to stop waiting, reset the event */
  if (lastWaiter)
  {
    if (ResetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0)
    {
      /* The mutex is locked again before the function returns, even if an error occurred */
      mtx_lock(mtx);
      return thrd_error;
    }
  }

  /* The mutex is locked again before the function returns, even if an error occurred */
  mtx_lock(mtx);

  if (result == WAIT_TIMEOUT)
            return thrd_timedout;
  else if (result == (int)WAIT_FAILED)
            return thrd_error;

  return thrd_success;
}
#endif

int cnd_wait(cnd_t *cond, mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
  return _cnd_timedwait_win32(cond, mtx, INFINITE);
#else
  return pthread_cond_wait(cond, mtx) == 0 ? thrd_success : thrd_error;
#endif
}

int cnd_timedwait(cnd_t *cond, mtx_t *mtx, const struct timespec *ts)
{
#if defined(_TTHREAD_WIN32_)
  struct timespec now;
  if (timespec_get(&now, TIME_UTC) == TIME_UTC)
  {
    unsigned long long nowInMilliseconds = now.tv_sec * 1000 + now.tv_nsec / 1000000;
    unsigned long long tsInMilliseconds  = ts->tv_sec * 1000 + ts->tv_nsec / 1000000;
    DWORD delta = (tsInMilliseconds > nowInMilliseconds) ?
      (DWORD)(tsInMilliseconds - nowInMilliseconds) : 0;
    return _cnd_timedwait_win32(cond, mtx, delta);
  }
  else
    return thrd_error;
#else
  int ret;
  ret = pthread_cond_timedwait(cond, mtx, ts);
  if (ret == ETIMEDOUT)
  {
    return thrd_timedout;
  }
  return ret == 0 ? thrd_success : thrd_error;
#endif
}



#if defined(_TTHREAD_WIN32_)
struct TinyCThreadTSSData {
  void* value;
  tss_t key;
  struct TinyCThreadTSSData* next;
};

static tss_dtor_t _tinycthread_tss_dtors[1088] = { NULL, };

static _Thread_local struct TinyCThreadTSSData* _tinycthread_tss_head = NULL;
static _Thread_local struct TinyCThreadTSSData* _tinycthread_tss_tail = NULL;

static void _tinycthread_tss_cleanup (void);

static void _tinycthread_tss_cleanup (void) {
  struct TinyCThreadTSSData* data;
  int iteration;
  unsigned int again = 1;
  void* value;

  for (iteration = 0 ; iteration < TSS_DTOR_ITERATIONS && again > 0 ; iteration++)
  {
    again = 0;
    for (data = _tinycthread_tss_head ; data != NULL ; data = data->next)
    {
      if (data->value != NULL)
      {
        value = data->value;
        data->value = NULL;

        if (_tinycthread_tss_dtors[data->key] != NULL)
        {
          again = 1;
          _tinycthread_tss_dtors[data->key](value);
        }
      }
    }
  }

  while (_tinycthread_tss_head != NULL) {
    data = _tinycthread_tss_head->next;
    rd_free (_tinycthread_tss_head);
    _tinycthread_tss_head = data;
  }
  _tinycthread_tss_head = NULL;
  _tinycthread_tss_tail = NULL;
}

static void NTAPI _tinycthread_tss_callback(PVOID h, DWORD dwReason, PVOID pv)
{
  (void)h;
  (void)pv;

  if (_tinycthread_tss_head != NULL && (dwReason == DLL_THREAD_DETACH || dwReason == DLL_PROCESS_DETACH))
  {
    _tinycthread_tss_cleanup();
  }
}

#ifdef _WIN32
  #ifdef _M_X64
    #pragma const_seg(".CRT$XLB")
  #else
    #pragma data_seg(".CRT$XLB")
  #endif
  PIMAGE_TLS_CALLBACK p_thread_callback = _tinycthread_tss_callback;
  #ifdef _M_X64
    #pragma const_seg()
  #else
    #pragma data_seg()
  #endif
#else
  PIMAGE_TLS_CALLBACK p_thread_callback __attribute__((section(".CRT$XLB"))) = _tinycthread_tss_callback;
#endif

#endif /* defined(_TTHREAD_WIN32_) */

/** Information to pass to the new thread (what to run). */
typedef struct {
  thrd_start_t mFunction; /**< Pointer to the function to be executed. */
  void * mArg;            /**< Function argument for the thread function. */
} _thread_start_info;

/* Thread wrapper function. */
#if defined(_TTHREAD_WIN32_)
static DWORD WINAPI _thrd_wrapper_function(LPVOID aArg)
#elif defined(_TTHREAD_POSIX_)
static void * _thrd_wrapper_function(void * aArg)
#endif
{
  thrd_start_t fun;
  void *arg;
  int  res;

  /* Get thread startup information */
  _thread_start_info *ti = (_thread_start_info *) aArg;
  fun = ti->mFunction;
  arg = ti->mArg;

  /* The thread is responsible for freeing the startup information */
  rd_free((void *)ti);

  /* Call the actual client thread function */
  res = fun(arg);

#if defined(_TTHREAD_WIN32_)
  if (_tinycthread_tss_head != NULL)
  {
    _tinycthread_tss_cleanup();
  }

  return (DWORD)res;
#else
  return (void*)(intptr_t)res;
#endif
}

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg)
{
  /* Fill out the thread startup information (passed to the thread wrapper,
     which will eventually free it) */
  _thread_start_info* ti = (_thread_start_info*)rd_malloc(sizeof(_thread_start_info));
  if (ti == NULL)
  {
    return thrd_nomem;
  }
  ti->mFunction = func;
  ti->mArg = arg;

  /* Create the thread */
#if defined(_TTHREAD_WIN32_)
  *thr = CreateThread(NULL, 0, _thrd_wrapper_function, (LPVOID) ti, 0, NULL);
#elif defined(_TTHREAD_POSIX_)
  {
          int err;
          if((err = pthread_create(thr, NULL, _thrd_wrapper_function,
                                   (void *)ti)) != 0) {
                  errno = err;
                  *thr = 0;
          }
  }
#endif

  /* Did we fail to create the thread? */
  if(!*thr)
  {
    rd_free(ti);
    return thrd_error;
  }

  return thrd_success;
}

thrd_t thrd_current(void)
{
#if defined(_TTHREAD_WIN32_)
  return GetCurrentThread();
#else
  return pthread_self();
#endif
}

int thrd_detach(thrd_t thr)
{
  thrd_is_detached = 1;
#if defined(_TTHREAD_WIN32_)
  /* https://stackoverflow.com/questions/12744324/how-to-detach-a-thread-on-windows-c#answer-12746081 */
  return CloseHandle(thr) != 0 ? thrd_success : thrd_error;
#else
  return pthread_detach(thr) == 0 ? thrd_success : thrd_error;
#endif
}

int thrd_equal(thrd_t thr0, thrd_t thr1)
{
#if defined(_TTHREAD_WIN32_)
  return thr0 == thr1;
#else
  return pthread_equal(thr0, thr1);
#endif
}

void thrd_exit(int res)
{
#if defined(_TTHREAD_WIN32_)
  if (_tinycthread_tss_head != NULL)
  {
    _tinycthread_tss_cleanup();
  }

  ExitThread(res);
#else
  pthread_exit((void*)(intptr_t)res);
#endif
}

int thrd_join(thrd_t thr, int *res)
{
#if defined(_TTHREAD_WIN32_)
  DWORD dwRes;

  if (WaitForSingleObject(thr, INFINITE) == WAIT_FAILED)
  {
    return thrd_error;
  }
  if (res != NULL)
  {
    if (GetExitCodeThread(thr, &dwRes) != 0)
    {
      *res = dwRes;
    }
    else
    {
      return thrd_error;
    }
  }
  CloseHandle(thr);
#elif defined(_TTHREAD_POSIX_)
  void *pres;
  if (pthread_join(thr, &pres) != 0)
  {
    return thrd_error;
  }
  if (res != NULL)
  {
    *res = (int)(intptr_t)pres;
  }
#endif
  return thrd_success;
}

int thrd_sleep(const struct timespec *duration, struct timespec *remaining)
{
#if !defined(_TTHREAD_WIN32_)
  return nanosleep(duration, remaining);
#else
  struct timespec start;
  DWORD t;

  timespec_get(&start, TIME_UTC);

  t = SleepEx((DWORD)(duration->tv_sec * 1000 +
              duration->tv_nsec / 1000000 +
              (((duration->tv_nsec % 1000000) == 0) ? 0 : 1)),
              TRUE);

  if (t == 0) {
    return 0;
  } else if (remaining != NULL) {
    timespec_get(remaining, TIME_UTC);
    remaining->tv_sec -= start.tv_sec;
    remaining->tv_nsec -= start.tv_nsec;
    if (remaining->tv_nsec < 0)
    {
      remaining->tv_nsec += 1000000000;
      remaining->tv_sec -= 1;
    }
  } else {
    return -1;
  }

  return 0;
#endif
}

void thrd_yield(void)
{
#if defined(_TTHREAD_WIN32_)
  Sleep(0);
#else
  sched_yield();
#endif
}

int tss_create(tss_t *key, tss_dtor_t dtor)
{
#if defined(_TTHREAD_WIN32_)
  *key = TlsAlloc();
  if (*key == TLS_OUT_OF_INDEXES)
  {
    return thrd_error;
  }
  _tinycthread_tss_dtors[*key] = dtor;
#else
  if (pthread_key_create(key, dtor) != 0)
  {
    return thrd_error;
  }
#endif
  return thrd_success;
}

void tss_delete(tss_t key)
{
#if defined(_TTHREAD_WIN32_)
  struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*) TlsGetValue (key);
  struct TinyCThreadTSSData* prev = NULL;
  if (data != NULL)
  {
    if (data == _tinycthread_tss_head)
    {
      _tinycthread_tss_head = data->next;
    }
    else
    {
      prev = _tinycthread_tss_head;
      if (prev != NULL)
      {
        while (prev->next != data)
        {
          prev = prev->next;
        }
      }
    }

    if (data == _tinycthread_tss_tail)
    {
      _tinycthread_tss_tail = prev;
    }

    rd_free (data);
  }
  _tinycthread_tss_dtors[key] = NULL;
  TlsFree(key);
#else
  pthread_key_delete(key);
#endif
}

void *tss_get(tss_t key)
{
#if defined(_TTHREAD_WIN32_)
  struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*)TlsGetValue(key);
  if (data == NULL)
  {
    return NULL;
  }
  return data->value;
#else
  return pthread_getspecific(key);
#endif
}

int tss_set(tss_t key, void *val)
{
#if defined(_TTHREAD_WIN32_)
  struct TinyCThreadTSSData* data = (struct TinyCThreadTSSData*)TlsGetValue(key);
  if (data == NULL)
  {
    data = (struct TinyCThreadTSSData*)rd_malloc(sizeof(struct TinyCThreadTSSData));
    if (data == NULL)
    {
      return thrd_error;
	}

    data->value = NULL;
    data->key = key;
    data->next = NULL;

    if (_tinycthread_tss_tail != NULL)
    {
      _tinycthread_tss_tail->next = data;
    }
    else
    {
      _tinycthread_tss_tail = data;
    }

    if (_tinycthread_tss_head == NULL)
    {
      _tinycthread_tss_head = data;
    }

    if (!TlsSetValue(key, data))
    {
      rd_free (data);
	  return thrd_error;
    }
  }
  data->value = val;
#else
  if (pthread_setspecific(key, val) != 0)
  {
    return thrd_error;
  }
#endif
  return thrd_success;
}

#if defined(_TTHREAD_EMULATE_TIMESPEC_GET_)
int _tthread_timespec_get(struct timespec *ts, int base)
{
#if defined(_TTHREAD_WIN32_)
  struct _timeb tb;
#elif !defined(CLOCK_REALTIME)
  struct timeval tv;
#endif

  if (base != TIME_UTC)
  {
    return 0;
  }

#if defined(_TTHREAD_WIN32_)
  _ftime_s(&tb);
  ts->tv_sec = (time_t)tb.time;
  ts->tv_nsec = 1000000L * (long)tb.millitm;
#elif defined(CLOCK_REALTIME)
  base = (clock_gettime(CLOCK_REALTIME, ts) == 0) ? base : 0;
#else
  gettimeofday(&tv, NULL);
  ts->tv_sec = (time_t)tv.tv_sec;
  ts->tv_nsec = 1000L * (long)tv.tv_usec;
#endif

  return base;
}
#endif /* _TTHREAD_EMULATE_TIMESPEC_GET_ */

#if defined(_TTHREAD_WIN32_)
void call_once(once_flag *flag, void (*func)(void))
{
  /* The idea here is that we use a spin lock (via the
     InterlockedCompareExchange function) to restrict access to the
     critical section until we have initialized it, then we use the
     critical section to block until the callback has completed
     execution. */
  while (flag->status < 3)
  {
    switch (flag->status)
    {
      case 0:
        if (InterlockedCompareExchange (&(flag->status), 1, 0) == 0) {
          InitializeCriticalSection(&(flag->lock));
          EnterCriticalSection(&(flag->lock));
          flag->status = 2;
          func();
          flag->status = 3;
          LeaveCriticalSection(&(flag->lock));
          return;
        }
        break;
      case 1:
        break;
      case 2:
        EnterCriticalSection(&(flag->lock));
        LeaveCriticalSection(&(flag->lock));
        break;
    }
  }
}
#endif /* defined(_TTHREAD_WIN32_) */



#ifdef __cplusplus
}
#endif

#endif /* !WITH_C11THREADS */