1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "ml-private.h"
/*
* Global configuration instance to be shared between training and
* prediction threads.
*/
ml_config_t Cfg;
template <typename T>
static T clamp(const T& Value, const T& Min, const T& Max) {
return std::max(Min, std::min(Value, Max));
}
/*
* Initialize global configuration variable.
*/
void ml_config_load(ml_config_t *cfg) {
const char *config_section_ml = CONFIG_SECTION_ML;
bool enable_anomaly_detection = config_get_boolean(config_section_ml, "enabled", true);
/*
* Read values
*/
unsigned max_train_samples = config_get_number(config_section_ml, "maximum num samples to train", 6 * 3600);
unsigned min_train_samples = config_get_number(config_section_ml, "minimum num samples to train", 1 * 900);
unsigned train_every = config_get_number(config_section_ml, "train every", 3 * 3600);
unsigned num_models_to_use = config_get_number(config_section_ml, "number of models per dimension", 9);
unsigned diff_n = config_get_number(config_section_ml, "num samples to diff", 1);
unsigned smooth_n = config_get_number(config_section_ml, "num samples to smooth", 3);
unsigned lag_n = config_get_number(config_section_ml, "num samples to lag", 5);
double random_sampling_ratio = config_get_float(config_section_ml, "random sampling ratio", 1.0 / 5.0 /* default lag_n */);
unsigned max_kmeans_iters = config_get_number(config_section_ml, "maximum number of k-means iterations", 1000);
double dimension_anomaly_rate_threshold = config_get_float(config_section_ml, "dimension anomaly score threshold", 0.99);
double host_anomaly_rate_threshold = config_get_float(config_section_ml, "host anomaly rate threshold", 1.0);
std::string anomaly_detection_grouping_method = config_get(config_section_ml, "anomaly detection grouping method", "average");
time_t anomaly_detection_query_duration = config_get_number(config_section_ml, "anomaly detection grouping duration", 5 * 60);
size_t num_training_threads = config_get_number(config_section_ml, "num training threads", 4);
size_t flush_models_batch_size = config_get_number(config_section_ml, "flush models batch size", 128);
size_t suppression_window = config_get_number(config_section_ml, "dimension anomaly rate suppression window", 900);
size_t suppression_threshold = config_get_number(config_section_ml, "dimension anomaly rate suppression threshold", suppression_window / 2);
bool enable_statistics_charts = config_get_boolean(config_section_ml, "enable statistics charts", true);
/*
* Clamp
*/
max_train_samples = clamp<unsigned>(max_train_samples, 1 * 3600, 24 * 3600);
min_train_samples = clamp<unsigned>(min_train_samples, 1 * 900, 6 * 3600);
train_every = clamp<unsigned>(train_every, 1 * 3600, 6 * 3600);
num_models_to_use = clamp<unsigned>(num_models_to_use, 1, 7 * 24);
diff_n = clamp(diff_n, 0u, 1u);
smooth_n = clamp(smooth_n, 0u, 5u);
lag_n = clamp(lag_n, 1u, 5u);
random_sampling_ratio = clamp(random_sampling_ratio, 0.2, 1.0);
max_kmeans_iters = clamp(max_kmeans_iters, 500u, 1000u);
dimension_anomaly_rate_threshold = clamp(dimension_anomaly_rate_threshold, 0.01, 5.00);
host_anomaly_rate_threshold = clamp(host_anomaly_rate_threshold, 0.1, 10.0);
anomaly_detection_query_duration = clamp<time_t>(anomaly_detection_query_duration, 60, 15 * 60);
num_training_threads = clamp<size_t>(num_training_threads, 1, 128);
flush_models_batch_size = clamp<size_t>(flush_models_batch_size, 8, 512);
suppression_window = clamp<size_t>(suppression_window, 1, max_train_samples);
suppression_threshold = clamp<size_t>(suppression_threshold, 1, suppression_window);
/*
* Validate
*/
if (min_train_samples >= max_train_samples) {
netdata_log_error("invalid min/max train samples found (%u >= %u)", min_train_samples, max_train_samples);
min_train_samples = 1 * 3600;
max_train_samples = 6 * 3600;
}
/*
* Assign to config instance
*/
cfg->enable_anomaly_detection = enable_anomaly_detection;
cfg->max_train_samples = max_train_samples;
cfg->min_train_samples = min_train_samples;
cfg->train_every = train_every;
cfg->num_models_to_use = num_models_to_use;
cfg->diff_n = diff_n;
cfg->smooth_n = smooth_n;
cfg->lag_n = lag_n;
cfg->random_sampling_ratio = random_sampling_ratio;
cfg->max_kmeans_iters = max_kmeans_iters;
cfg->host_anomaly_rate_threshold = host_anomaly_rate_threshold;
cfg->anomaly_detection_grouping_method =
time_grouping_parse(anomaly_detection_grouping_method.c_str(), RRDR_GROUPING_AVERAGE);
cfg->anomaly_detection_query_duration = anomaly_detection_query_duration;
cfg->dimension_anomaly_score_threshold = dimension_anomaly_rate_threshold;
cfg->hosts_to_skip = config_get(config_section_ml, "hosts to skip from training", "!*");
cfg->sp_host_to_skip = simple_pattern_create(cfg->hosts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true);
// Always exclude anomaly_detection charts from training.
cfg->charts_to_skip = "anomaly_detection.* ";
cfg->charts_to_skip += config_get(config_section_ml, "charts to skip from training", "netdata.*");
cfg->sp_charts_to_skip = simple_pattern_create(cfg->charts_to_skip.c_str(), NULL, SIMPLE_PATTERN_EXACT, true);
cfg->stream_anomaly_detection_charts = config_get_boolean(config_section_ml, "stream anomaly detection charts", true);
cfg->num_training_threads = num_training_threads;
cfg->flush_models_batch_size = flush_models_batch_size;
cfg->suppression_window = suppression_window;
cfg->suppression_threshold = suppression_threshold;
cfg->enable_statistics_charts = enable_statistics_charts;
}
|