summaryrefslogtreecommitdiffstats
path: root/fluent-bit/lib/wasm-micro-runtime-WAMR-1.2.2/core/shared/mem-alloc/ems/ems_alloc.c
blob: 5c2a628a261cb55ed50e9d8a604703633af61563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*
 * Copyright (C) 2019 Intel Corporation.  All rights reserved.
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 */

#include "ems_gc_internal.h"

static inline bool
hmu_is_in_heap(void *hmu, gc_uint8 *heap_base_addr, gc_uint8 *heap_end_addr)
{
    gc_uint8 *addr = (gc_uint8 *)hmu;
    return (addr >= heap_base_addr && addr < heap_end_addr) ? true : false;
}

/**
 * Remove a node from the tree it belongs to
 *
 * @param p the node to remove, can not be NULL, can not be the ROOT node
 *        the node will be removed from the tree, and the left, right and
 *        parent pointers of the node @p will be set to be NULL. Other fields
 *        won't be touched. The tree will be re-organized so that the order
 *        conditions are still satisified.
 */
static bool
remove_tree_node(gc_heap_t *heap, hmu_tree_node_t *p)
{
    hmu_tree_node_t *q = NULL, **slot = NULL, *parent;
    hmu_tree_node_t *root = heap->kfc_tree_root;
    gc_uint8 *base_addr = heap->base_addr;
    gc_uint8 *end_addr = base_addr + heap->current_size;

    bh_assert(p);

    parent = p->parent;
    if (!parent || p == root /* p can not be the ROOT node */
        || !hmu_is_in_heap(p, base_addr, end_addr)
        || (parent != root && !hmu_is_in_heap(parent, base_addr, end_addr))) {
        goto fail;
    }

    /* get the slot which holds pointer to node p */
    if (p == p->parent->right) {
        /* Don't use `slot = &p->parent->right` to avoid compiler warning */
        slot = (hmu_tree_node_t **)((uint8 *)p->parent
                                    + offsetof(hmu_tree_node_t, right));
    }
    else if (p == p->parent->left) {
        /* p should be a child of its parent */
        /* Don't use `slot = &p->parent->left` to avoid compiler warning */
        slot = (hmu_tree_node_t **)((uint8 *)p->parent
                                    + offsetof(hmu_tree_node_t, left));
    }
    else {
        goto fail;
    }

    /**
     * algorithms used to remove node p
     * case 1: if p has no left child, replace p with its right child
     * case 2: if p has no right child, replace p with its left child
     * case 3: otherwise, find p's predecessor, remove it from the tree
     *         and replace p with it.
     * use predecessor can keep the left <= root < right condition.
     */

    if (!p->left) {
        /* move right child up*/
        *slot = p->right;
        if (p->right) {
            if (!hmu_is_in_heap(p->right, base_addr, end_addr)) {
                goto fail;
            }
            p->right->parent = p->parent;
        }

        p->left = p->right = p->parent = NULL;
        return true;
    }

    if (!p->right) {
        /* move left child up*/
        *slot = p->left;
        if (!hmu_is_in_heap(p->left, base_addr, end_addr)) {
            goto fail;
        }
        /* p->left can never be NULL unless it is corrupted. */
        p->left->parent = p->parent;

        p->left = p->right = p->parent = NULL;
        return true;
    }

    /* both left & right exist, find p's predecessor at first*/
    q = p->left;
    if (!hmu_is_in_heap(q, base_addr, end_addr)) {
        goto fail;
    }
    while (q->right) {
        q = q->right;
        if (!hmu_is_in_heap(q, base_addr, end_addr)) {
            goto fail;
        }
    }

    /* remove from the tree*/
    if (!remove_tree_node(heap, q))
        return false;

    *slot = q;
    q->parent = p->parent;
    q->left = p->left;
    q->right = p->right;
    if (q->left) {
        if (!hmu_is_in_heap(q->left, base_addr, end_addr)) {
            goto fail;
        }
        q->left->parent = q;
    }
    if (q->right) {
        if (!hmu_is_in_heap(q->right, base_addr, end_addr)) {
            goto fail;
        }
        q->right->parent = q;
    }

    p->left = p->right = p->parent = NULL;

    return true;
fail:
    heap->is_heap_corrupted = true;
    return false;
}

static bool
unlink_hmu(gc_heap_t *heap, hmu_t *hmu)
{
    gc_uint8 *base_addr, *end_addr;
    gc_size_t size;

    bh_assert(gci_is_heap_valid(heap));
    bh_assert(hmu && (gc_uint8 *)hmu >= heap->base_addr
              && (gc_uint8 *)hmu < heap->base_addr + heap->current_size);

    if (hmu_get_ut(hmu) != HMU_FC) {
        heap->is_heap_corrupted = true;
        return false;
    }

    base_addr = heap->base_addr;
    end_addr = base_addr + heap->current_size;
    size = hmu_get_size(hmu);

    if (HMU_IS_FC_NORMAL(size)) {
        uint32 node_idx = size >> 3;
        hmu_normal_node_t *node_prev = NULL, *node_next;
        hmu_normal_node_t *node = heap->kfc_normal_list[node_idx].next;

        while (node) {
            if (!hmu_is_in_heap(node, base_addr, end_addr)) {
                heap->is_heap_corrupted = true;
                return false;
            }
            node_next = get_hmu_normal_node_next(node);
            if ((hmu_t *)node == hmu) {
                if (!node_prev) /* list head */
                    heap->kfc_normal_list[node_idx].next = node_next;
                else
                    set_hmu_normal_node_next(node_prev, node_next);
                break;
            }
            node_prev = node;
            node = node_next;
        }

        if (!node) {
            os_printf("[GC_ERROR]couldn't find the node in the normal list\n");
        }
    }
    else {
        if (!remove_tree_node(heap, (hmu_tree_node_t *)hmu))
            return false;
    }
    return true;
}

static void
hmu_set_free_size(hmu_t *hmu)
{
    gc_size_t size;
    bh_assert(hmu && hmu_get_ut(hmu) == HMU_FC);

    size = hmu_get_size(hmu);
    *((uint32 *)((char *)hmu + size) - 1) = size;
}

/**
 * Add free chunk back to KFC
 *
 * @param heap should not be NULL and it should be a valid heap
 * @param hmu should not be NULL and it should be a HMU of length @size inside
 *        @heap hmu should be 8-bytes aligned
 * @param size should be positive and multiple of 8
 *        hmu with size @size will be added into KFC as a new FC.
 */
bool
gci_add_fc(gc_heap_t *heap, hmu_t *hmu, gc_size_t size)
{
    gc_uint8 *base_addr, *end_addr;
    hmu_normal_node_t *np = NULL;
    hmu_tree_node_t *root = NULL, *tp = NULL, *node = NULL;
    uint32 node_idx;

    bh_assert(gci_is_heap_valid(heap));
    bh_assert(hmu && (gc_uint8 *)hmu >= heap->base_addr
              && (gc_uint8 *)hmu < heap->base_addr + heap->current_size);
    bh_assert(((gc_uint32)(uintptr_t)hmu_to_obj(hmu) & 7) == 0);
    bh_assert(size > 0
              && ((gc_uint8 *)hmu) + size
                     <= heap->base_addr + heap->current_size);
    bh_assert(!(size & 7));

    base_addr = heap->base_addr;
    end_addr = base_addr + heap->current_size;

    hmu_set_ut(hmu, HMU_FC);
    hmu_set_size(hmu, size);
    hmu_set_free_size(hmu);

    if (HMU_IS_FC_NORMAL(size)) {
        np = (hmu_normal_node_t *)hmu;
        if (!hmu_is_in_heap(np, base_addr, end_addr)) {
            heap->is_heap_corrupted = true;
            return false;
        }

        node_idx = size >> 3;
        set_hmu_normal_node_next(np, heap->kfc_normal_list[node_idx].next);
        heap->kfc_normal_list[node_idx].next = np;
        return true;
    }

    /* big block */
    node = (hmu_tree_node_t *)hmu;
    node->size = size;
    node->left = node->right = node->parent = NULL;

    /* find proper node to link this new node to */
    root = heap->kfc_tree_root;
    tp = root;
    bh_assert(tp->size < size);
    while (1) {
        if (tp->size < size) {
            if (!tp->right) {
                tp->right = node;
                node->parent = tp;
                break;
            }
            tp = tp->right;
        }
        else { /* tp->size >= size */
            if (!tp->left) {
                tp->left = node;
                node->parent = tp;
                break;
            }
            tp = tp->left;
        }
        if (!hmu_is_in_heap(tp, base_addr, end_addr)) {
            heap->is_heap_corrupted = true;
            return false;
        }
    }
    return true;
}

/**
 * Find a proper hmu for required memory size
 *
 * @param heap should not be NULL and should be a valid heap
 * @param size should cover the header and should be 8 bytes aligned
 *        GC will not be performed here.
 *        Heap extension will not be performed here.
 *
 * @return hmu allocated if success, which will be aligned to 8 bytes,
 *         NULL otherwise
 */
static hmu_t *
alloc_hmu(gc_heap_t *heap, gc_size_t size)
{
    gc_uint8 *base_addr, *end_addr;
    hmu_normal_list_t *normal_head = NULL;
    hmu_normal_node_t *p = NULL;
    uint32 node_idx = 0, init_node_idx = 0;
    hmu_tree_node_t *root = NULL, *tp = NULL, *last_tp = NULL;
    hmu_t *next, *rest;
    uintptr_t tp_ret;

    bh_assert(gci_is_heap_valid(heap));
    bh_assert(size > 0 && !(size & 7));

    base_addr = heap->base_addr;
    end_addr = base_addr + heap->current_size;

    if (size < GC_SMALLEST_SIZE)
        size = GC_SMALLEST_SIZE;

    /* check normal list at first*/
    if (HMU_IS_FC_NORMAL(size)) {
        /* find a non-empty slot in normal_node_list with good size*/
        init_node_idx = (size >> 3);
        for (node_idx = init_node_idx; node_idx < HMU_NORMAL_NODE_CNT;
             node_idx++) {
            normal_head = heap->kfc_normal_list + node_idx;
            if (normal_head->next)
                break;
            normal_head = NULL;
        }

        /* found in normal list*/
        if (normal_head) {
            bh_assert(node_idx >= init_node_idx);

            p = normal_head->next;
            if (!hmu_is_in_heap(p, base_addr, end_addr)) {
                heap->is_heap_corrupted = true;
                return NULL;
            }
            normal_head->next = get_hmu_normal_node_next(p);
            if (((gc_int32)(uintptr_t)hmu_to_obj(p) & 7) != 0) {
                heap->is_heap_corrupted = true;
                return NULL;
            }

            if ((gc_size_t)node_idx != (uint32)init_node_idx
                /* with bigger size*/
                && ((gc_size_t)node_idx << 3) >= size + GC_SMALLEST_SIZE) {
                rest = (hmu_t *)(((char *)p) + size);
                if (!gci_add_fc(heap, rest, (node_idx << 3) - size)) {
                    return NULL;
                }
                hmu_mark_pinuse(rest);
            }
            else {
                size = node_idx << 3;
                next = (hmu_t *)((char *)p + size);
                if (hmu_is_in_heap(next, base_addr, end_addr))
                    hmu_mark_pinuse(next);
            }

            heap->total_free_size -= size;
            if ((heap->current_size - heap->total_free_size)
                > heap->highmark_size)
                heap->highmark_size =
                    heap->current_size - heap->total_free_size;

            hmu_set_size((hmu_t *)p, size);
            return (hmu_t *)p;
        }
    }

    /* need to find a node in tree*/
    root = heap->kfc_tree_root;

    /* find the best node*/
    bh_assert(root);
    tp = root->right;
    while (tp) {
        if (!hmu_is_in_heap(tp, base_addr, end_addr)) {
            heap->is_heap_corrupted = true;
            return NULL;
        }

        if (tp->size < size) {
            tp = tp->right;
            continue;
        }

        /* record the last node with size equal to or bigger than given size*/
        last_tp = tp;
        tp = tp->left;
    }

    if (last_tp) {
        bh_assert(last_tp->size >= size);

        /* alloc in last_p*/

        /* remove node last_p from tree*/
        if (!remove_tree_node(heap, last_tp))
            return NULL;

        if (last_tp->size >= size + GC_SMALLEST_SIZE) {
            rest = (hmu_t *)((char *)last_tp + size);
            if (!gci_add_fc(heap, rest, last_tp->size - size))
                return NULL;
            hmu_mark_pinuse(rest);
        }
        else {
            size = last_tp->size;
            next = (hmu_t *)((char *)last_tp + size);
            if (hmu_is_in_heap(next, base_addr, end_addr))
                hmu_mark_pinuse(next);
        }

        heap->total_free_size -= size;
        if ((heap->current_size - heap->total_free_size) > heap->highmark_size)
            heap->highmark_size = heap->current_size - heap->total_free_size;

        hmu_set_size((hmu_t *)last_tp, size);
        tp_ret = (uintptr_t)last_tp;
        return (hmu_t *)tp_ret;
    }

    return NULL;
}

/**
 * Find a proper HMU with given size
 *
 * @param heap should not be NULL and should be a valid heap
 * @param size should cover the header and should be 8 bytes aligned
 *
 * Note: This function will try several ways to satisfy the allocation request:
 *   1. Find a proper on available HMUs.
 *   2. GC will be triggered if 1 failed.
 *   3. Find a proper on available HMUS.
 *   4. Return NULL if 3 failed
 *
 * @return hmu allocated if success, which will be aligned to 8 bytes,
 *         NULL otherwise
 */
static hmu_t *
alloc_hmu_ex(gc_heap_t *heap, gc_size_t size)
{
    bh_assert(gci_is_heap_valid(heap));
    bh_assert(size > 0 && !(size & 7));

    return alloc_hmu(heap, size);
}

static unsigned long g_total_malloc = 0;
static unsigned long g_total_free = 0;

#if BH_ENABLE_GC_VERIFY == 0
gc_object_t
gc_alloc_vo(void *vheap, gc_size_t size)
#else
gc_object_t
gc_alloc_vo_internal(void *vheap, gc_size_t size, const char *file, int line)
#endif
{
    gc_heap_t *heap = (gc_heap_t *)vheap;
    hmu_t *hmu = NULL;
    gc_object_t ret = (gc_object_t)NULL;
    gc_size_t tot_size = 0, tot_size_unaligned;

    /* hmu header + prefix + obj + suffix */
    tot_size_unaligned = HMU_SIZE + OBJ_PREFIX_SIZE + size + OBJ_SUFFIX_SIZE;
    /* aligned size*/
    tot_size = GC_ALIGN_8(tot_size_unaligned);
    if (tot_size < size)
        /* integer overflow */
        return NULL;

    if (heap->is_heap_corrupted) {
        os_printf("[GC_ERROR]Heap is corrupted, allocate memory failed.\n");
        return NULL;
    }

    os_mutex_lock(&heap->lock);

    hmu = alloc_hmu_ex(heap, tot_size);
    if (!hmu)
        goto finish;

    bh_assert(hmu_get_size(hmu) >= tot_size);
    /* the total size allocated may be larger than
       the required size, reset it here */
    tot_size = hmu_get_size(hmu);

    g_total_malloc += tot_size;

    hmu_set_ut(hmu, HMU_VO);
    hmu_unfree_vo(hmu);

#if BH_ENABLE_GC_VERIFY != 0
    hmu_init_prefix_and_suffix(hmu, tot_size, file, line);
#endif

    ret = hmu_to_obj(hmu);
    if (tot_size > tot_size_unaligned)
        /* clear buffer appended by GC_ALIGN_8() */
        memset((uint8 *)ret + size, 0, tot_size - tot_size_unaligned);

finish:
    os_mutex_unlock(&heap->lock);
    return ret;
}

#if BH_ENABLE_GC_VERIFY == 0
gc_object_t
gc_realloc_vo(void *vheap, void *ptr, gc_size_t size)
#else
gc_object_t
gc_realloc_vo_internal(void *vheap, void *ptr, gc_size_t size, const char *file,
                       int line)
#endif
{
    gc_heap_t *heap = (gc_heap_t *)vheap;
    hmu_t *hmu = NULL, *hmu_old = NULL, *hmu_next;
    gc_object_t ret = (gc_object_t)NULL, obj_old = (gc_object_t)ptr;
    gc_size_t tot_size, tot_size_unaligned, tot_size_old = 0, tot_size_next;
    gc_size_t obj_size, obj_size_old;
    gc_uint8 *base_addr, *end_addr;
    hmu_type_t ut;

    /* hmu header + prefix + obj + suffix */
    tot_size_unaligned = HMU_SIZE + OBJ_PREFIX_SIZE + size + OBJ_SUFFIX_SIZE;
    /* aligned size*/
    tot_size = GC_ALIGN_8(tot_size_unaligned);
    if (tot_size < size)
        /* integer overflow */
        return NULL;

    if (heap->is_heap_corrupted) {
        os_printf("[GC_ERROR]Heap is corrupted, allocate memory failed.\n");
        return NULL;
    }

    if (obj_old) {
        hmu_old = obj_to_hmu(obj_old);
        tot_size_old = hmu_get_size(hmu_old);
        if (tot_size <= tot_size_old)
            /* current node alreay meets requirement */
            return obj_old;
    }

    base_addr = heap->base_addr;
    end_addr = base_addr + heap->current_size;

    os_mutex_lock(&heap->lock);

    if (hmu_old) {
        hmu_next = (hmu_t *)((char *)hmu_old + tot_size_old);
        if (hmu_is_in_heap(hmu_next, base_addr, end_addr)) {
            ut = hmu_get_ut(hmu_next);
            tot_size_next = hmu_get_size(hmu_next);
            if (ut == HMU_FC && tot_size <= tot_size_old + tot_size_next) {
                /* current node and next node meets requirement */
                if (!unlink_hmu(heap, hmu_next)) {
                    os_mutex_unlock(&heap->lock);
                    return NULL;
                }
                hmu_set_size(hmu_old, tot_size);
                memset((char *)hmu_old + tot_size_old, 0,
                       tot_size - tot_size_old);
#if BH_ENABLE_GC_VERIFY != 0
                hmu_init_prefix_and_suffix(hmu_old, tot_size, file, line);
#endif
                if (tot_size < tot_size_old + tot_size_next) {
                    hmu_next = (hmu_t *)((char *)hmu_old + tot_size);
                    tot_size_next = tot_size_old + tot_size_next - tot_size;
                    if (!gci_add_fc(heap, hmu_next, tot_size_next)) {
                        os_mutex_unlock(&heap->lock);
                        return NULL;
                    }
                }
                os_mutex_unlock(&heap->lock);
                return obj_old;
            }
        }
    }

    hmu = alloc_hmu_ex(heap, tot_size);
    if (!hmu)
        goto finish;

    bh_assert(hmu_get_size(hmu) >= tot_size);
    /* the total size allocated may be larger than
       the required size, reset it here */
    tot_size = hmu_get_size(hmu);
    g_total_malloc += tot_size;

    hmu_set_ut(hmu, HMU_VO);
    hmu_unfree_vo(hmu);

#if BH_ENABLE_GC_VERIFY != 0
    hmu_init_prefix_and_suffix(hmu, tot_size, file, line);
#endif

    ret = hmu_to_obj(hmu);

finish:

    if (ret) {
        obj_size = tot_size - HMU_SIZE - OBJ_PREFIX_SIZE - OBJ_SUFFIX_SIZE;
        memset(ret, 0, obj_size);
        if (obj_old) {
            obj_size_old =
                tot_size_old - HMU_SIZE - OBJ_PREFIX_SIZE - OBJ_SUFFIX_SIZE;
            bh_memcpy_s(ret, obj_size, obj_old, obj_size_old);
        }
    }

    os_mutex_unlock(&heap->lock);

    if (ret && obj_old)
        gc_free_vo(vheap, obj_old);

    return ret;
}

/**
 * Do some checking to see if given pointer is a possible valid heap
 * @return GC_TRUE if all checking passed, GC_FALSE otherwise
 */
int
gci_is_heap_valid(gc_heap_t *heap)
{
    if (!heap)
        return GC_FALSE;
    if (heap->heap_id != (gc_handle_t)heap)
        return GC_FALSE;

    return GC_TRUE;
}

#if BH_ENABLE_GC_VERIFY == 0
int
gc_free_vo(void *vheap, gc_object_t obj)
#else
int
gc_free_vo_internal(void *vheap, gc_object_t obj, const char *file, int line)
#endif
{
    gc_heap_t *heap = (gc_heap_t *)vheap;
    gc_uint8 *base_addr, *end_addr;
    hmu_t *hmu = NULL;
    hmu_t *prev = NULL;
    hmu_t *next = NULL;
    gc_size_t size = 0;
    hmu_type_t ut;
    int ret = GC_SUCCESS;

    if (!obj) {
        return GC_SUCCESS;
    }

    if (heap->is_heap_corrupted) {
        os_printf("[GC_ERROR]Heap is corrupted, free memory failed.\n");
        return GC_ERROR;
    }

    hmu = obj_to_hmu(obj);

    base_addr = heap->base_addr;
    end_addr = base_addr + heap->current_size;

    os_mutex_lock(&heap->lock);

    if (hmu_is_in_heap(hmu, base_addr, end_addr)) {
#if BH_ENABLE_GC_VERIFY != 0
        hmu_verify(heap, hmu);
#endif
        ut = hmu_get_ut(hmu);
        if (ut == HMU_VO) {
            if (hmu_is_vo_freed(hmu)) {
                bh_assert(0);
                ret = GC_ERROR;
                goto out;
            }

            size = hmu_get_size(hmu);

            g_total_free += size;

            heap->total_free_size += size;

            if (!hmu_get_pinuse(hmu)) {
                prev = (hmu_t *)((char *)hmu - *((int *)hmu - 1));

                if (hmu_is_in_heap(prev, base_addr, end_addr)
                    && hmu_get_ut(prev) == HMU_FC) {
                    size += hmu_get_size(prev);
                    hmu = prev;
                    if (!unlink_hmu(heap, prev)) {
                        ret = GC_ERROR;
                        goto out;
                    }
                }
            }

            next = (hmu_t *)((char *)hmu + size);
            if (hmu_is_in_heap(next, base_addr, end_addr)) {
                if (hmu_get_ut(next) == HMU_FC) {
                    size += hmu_get_size(next);
                    if (!unlink_hmu(heap, next)) {
                        ret = GC_ERROR;
                        goto out;
                    }
                    next = (hmu_t *)((char *)hmu + size);
                }
            }

            if (!gci_add_fc(heap, hmu, size)) {
                ret = GC_ERROR;
                goto out;
            }

            if (hmu_is_in_heap(next, base_addr, end_addr)) {
                hmu_unmark_pinuse(next);
            }
        }
        else {
            ret = GC_ERROR;
            goto out;
        }
        ret = GC_SUCCESS;
        goto out;
    }

out:
    os_mutex_unlock(&heap->lock);
    return ret;
}

void
gc_dump_heap_stats(gc_heap_t *heap)
{
    os_printf("heap: %p, heap start: %p\n", heap, heap->base_addr);
    os_printf("total free: %" PRIu32 ", current: %" PRIu32
              ", highmark: %" PRIu32 "\n",
              heap->total_free_size, heap->current_size, heap->highmark_size);
    os_printf("g_total_malloc=%lu, g_total_free=%lu, occupied=%lu\n",
              g_total_malloc, g_total_free, g_total_malloc - g_total_free);
}

uint32
gc_get_heap_highmark_size(gc_heap_t *heap)
{
    return heap->highmark_size;
}

void
gci_dump(gc_heap_t *heap)
{
    hmu_t *cur = NULL, *end = NULL;
    hmu_type_t ut;
    gc_size_t size;
    int i = 0, p, mark;
    char inuse = 'U';

    cur = (hmu_t *)heap->base_addr;
    end = (hmu_t *)((char *)heap->base_addr + heap->current_size);

    while (cur < end) {
        ut = hmu_get_ut(cur);
        size = hmu_get_size(cur);
        p = hmu_get_pinuse(cur);
        mark = hmu_is_jo_marked(cur);

        if (ut == HMU_VO)
            inuse = 'V';
        else if (ut == HMU_JO)
            inuse = hmu_is_jo_marked(cur) ? 'J' : 'j';
        else if (ut == HMU_FC)
            inuse = 'F';

        if (size == 0 || size > (uint32)((uint8 *)end - (uint8 *)cur)) {
            os_printf("[GC_ERROR]Heap is corrupted, heap dump failed.\n");
            heap->is_heap_corrupted = true;
            return;
        }

        os_printf("#%d %08" PRIx32 " %" PRIx32 " %d %d"
                  " %c %" PRId32 "\n",
                  i, (int32)((char *)cur - (char *)heap->base_addr), (int32)ut,
                  p, mark, inuse, (int32)hmu_obj_size(size));
#if BH_ENABLE_GC_VERIFY != 0
        if (inuse == 'V') {
            gc_object_prefix_t *prefix = (gc_object_prefix_t *)(cur + 1);
            os_printf("#%s:%d\n", prefix->file_name, prefix->line_no);
        }
#endif

        cur = (hmu_t *)((char *)cur + size);
        i++;
    }

    if (cur != end) {
        os_printf("[GC_ERROR]Heap is corrupted, heap dump failed.\n");
        heap->is_heap_corrupted = true;
    }
}