summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/dnn/gpu_data.cpp
blob: 6e7cec6becf5654e0d98931ea0088e851b1d8142 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_GPU_DaTA_CPP_
#define DLIB_GPU_DaTA_CPP_

// Only things that require CUDA are declared in this cpp file.  Everything else is in the
// gpu_data.h header so that it can operate as "header-only" code when using just the CPU.
#ifdef DLIB_USE_CUDA

#include "gpu_data.h"
#include <iostream>
#include "cuda_utils.h"
#include <cstring>


namespace dlib
{

// ----------------------------------------------------------------------------------------

    void memcpy (
        gpu_data& dest, 
        const gpu_data& src
    )
    {
        DLIB_CASSERT(dest.size() == src.size());
        if (src.size() == 0 || &dest == &src)
            return;

        memcpy(dest,0, src, 0, src.size());
    }

    void memcpy (
        gpu_data& dest, 
        size_t dest_offset,
        const gpu_data& src,
        size_t src_offset,
        size_t num
    )
    {
        DLIB_CASSERT(dest_offset + num <= dest.size());
        DLIB_CASSERT(src_offset + num <= src.size());
        if (num == 0)
            return;

        // if there is aliasing
        if (&dest == &src && std::max(dest_offset, src_offset) < std::min(dest_offset,src_offset)+num)
        {
            // if they perfectly alias each other then there is nothing to do
            if (dest_offset == src_offset)
                return;
            else
                std::memmove(dest.host()+dest_offset, src.host()+src_offset, sizeof(float)*num);
        }
        else
        {
            // if we write to the entire thing then we can use device_write_only()
            if (dest_offset == 0 && num == dest.size())
            {
                // copy the memory efficiently based on which copy is current in each object.
                if (src.device_ready())
                    CHECK_CUDA(cudaMemcpy(dest.device_write_only(), src.device()+src_offset,  num*sizeof(float), cudaMemcpyDeviceToDevice));
                else 
                    CHECK_CUDA(cudaMemcpy(dest.device_write_only(), src.host()+src_offset,    num*sizeof(float), cudaMemcpyHostToDevice));
            }
            else
            {
                // copy the memory efficiently based on which copy is current in each object.
                if (dest.device_ready() && src.device_ready())
                    CHECK_CUDA(cudaMemcpy(dest.device()+dest_offset, src.device()+src_offset, num*sizeof(float), cudaMemcpyDeviceToDevice));
                else if (!dest.device_ready() && src.device_ready())
                    CHECK_CUDA(cudaMemcpy(dest.host()+dest_offset, src.device()+src_offset,   num*sizeof(float), cudaMemcpyDeviceToHost));
                else if (dest.device_ready() && !src.device_ready())
                    CHECK_CUDA(cudaMemcpy(dest.device()+dest_offset, src.host()+src_offset,   num*sizeof(float), cudaMemcpyHostToDevice));
                else 
                    CHECK_CUDA(cudaMemcpy(dest.host()+dest_offset, src.host()+src_offset,     num*sizeof(float), cudaMemcpyHostToHost));
            }
        }
    }
// ----------------------------------------------------------------------------------------

    void gpu_data::
    wait_for_transfer_to_finish() const
    {
        if (have_active_transfer)
        {
            CHECK_CUDA(cudaStreamSynchronize((cudaStream_t)cuda_stream.get()));
            have_active_transfer = false;
            // Check for errors.  These calls to cudaGetLastError() are what help us find
            // out if our kernel launches have been failing.
            CHECK_CUDA(cudaGetLastError());
        }
    }

    void gpu_data::
    copy_to_device() const
    {
        // We want transfers to the device to always be concurrent with any device
        // computation.  So we use our non-default stream to do the transfer.
        async_copy_to_device();
        wait_for_transfer_to_finish();
    }

    void gpu_data::
    copy_to_host() const
    {
        if (!host_current)
        {
            wait_for_transfer_to_finish();
            CHECK_CUDA(cudaMemcpy(data_host.get(), data_device.get(), data_size*sizeof(float), cudaMemcpyDeviceToHost));
            host_current = true;
            // At this point we know our RAM block isn't in use because cudaMemcpy()
            // implicitly syncs with the device. 
            device_in_use = false;
            // Check for errors.  These calls to cudaGetLastError() are what help us find
            // out if our kernel launches have been failing.
            CHECK_CUDA(cudaGetLastError());
        }
    }

    void gpu_data::
    async_copy_to_device() const
    {
        if (!device_current)
        {
            if (device_in_use)
            {
                // Wait for any possible CUDA kernels that might be using our memory block to
                // complete before we overwrite the memory.
                CHECK_CUDA(cudaStreamSynchronize(0));
                device_in_use = false;
            }
            CHECK_CUDA(cudaMemcpyAsync(data_device.get(), data_host.get(), data_size*sizeof(float), cudaMemcpyHostToDevice, (cudaStream_t)cuda_stream.get()));
            have_active_transfer = true;
            device_current = true;
        }
    }

    void gpu_data::
    set_size(
        size_t new_size
    )
    {
        if (new_size == 0)
        {
            if (device_in_use)
            {
                // Wait for any possible CUDA kernels that might be using our memory block to
                // complete before we free the memory.
                CHECK_CUDA(cudaStreamSynchronize(0));
                device_in_use = false;
            }
            wait_for_transfer_to_finish();
            data_size = 0;
            host_current = true;
            device_current = true;
            device_in_use = false;
            data_host.reset();
            data_device.reset();
        }
        else if (new_size != data_size)
        {
            if (device_in_use)
            {
                // Wait for any possible CUDA kernels that might be using our memory block to
                // complete before we free the memory.
                CHECK_CUDA(cudaStreamSynchronize(0));
                device_in_use = false;
            }
            wait_for_transfer_to_finish();
            data_size = new_size;
            host_current = true;
            device_current = true;
            device_in_use = false;

            try
            {
                CHECK_CUDA(cudaGetDevice(&the_device_id));

                // free memory blocks before we allocate new ones.
                data_host.reset();
                data_device.reset();

                void* data;
                CHECK_CUDA(cudaMallocHost(&data, new_size*sizeof(float)));
                // Note that we don't throw exceptions since the free calls are invariably
                // called in destructors.  They also shouldn't fail anyway unless someone
                // is resetting the GPU card in the middle of their program.
                data_host.reset((float*)data, [](float* ptr){
                    auto err = cudaFreeHost(ptr);
                    if(err!=cudaSuccess)
                        std::cerr << "cudaFreeHost() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                });

                CHECK_CUDA(cudaMalloc(&data, new_size*sizeof(float)));
                data_device.reset((float*)data, [](float* ptr){
                    auto err = cudaFree(ptr);
                    if(err!=cudaSuccess)
                        std::cerr << "cudaFree() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                });

                if (!cuda_stream)
                {
                    cudaStream_t cstream;
                    CHECK_CUDA(cudaStreamCreateWithFlags(&cstream, cudaStreamNonBlocking));
                    cuda_stream.reset(cstream, [](void* ptr){
                        auto err = cudaStreamDestroy((cudaStream_t)ptr);
                        if(err!=cudaSuccess)
                            std::cerr << "cudaStreamDestroy() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                    });
                }

            }
            catch(...)
            {
                set_size(0);
                throw;
            }
        }
    }

// ----------------------------------------------------------------------------------------
}

#endif // DLIB_USE_CUDA

#endif // DLIB_GPU_DaTA_CPP_