summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/dnn/layers_abstract.h
blob: f07025ff884b16d5a8b64bd57ae732aebe9f184f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_DNn_LAYERS_ABSTRACT_H_
#ifdef DLIB_DNn_LAYERS_ABSTRACT_H_

#include "tensor_abstract.h"
#include "core_abstract.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    class SUBNET 
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object represents a deep neural network.  In particular, it is
                the simplified interface through which layer objects interact with their
                subnetworks.  A layer's two important tasks are to (1) take outputs from its
                subnetwork and forward propagate them through itself and (2) to backwards
                propagate an error gradient through itself and onto its subnetwork.
                The idea of a subnetwork is illustrated in the following diagram:

                  +---------------------------------------------------------+
                  | loss <-- layer1 <-- layer2 <-- ... <-- layern <-- input |
                  +---------------------------------------------------------+
                                      ^                            ^
                                      \__ subnetwork for layer1 __/

                Therefore, by "subnetwork" we mean the part of the network closer to the
                input.

                Note that there is no dlib::SUBNET type.  It is shown here purely to
                document the interface layer objects expect to see when they interact
                with a network.
        !*/

    public:
        // You aren't allowed to copy subnetworks from inside a layer.
        SUBNET(const SUBNET&) = delete;
        SUBNET& operator=(const SUBNET&) = delete;

        const tensor& get_output(
        ) const;
        /*!
            ensures
                - returns the output of this subnetwork.  This is the data that the next
                  layer in the network will take as input.
                - have_same_dimensions(#get_gradient_input(), get_output()) == true
        !*/

        tensor& get_gradient_input(
        );
        /*!
            ensures
                - returns the error gradient for this subnetwork.  That is, this is the
                  error gradient that this network will use to update itself.  Therefore,
                  when performing back propagation, layers that sit on top of this
                  subnetwork write their back propagated error gradients into
                  get_gradient_input().  Or to put it another way, during back propagation,
                  layers take the contents of their get_gradient_input() and back propagate
                  it through themselves and store the results into their subnetwork's
                  get_gradient_input().
        !*/

        const NEXT_SUBNET& subnet(
        ) const;
        /*!
            ensures
                - returns the subnetwork of *this network.  With respect to the diagram
                  above, if *this was layer1 then subnet() would return the network that
                  begins with layer2.
        !*/

        NEXT_SUBNET& subnet(
        );
        /*!
            ensures
                - returns the subnetwork of *this network.  With respect to the diagram
                  above, if *this was layer1 then subnet() would return the network that
                  begins with layer2.
        !*/

        const layer_details_type& layer_details(
        ) const; 
        /*!
            ensures
                - returns the layer_details_type instance that defines the behavior of the
                  layer at the top of this network.  I.e. returns the layer details that
                  defines the behavior of the layer nearest to the network output rather
                  than the input layer.  For computational layers, this is the object
                  implementing the EXAMPLE_COMPUTATIONAL_LAYER_ interface that defines the
                  layer's behavior.
        !*/

        unsigned int sample_expansion_factor (
        ) const;
        /*!
            ensures
                - When to_tensor() is invoked on this network's input layer it converts N
                  input objects into M samples, all stored inside a resizable_tensor.  It
                  is always the case that M is some integer multiple of N.
                  sample_expansion_factor() returns the value of this multiplier.  To be
                  very specific, it is always true that M==I*N where I is some integer.
                  This integer I is what is returned by sample_expansion_factor().

                  It should be noted that computational layers likely do not care about the
                  sample expansion factor.  It is only really of concern inside a loss
                  layer where you need to know its value so that tensor samples can be
                  matched against truth objects.  Moreover, in most cases the sample
                  expansion factor is 1.
        !*/

    };

// ----------------------------------------------------------------------------------------

    class EXAMPLE_COMPUTATIONAL_LAYER_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                Each computational layer in a deep neural network can be thought of as a
                function, f(data,parameters), that takes in a data tensor, some parameters,
                and produces an output tensor.  You create an entire deep network by
                composing these functions.  Importantly, you are able to use a wide range
                of different functions to accommodate the task you are trying to
                accomplish.  Therefore, dlib includes a number of common layer types but if
                you want to define your own then you simply implement a class with the same
                interface as EXAMPLE_COMPUTATIONAL_LAYER_.

                Note that there is no dlib::EXAMPLE_COMPUTATIONAL_LAYER_ type.  It is shown
                here purely to document the interface that a layer object must implement.

                The central work of defining a layer is implementing the forward and backward
                methods.  When you do this you have four options:
                    - Implement the forward() and backward() methods according to the
                      specification shown below.  Do not implement forward_inplace() and
                      backward_inplace().
                    - Implement the forward() and backward() methods according to the
                      specification shown below, except exclude the computed_output
                      parameter from backward().  Doing this will allow dlib to make some
                      layers execute in-place and therefore run a little faster and use
                      less memory. Do not implement forward_inplace() and
                      backward_inplace().
                    - Implement the forward_inplace() and backward_inplace() methods
                      according to the specification shown below.  Do not implement
                      forward() and backward().  These in-place methods allow some types of
                      layers to be implemented more efficiently.
                    - Implement the forward_inplace() and backward_inplace() methods
                      according to the specification shown below, except exclude the
                      computed_output parameter from backward_inplace().  Doing this will
                      allow dlib to make some layers execute in-place and therefore run a
                      little faster and use less memory.  Do not implement forward() and
                      backward().


                It should also be noted that layers may define additional layer specific
                fields and the solvers can use these fields as they see fit.  For example,
                some layers define get_learning_rate_multiplier() and
                get_weight_decay_multiplier() methods.  The solvers that come with dlib
                look at these methods, if they exist, and adjust the learning rate or
                weight decay for that layer according to the multiplier.  Therefore, you
                can add these methods to your layer types if you want, or even define new
                fields and new solvers that use those fields in some way.  
        !*/

    public:

        EXAMPLE_COMPUTATIONAL_LAYER_(
        );
        /*!
            ensures
                - Default constructs this object.  This function is not required to do
                  anything in particular but it must exist, that is, it is required that
                  layer objects be default constructable. 
        !*/

        EXAMPLE_COMPUTATIONAL_LAYER_ (
            const EXAMPLE_COMPUTATIONAL_LAYER_& item
        );
        /*!
            ensures
                - EXAMPLE_COMPUTATIONAL_LAYER_ objects are copy constructable
        !*/

        EXAMPLE_COMPUTATIONAL_LAYER_(
            const some_other_layer_type& item
        );
        /*!
            ensures
                - Constructs this object from item.  This form of constructor is optional
                  but it allows you to provide a conversion from one layer type to another.
                  For example, the following code is valid only if my_layer2 can be
                  constructed from my_layer1:
                    relu<fc<my_layer1<fc<input<matrix<float>>>>>> my_dnn1;
                    relu<fc<my_layer2<fc<input<matrix<float>>>>>> my_dnn2(my_dnn1);
                  This kind of pattern is useful if you want to use one type of layer
                  during training but a different type of layer during testing since it
                  allows you to easily convert between related deep neural network types.  

                  Additionally, if you provide a constructor to build a layer from another
                  layer type you should also write your layer's deserialize() routine such
                  that it can read that other layer's serialized data in addition to your
                  own serialized data.  
        !*/

        template <typename SUBNET>
        void setup (
            const SUBNET& sub
        );
        /*!
            requires
                - SUBNET implements the SUBNET interface defined at the top of this file.
            ensures
                - performs any necessary initial memory allocations and/or sets parameters
                  to their initial values prior to learning.  Therefore, calling setup
                  destroys any previously learned parameters.  Also, typically setup()
                  would look at the dimensions of the outputs of sub and configure the
                  number of parameters in *this accordingly.
        !*/

        template <typename SUBNET>
        void forward(
            const SUBNET& sub, 
            resizable_tensor& data_output
        );
        /*!
            requires
                - SUBNET implements the SUBNET interface defined at the top of this file.
                - setup() has been called.
            ensures
                - Runs the output of the subnetwork through this layer and stores the
                  results into #data_output.  In particular, forward() can use any of the
                  outputs in sub (e.g. sub.get_output(), sub.subnet().get_output(), etc.)
                  to compute whatever it wants.
        !*/

        template <typename SUBNET>
        void backward(
            const tensor& computed_output, // this parameter is optional
            const tensor& gradient_input, 
            SUBNET& sub, 
            tensor& params_grad
        );
        /*!
            requires
                - SUBNET implements the SUBNET interface defined at the top of this file.
                - setup() has been called.
                - computed_output is the tensor resulting from calling forward(sub,computed_output).  
                  Moreover, this was the most recent call to forward().  This means that
                  forward() is allowed to cache intermediate results so they can be used
                  during the backward computation.
                - have_same_dimensions(gradient_input, computed_output) == true
                - have_same_dimensions(sub.get_gradient_input(), sub.get_output()) == true
                - have_same_dimensions(params_grad, get_layer_params()) == true
            ensures
                - This function outputs the gradients of this layer with respect to the
                  input data from sub and also with respect to this layer's parameters.
                  These gradients are stored into #sub and #params_grad, respectively. To be
                  precise, the gradients are taken of a function f(sub,get_layer_params())
                  which is defined thusly:   
                    - Recalling that computed_output is a function of both sub and get_layer_params(), 
                      since it is the result of calling forward(sub,computed_output):
                      let f(sub,get_layer_params()) == dot(computed_output, gradient_input)
                  Then we define the following gradient vectors: 
                    - PARAMETER_GRADIENT == gradient of f(sub,get_layer_params()) with
                      respect to get_layer_params(). 
                    - for all valid I:
                        - DATA_GRADIENT_I == gradient of f(sub,get_layer_params()) with
                          respect to layer<I>(sub).get_output() (recall that forward() can
                          draw inputs from the immediate sub layer, sub.subnet(), or
                          any earlier layer.  So you must consider the gradients with
                          respect to all inputs drawn from sub)
                  Finally, backward() outputs these gradients by performing:
                    - params_grad = PARAMETER_GRADIENT 
                    - for all valid I:
                        - layer<I>(sub).get_gradient_input() += DATA_GRADIENT_I
        !*/

        void forward_inplace(
            const tensor& data_input, 
            tensor& data_output
        );
        /*!
            requires
                - have_same_dimensions(data_input,data_output) == true
                - setup() has been called.
            ensures
                - Runs the data_input tensor through this layer and stores the output into
                  #data_output.
                - This function supports in-place operation, i.e. having
                  is_same_object(data_input, data_output)==true
        !*/

        void backward_inplace(
            const tensor& computed_output, // this parameter is optional
            const tensor& gradient_input,
            tensor& data_grad,
            tensor& params_grad
        );
        /*!
            requires
                - setup() has been called.
                - computed_output is the tensor resulting from the most recent call to
                  forward_inplace().  This means that forward_inplace() is allowed to cache
                  intermediate results so they can be used during the backward computation.
                - have_same_dimensions(gradient_input, data_grad) == true
                - have_same_dimensions(gradient_input, computed_output) == true
                - have_same_dimensions(params_grad, get_layer_params()) == true
            ensures
                - This function supports in-place operation, i.e. having
                  is_same_object(gradient_input, data_grad)==true
                - This function outputs the gradients of this layer with respect to the
                  input data from a sublayer and also with respect to this layer's parameters.
                  These gradients are stored into #data_grad and #params_grad, respectively. To be
                  precise, the gradients are taken of a function f(data_input,get_layer_params())
                  which is defined thusly:   
                    - Recalling that computed_output is a function of both the input to
                      forward_inplace() and get_layer_params(), since it is the result of
                      calling forward_inplace(data_input,computed_output):
                      let f(data_input,get_layer_params()) == dot(computed_output, gradient_input)
                  Then we define the following gradient vectors: 
                    - PARAMETER_GRADIENT == gradient of f(data_input,get_layer_params()) with
                      respect to get_layer_params(). 
                    - DATA_GRADIENT == gradient of f(data_input,get_layer_params()) with respect
                      to data_input. 
                  Finally, backward_inplace() outputs these gradients by performing:
                    - params_grad = PARAMETER_GRADIENT 
                    - if (is_same_object(gradient_input, data_grad)) then
                        - data_grad = DATA_GRADIENT
                    - else
                        - data_grad += DATA_GRADIENT
        !*/

        const tensor& get_layer_params(
        ) const; 
        /*!
            ensures
                - returns the parameters that define the behavior of forward().
        !*/

        tensor& get_layer_params(
        ); 
        /*!
            ensures
                - returns the parameters that define the behavior of forward().
        !*/


        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        /*!
            These two functions are optional.  If provided, they should map between
            (column,row) coordinates in input and output tensors of forward().  Providing
            these functions allows you to use global utility functions like
            input_tensor_to_output_tensor().
        !*/

        void clean (
        );
        /*!
            Implementing this function is optional.  If you don't need it then you don't
            have to provide a clean().  But if you do provide it then it must behave as
            follows:

            ensures
                - calling clean() Causes this object to forget about everything except its
                  parameters.  This is useful if your layer caches information between
                  forward and backward passes and you want to clean out that cache
                  information before saving the network to disk.  
        !*/

    };

    std::ostream& operator<<(std::ostream& out, const EXAMPLE_COMPUTATIONAL_LAYER_& item);
    /*!
        print a string describing this layer.
    !*/

    void to_xml(const EXAMPLE_COMPUTATIONAL_LAYER_& item, std::ostream& out);
    /*!
        This function is optional, but required if you want to print your networks with
        net_to_xml().  Therefore, to_xml() prints a layer as XML.
    !*/

    void serialize(const EXAMPLE_COMPUTATIONAL_LAYER_& item, std::ostream& out);
    void deserialize(EXAMPLE_COMPUTATIONAL_LAYER_& item, std::istream& in);
    /*!
        provides serialization support  
    !*/

    // For each layer you define, always define an add_layer template so that layers can be
    // easily composed.  Moreover, the convention is that the layer class ends with an _
    // while the add_layer template has the same name but without the trailing _.
    template <typename SUBNET>
    using EXAMPLE_COMPUTATIONAL_LAYER = add_layer<EXAMPLE_COMPUTATIONAL_LAYER_, SUBNET>;

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    enum fc_bias_mode
    {
        FC_HAS_BIAS = 0,
        FC_NO_BIAS = 1
    };

    struct num_fc_outputs
    {
        num_fc_outputs(unsigned long n) : num_outputs(n) {}
        unsigned long num_outputs;
    };

    template <
        unsigned long num_outputs,
        fc_bias_mode bias_mode
        >
    class fc_
    {
        /*!
            REQUIREMENTS ON num_outputs
                num_outputs > 0

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a fully connected layer that
                takes an input tensor and multiplies it by a weight matrix and outputs the
                results.

                The dimensions of the tensors output by this layer are as follows (letting
                IN be the input tensor and OUT the output tensor):
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == get_num_outputs()
                    - OUT.nr() == 1
                    - OUT.nc() == 1
        !*/

    public:

        fc_(
        );
        /*!
            ensures
                - #get_num_outputs() == num_outputs
                - #get_bias_mode() == bias_mode 
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        fc_(
            num_fc_outputs o
        );
        /*!
            ensures
                - #get_num_outputs() == o.num_outputs 
                - #get_bias_mode() == bias_mode 
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        unsigned long get_num_outputs (
        ) const; 
        /*!
            ensures
                - This layer outputs column vectors that contain get_num_outputs()
                  elements. That is, the output tensor T from forward() will be such that:
                    - T.num_samples() == however many samples were given to forward().
                    - T.k() == get_num_outputs()
                    - The rest of the dimensions of T will be 1.
        !*/

        void set_num_outputs(
            long num
        );
        /*!
            requires
                - num > 0
                - get_layer_params().size() == 0 || get_num_outputs() == num
                  (i.e. You can't change the number of outputs in fc_ if the parameter
                  tensor has already been allocated.)
            ensures
                - #get_num_outputs() == num
        !*/

        fc_bias_mode get_bias_mode (
        ) const;
        /*!
            ensures
                - returns the bias mode which determines if this layer includes bias terms.
                  That is, if the bias mode is FC_HAS_BIAS then a different constant scalar
                  is added to each of the outputs of this layer. 
        !*/

        double get_learning_rate_multiplier(
        ) const;  
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its parameters be
                  multiplied by get_learning_rate_multiplier().
        !*/

        double get_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its parameters be
                  multiplied by get_weight_decay_multiplier().
        !*/

        void set_learning_rate_multiplier(
            double val
        );
        /*!
            requires
                - val >= 0
            ensures
                - #get_learning_rate_multiplier() == val
        !*/

        void set_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_weight_decay_multiplier() == val
        !*/

        double get_bias_learning_rate_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its bias parameters be
                  multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
        !*/

        double get_bias_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its bias parameters be
                  multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
        !*/

        void set_bias_learning_rate_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_learning_rate_multiplier() == val
        !*/

        void set_bias_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_weight_decay_multiplier() == val
        !*/

        alias_tensor_const_instance get_weights(
        ) const;
        /*!
            ensures
                - returns an alias of get_layer_params(), containing the weights matrix of
                  the fully connected layer.
                - #get_weights().num_samples() is the number of elements in input sample,
                  i.e. sublayer's output's k * nc * nr.
                - #get_bias().k() == #get_num_outputs()
                - if get_bias_mode() == FC_HAS_BIAS:
                    - #get_layer_params().size() == (#get_weights().size() + #get_biases().size())
                - else:
                    - #get_layer_params().size() == #get_weights().size()
        !*/

        alias_tensor_instance get_weights(
        );
        /*!
            ensures
                - returns an alias of get_layer_params(), containing the weights matrix of
                  the fully connected layer.
                - #get_weights().num_samples() is the number of elements in input sample,
                  i.e. sublayer's output's k * nc * nr.
                - #get_bias().k() == #get_num_outputs()
                - if get_bias_mode() == FC_HAS_BIAS:
                    - #get_layer_params().size() == (#get_weights().size() + #get_biases().size())
                - else:
                    - #get_layer_params().size() == #get_weights().size()
        !*/

        alias_tensor_const_instance get_biases(
        ) const;
        /*!
            requires
                - #get_bias_mode() == FC_HAS_BIAS
            ensures
                - returns an alias of get_layer_params(), containing the bias vector of
                  the fully connected layer.
                - #get_bias().num_samples() == 1
                - #get_bias().k() == #get_num_outputs()
                - #get_layer_params().size() == (#get_weights().size() + #get_biases().size())
        !*/

        alias_tensor_instance get_biases(
        );
        /*!
            requires
                - #get_bias_mode() == FC_HAS_BIAS
            ensures
                - returns an alias of get_layer_params(), containing the bias vector of
                  the fully connected layer.
                - #get_bias().num_samples() == 1
                - #get_bias().k() == #get_num_outputs()
                - #get_layer_params().size() == (#get_weights().size() + #get_biases().size())
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/

    };

    template <
        unsigned long num_outputs,
        typename SUBNET
        >
    using fc = add_layer<fc_<num_outputs,FC_HAS_BIAS>, SUBNET>;

    template <
        unsigned long num_outputs,
        typename SUBNET
        >
    using fc_no_bias = add_layer<fc_<num_outputs,FC_NO_BIAS>, SUBNET>;

// ----------------------------------------------------------------------------------------

    struct num_con_outputs
    {
        num_con_outputs(unsigned long n) : num_outputs(n) {}
        unsigned long num_outputs;
    };

    template <
        long _num_filters,
        long _nr,
        long _nc,
        int _stride_y,
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
        >
    class con_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                - _num_filters > 0
                - _nr >= 0
                - _nc >= 0
                - _stride_y > 0
                - _stride_x > 0
                - _padding_y >= 0
                - _padding_x >= 0
                - Also, we require that:
                    - if (_nr == 0) then
                        - _padding_y == 0
                    - else
                        - _padding_y < _nr
                    - if (_nc == 0) then
                        - _padding_x == 0
                    - else
                        - _padding_x < _nc

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a convolution layer that takes an
                input tensor (nominally representing an image) and convolves it with a set
                of filters and then outputs the results. 

                The dimensions of the tensors output by this layer are as follows (letting
                IN be the input tensor and OUT the output tensor):
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == num_filters()
                    - OUT.nr() == 1+(IN.nr() + 2*padding_y() - nr())/stride_y()
                    - OUT.nc() == 1+(IN.nc() + 2*padding_x() - nc())/stride_x()

                Note also that setting _nr or _nc to 0 has a special meaning of "set the
                filter size equal to the input image size".  Specifically, it means: 
                    - if (_nr == 0) then
                        - nr() == IN.nr()
                        - OUT.nr() == 1
                    - if (_nc == 0) then
                        - nc() == IN.nc()
                        - OUT.nc() == 1
        !*/

    public:
        con_(
        );
        /*!
            ensures
                - #num_filters() == _num_filters
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        con_(
            num_con_outputs o
        );
        /*!
            ensures
                - #num_filters() == o.num_outputs 
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        long num_filters(
        ) const; 
        /*!
            ensures
                - returns the number of filters contained in this layer.  The k dimension
                  of the output tensors produced by this layer will be equal to the number
                  of filters.
        !*/

        void set_num_filters(
            long num
        );
        /*!
            requires
                - num > 0
                - get_layer_params().size() == 0 || num_filters() == num
                  (i.e. You can't change the number of filters in con_ if the parameter
                  tensor has already been allocated.)
            ensures
                - #num_filters() == num
        !*/

        long nr(
        ) const; 
        /*!
            ensures
                - returns the number of rows in the filters in this layer.  Note that if
                  nr()==0 then it means the size of the filter is not yet assigned, but
                  once setup() is called nr() will be set to the input tensor's nr().
                  Therefore, nr()==0 has the special interpretation of "be the same size as
                  the input tensor".
        !*/

        long nc(
        ) const;
        /*!
            ensures
                - returns the number of columns in the filters in this layer.  Note that if
                  nc()==0 then it means the size of the filter is not yet assigned, but
                  once setup() is called nc() will be set to the input tensor's nc().
                  Therefore, nc()==0 has the special interpretation of "be the same size as
                  the input tensor".
        !*/

        long stride_y(
        ) const; 
        /*!
            ensures
                - returns the vertical stride used when convolving the filters over an
                  image.  That is, each filter will be moved stride_y() pixels down at a
                  time when it moves over the image.
        !*/

        long stride_x(
        ) const;
        /*!
            ensures
                - returns the horizontal stride used when convolving the filters over an
                  image.  That is, each filter will be moved stride_x() pixels right at a
                  time when it moves over the image.
        !*/

        long padding_y(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the top and bottom
                  sides of the image.
        !*/

        long padding_x(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the left and right 
                  sides of the image.
        !*/

        double get_learning_rate_multiplier(
        ) const;  
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its parameters be
                  multiplied by get_learning_rate_multiplier().
        !*/

        double get_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its parameters be
                  multiplied by get_weight_decay_multiplier().
        !*/

        void set_learning_rate_multiplier(
            double val
        );
        /*!
            requires
                - val >= 0
            ensures
                - #get_learning_rate_multiplier() == val
        !*/

        void set_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_weight_decay_multiplier() == val
        !*/

        double get_bias_learning_rate_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its bias parameters be
                  multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
        !*/

        double get_bias_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its bias parameters be
                  multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
        !*/

        void set_bias_learning_rate_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_learning_rate_multiplier() == val
        !*/

        void set_bias_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_weight_decay_multiplier() == val
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/

    };

    template <
        long num_filters,
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using con = add_layer<con_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <
        long _num_filters,
        long _nr,
        long _nc,
        int _stride_y,
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
        >
    class cont_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                All of them must be > 0.
                Also, we require that:
                    - 0 <= _padding_y && _padding_y < _nr
                    - 0 <= _padding_x && _padding_x < _nc

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a transposed convolution layer
                that takes an input tensor and transpose convolves (sometimes called
                "deconvolution") it with a set of filters and then outputs the results. 

                This is essentially a convolutional layer that allows fractional strides.
                Therefore, you can make output tensors that are larger than the input
                tensors using this layer type. 

                
                The dimensions of the tensors output by this layer are as follows (letting
                IN be the input tensor and OUT the output tensor):
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == num_filters()
                    - OUT.nr() == stride_y()*(IN.nr()-1) + nr() - 2*padding_y()
                    - OUT.nc() == stride_x()*(IN.nc()-1) + nc() - 2*padding_x()
        !*/

    public:
        cont_(
        );
        /*!
            ensures
                - #num_filters() == _num_filters
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        cont_(
            num_con_outputs o
        );
        /*!
            ensures
                - #num_filters() == o.num_outputs 
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 1
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 0
        !*/

        long num_filters(
        ) const; 
        /*!
            ensures
                - returns the number of filters contained in this layer.  The k dimension
                  of the output tensors produced by this layer will be equal to the number
                  of filters.
        !*/

        void set_num_filters(
            long num
        );
        /*!
            requires
                - num > 0
                - get_layer_params().size() == 0 || num_filters() == num
                  (i.e. You can't change the number of filters in cont_ if the parameter
                  tensor has already been allocated.)
            ensures
                - #num_filters() == num
        !*/

        long nr(
        ) const; 
        /*!
            ensures
                - returns the number of rows in the filters in this layer.
        !*/

        long nc(
        ) const;
        /*!
            ensures
                - returns the number of columns in the filters in this layer.
        !*/

        long stride_y(
        ) const; 
        /*!
            ensures
                - returns the vertical stride used when convolving the filters over an
                  image.  That is, each filter will be moved 1.0/stride_y() pixels down at
                  a time when it moves over the image.
        !*/

        long stride_x(
        ) const;
        /*!
            ensures
                - returns the horizontal stride used when convolving the filters over an
                  image.  That is, each filter will be moved 1.0/stride_x() pixels right at
                  a time when it moves over the image.
        !*/

        long padding_y(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the top and bottom
                  sides of the image.
        !*/

        long padding_x(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the left and right 
                  sides of the image.
        !*/

        double get_learning_rate_multiplier(
        ) const;  
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its parameters be
                  multiplied by get_learning_rate_multiplier().
        !*/

        double get_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its parameters be
                  multiplied by get_weight_decay_multiplier().
        !*/

        void set_learning_rate_multiplier(
            double val
        );
        /*!
            requires
                - val >= 0
            ensures
                - #get_learning_rate_multiplier() == val
        !*/

        void set_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_weight_decay_multiplier() == val
        !*/

        double get_bias_learning_rate_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its bias parameters be
                  multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
        !*/

        double get_bias_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its bias parameters be
                  multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
        !*/

        void set_bias_learning_rate_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_learning_rate_multiplier() == val
        !*/

        void set_bias_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_weight_decay_multiplier() == val
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/

    };

    template <
        long num_filters,
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using cont = add_layer<cont_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <
        int scale_y, 
        int scale_x 
        >
    class upsample_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                All of them must be >= 1.

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it allows you to upsample a layer using
                bilinear interpolation.  To be very specific, it upsamples each of the
                channels in an input tensor.  Therefore, if IN is the input tensor to this
                layer and OUT the output tensor, then we will have:
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == IN.k() 
                    - OUT.nr() == IN.nr()*scale_y
                    - OUT.nc() == IN.nr()*scale_x
                    - for all valid i,k:  image_plane(OUT,i,k) is a copy of
                      image_plane(IN,i,k) that has been bilinearly interpolated to fit into
                      the shape of image_plane(OUT,i,k).
        !*/
    public:

        upsample_(
        );
        /*!
            ensures
                - This object has no state, so the constructor does nothing, aside from
                  providing default constructability.
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <
        int scale,
        typename SUBNET
        >
    using upsample = add_layer<upsample_<scale,scale>, SUBNET>;

// ----------------------------------------------------------------------------------------

    class dropout_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a dropout layer.  Therefore, it
                passes its inputs through the stochastic function f(x) which outputs either
                0 or x.  The probability of 0 being output is given by the drop_rate
                argument to this object's constructor.

                Note that, after you finish training a network with dropout, it is a good
                idea to replace each dropout_ layer with a multiply_ layer because the
                multiply_ layer is faster and deterministic. 
        !*/

    public:

        explicit dropout_(
            float drop_rate = 0.5
        );
        /*!
            requires
                - 0 <= drop_rate <= 1
            ensures
                - #get_drop_rate() == drop_rate
        !*/

        float get_drop_rate (
        ) const; 
        /*!
            ensures
                - returns the probability that an individual input value to this layer will
                  be replaced with 0.
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <typename SUBNET>
    using dropout = add_layer<dropout_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class multiply_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a basic layer that just
                multiplies its input tensor with a constant value and returns the result.
                It therefore has no learnable parameters.
        !*/

    public:
        explicit multiply_(
            float val = 0.5
        ); 
        /*!
            ensures
                - #get_multiply_value() == val
        !*/

        multiply_ (
            const dropout_& item
        ); 
        /*!
            ensures
                - #get_multiply_value() == 1-item.get_drop_rate()
                  (i.e. We construct the multiply_ layer so that it is essentially a
                  deterministic version of the given dropout_ layer)
        !*/

        float get_multiply_value (
        ) const;
        /*!
            ensures
                - this layer simply multiplies its input tensor by get_multiply_value() and
                  produces the result as output.
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <typename SUBNET>
    using multiply = add_layer<multiply_, SUBNET>;

// ----------------------------------------------------------------------------------------

    enum layer_mode
    {
        CONV_MODE = 0, // convolutional mode
        FC_MODE = 1    // fully connected mode
    };

    const double DEFAULT_BATCH_NORM_EPS = 0.0001;

    template <
        layer_mode mode
        >
    class bn_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a batch normalization layer that
                implements the method described in the paper: 
                    Batch Normalization: Accelerating Deep Network Training by Reducing
                    Internal Covariate Shift by Sergey Ioffe and Christian Szegedy
                
                In particular, this layer produces output tensors with the same
                dimensionality as the input tensors, except that the mean and variances of
                the elements have been standardized to 0 and 1 respectively. 

                It should also be noted that when tensors with a num_samples() dimension of
                1 are passed to this layer it doesn't perform batch normalization.
                Instead, it runs in "inference mode" where the learned linear normalizing
                transformation is used to transform the tensor. 

                Finally, after you finish training a batch normalized network, it is a good
                idea to replace each bn_ layer with an affine_ layer because the affine_
                layer is faster and will never surprise you by performing batch
                normalization on tensors that have a num_samples() dimension > 1.  This allows
                you to run large mini-batches of samples through your final network without
                batch normalization executing at all. 
        !*/

    public:
        bn_(
        );
        /*!
            ensures
                - #get_mode() == mode
                - #get_running_stats_window_size()      == 100
                - #get_learning_rate_multiplier()       == 1
                - #get_weight_decay_multiplier()        == 0
                - #get_bias_learning_rate_multiplier()  == 1
                - #get_bias_weight_decay_multiplier()   == 1
                - #get_eps() == tt::DEFAULT_BATCH_NORM_EPS
        !*/

        explicit bn_(
            unsigned long window_size,
            double eps = tt::DEFAULT_BATCH_NORM_EPS
        );
        /*!
            requires
                - eps > 0
                - window_size > 0
            ensures
                - #get_mode() == mode 
                - #get_running_stats_window_size()     == window_size
                - #get_learning_rate_multiplier()      == 1
                - #get_weight_decay_multiplier()       == 0
                - #get_bias_learning_rate_multiplier() == 1
                - #get_bias_weight_decay_multiplier()  == 1
                - #get_eps() == eps
        !*/

        layer_mode get_mode(
        ) const; 
        /*!
            ensures
                - returns the mode of this layer, either CONV_MODE or FC_MODE.
                  If the mode is FC_MODE then the normalization is applied across the
                  samples in a tensor (i.e. k()*nr()*nc() different things will be
                  normalized).  Otherwise, normalization is applied across everything
                  except for the k() dimension, resulting in there being only k()
                  normalization equations that are applied spatially over the tensor.

                  Therefore, if you are putting batch normalization after a fully connected
                  layer you should use FC_MODE.  Otherwise, if you are putting batch
                  normalization after a convolutional layer you should use CONV_MODE.
        !*/

        double get_eps(
        ) const; 
        /*!
            ensures
                - When doing batch normalization, we are dividing by the standard
                  deviation.  This epsilon value returned by this function is added to the
                  variance to prevent the division from dividing by zero.
        !*/

        unsigned long get_running_stats_window_size (
        ) const; 
        /*!
            ensures
                - Just as recommended in the batch normalization paper, this object keeps a
                  running average of the mean and standard deviations of the features.
                  These averages are used during "inference mode" so you can run a single
                  object through a batch normalized network.  They are also what is used to
                  initialize an affine_ layer that is constructed from a bn_ layer.  This
                  function returns the effective number of recent samples used to compute
                  the running average.
        !*/

        void set_running_stats_window_size (
            unsigned long new_window_size
        );
        /*!
            requires
                - new_window_size > 0
            ensures
                - #get_running_stats_window_size() == new_window_size
        !*/

        double get_learning_rate_multiplier(
        ) const;  
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its parameters be
                  multiplied by get_learning_rate_multiplier().
        !*/

        double get_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its parameters be
                  multiplied by get_weight_decay_multiplier().
        !*/

        void set_learning_rate_multiplier(
            double val
        );
        /*!
            requires
                - val >= 0
            ensures
                - #get_learning_rate_multiplier() == val
        !*/

        void set_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_weight_decay_multiplier() == val
        !*/

        double get_bias_learning_rate_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the learning rate used to optimize its bias parameters be
                  multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
        !*/

        double get_bias_weight_decay_multiplier(
        ) const; 
        /*!
            ensures
                - returns a multiplier number.  The interpretation is that this object is
                  requesting that the weight decay used to optimize its bias parameters be
                  multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
        !*/

        void set_bias_learning_rate_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_learning_rate_multiplier() == val
        !*/

        void set_bias_weight_decay_multiplier(
            double val
        ); 
        /*!
            requires
                - val >= 0
            ensures
                - #get_bias_weight_decay_multiplier() == val
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <typename SUBNET>
    using bn_con = add_layer<bn_<CONV_MODE>, SUBNET>;
    template <typename SUBNET>
    using bn_fc = add_layer<bn_<FC_MODE>, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <typename net_type>
    void set_all_bn_running_stats_window_sizes (
        const net_type& net,
        unsigned long new_window_size
    );
    /*!
        requires
            - new_window_size > 0
            - net_type is an object of type add_layer, add_loss_layer, add_skip_layer, or
              add_tag_layer.
        ensures
            - Sets the get_running_stats_window_size() field of all bn_ layers in net to
              new_window_size.
    !*/

// ----------------------------------------------------------------------------------------

    class affine_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it applies a simple pointwise linear
                transformation to an input tensor.  You can think of it as having two
                parameter tensors, A and B.  If the input tensor is called INPUT then the
                output of this layer is:
                    A*INPUT+B
                where all operations are performed element wise and each sample in the
                INPUT tensor is processed separately.

                Moreover, this object has two modes that effect the dimensionalities of A
                and B and how they are applied to compute A*INPUT+B.  If
                get_mode()==FC_MODE then A and B each have the same dimensionality as the
                input tensor, except their num_samples() dimensions are 1.  If
                get_mode()==CONV_MODE then A and B have all their dimensions set to 1
                except for k(), which is equal to INPUT.k().

                In either case, the computation of A*INPUT+B is performed pointwise over all
                the elements of INPUT using either:
                    OUTPUT(n,k,r,c) == A(1,k,r,c)*INPUT(n,k,r,c)+B(1,k,r,c)
                or
                    OUTPUT(n,k,r,c) == A(1,k,1,1)*INPUT(n,k,r,c)+B(1,k,1,1)
                as appropriate.


                Finally, note that the parameters of this layer are not learnable and
                therefore not modified during network updates.  Instead, the layer will
                perform the identity transformation unless it is initialized with a bn_
                layer, in which case it will perform whatever transformation the bn_ layer
                has learned.
        !*/

    public:

        affine_(
        );
        /*!
            ensures
                - #get_mode() == FC_MODE 
        !*/

        affine_(
            layer_mode mode
        );
        /*!
            ensures
                - #get_mode() == mode
        !*/

        template <
            layer_mode mode
            >
        affine_(
            const bn_<mode>& layer
        );
        /*!
            ensures
                - Constructs affine_ so that it performs the same transformation as the
                  supplied batch normalization layer.  You would want to do this after you
                  finish training a network with bn_ layers because the affine_ layer will
                  execute faster.  
                - #get_mode() == layer.get_mode()
        !*/

        layer_mode get_mode(
        ) const; 
        /*!
            ensures
                - returns the mode of this layer, either CONV_MODE or FC_MODE.  
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the
            EXAMPLE_COMPUTATIONAL_LAYER_ interface.  Also note that get_layer_params()
            always returns an empty tensor since there are no learnable parameters in this
            object.
        !*/

    };

    template <typename SUBNET>
    using affine = add_layer<affine_, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <
        long _nr,
        long _nc,
        int _stride_y,
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
        >
    class max_pool_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                - _nr >= 0
                - _nc >= 0
                - _stride_y > 0
                - _stride_x > 0
                - _padding_y >= 0
                - _padding_x >= 0
                - if (_nr != 0) then
                    - _padding_y < _nr
                - else
                    - _padding_y == 0
                - if (_nc != 0) then
                    - _padding_x < _nr
                - else
                    - _padding_x == 0

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a max pooling layer that takes an
                input tensor and downsamples it.  It does this by sliding a window over the
                images in an input tensor and outputting, for each channel, the maximum
                element within the window.  

                If _nr == 0 then it means the filter size covers all the rows in the input
                tensor, similarly for the _nc parameter.  To be precise, if we call the
                input tensor IN and the output tensor OUT, then OUT is defined as follows:
                    - let FILT_NR == (nr()==0) ? IN.nr() : nr()
                    - let FILT_NC == (nc()==0) ? IN.nc() : nc()
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == IN.k()
                    - OUT.nr() == 1+(IN.nr() + 2*padding_y() - FILT_NR)/stride_y()
                    - OUT.nc() == 1+(IN.nc() + 2*padding_x() - FILT_NC)/stride_x()
                    - for all valid s, k, r, and c:
                        - image_plane(OUT,s,k)(r,c) == max(subm_clipped(image_plane(IN,s,k),
                                                                  centered_rect(x*stride_x() + FILT_NC/2 - padding_x(),
                                                                                y*stride_y() + FILT_NR/2 - padding_y(),
                                                                                FILT_NC,
                                                                                FILT_NR)))
        !*/

    public:

        max_pool_ (
        );
        /*!
            ensures
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
        !*/

        long nr(
        ) const; 
        /*!
            ensures
                - returns the number of rows in the pooling window or 0 if the window size
                  is "the entire input tensor".
        !*/

        long nc(
        ) const;
        /*!
            ensures
                - returns the number of rows in the pooling window or 0 if the window size
                  is "the entire input tensor".
        !*/

        long stride_y(
        ) const; 
        /*!
            ensures
                - returns the vertical stride used when scanning the max pooling window
                  over an image.  That is, each window will be moved stride_y() pixels down
                  at a time when it moves over the image.
        !*/

        long stride_x(
        ) const;
        /*!
            ensures
                - returns the horizontal stride used when scanning the max pooling window
                  over an image.  That is, each window will be moved stride_x() pixels down
                  at a time when it moves over the image.
        !*/

        long padding_y(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the top and bottom
                  sides of the image.
        !*/

        long padding_x(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the left and right 
                  sides of the image.
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using max_pool = add_layer<max_pool_<nr,nc,stride_y,stride_x>, SUBNET>;

    template <
        typename SUBNET
        >
    using max_pool_everything = add_layer<max_pool_<0,0,1,1>, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <
        long _nr,
        long _nc,
        int _stride_y,
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
        >
    class avg_pool_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                - _nr >= 0
                - _nc >= 0
                - _stride_y > 0
                - _stride_x > 0
                - _padding_y >= 0
                - _padding_x >= 0
                - if (_nr != 0) then
                    - _padding_y < _nr
                - else
                    - _padding_y == 0
                - if (_nc != 0) then
                    - _padding_x < _nr
                - else
                    - _padding_x == 0

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines an average pooling layer that
                takes an input tensor and downsamples it.  It does this by sliding a window
                over the images in an input tensor and outputting, for each channel, the
                average element within the window.  

                If _nr == 0 then it means the filter size covers all the rows in the input
                tensor, similarly for the _nc parameter.  To be precise, if we call the
                input tensor IN and the output tensor OUT, then OUT is defined as follows:
                    - let FILT_NR == (nr()==0) ? IN.nr() : nr()
                    - let FILT_NC == (nc()==0) ? IN.nc() : nc()
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == IN.k()
                    - OUT.nr() == 1+(IN.nr() + 2*padding_y() - FILT_NR)/stride_y()
                    - OUT.nc() == 1+(IN.nc() + 2*padding_x() - FILT_NC)/stride_x()
                    - for all valid s, k, r, and c:
                        - image_plane(OUT,s,k)(r,c) == mean(subm_clipped(image_plane(IN,s,k),
                                                                  centered_rect(x*stride_x() + FILT_NC/2 - padding_x(),
                                                                                y*stride_y() + FILT_NR/2 - padding_y(),
                                                                                FILT_NC,
                                                                                FILT_NR)))
        !*/

    public:

        avg_pool_ (
        );
        /*!
            ensures
                - #nr() == _nr
                - #nc() == _nc
                - #stride_y() == _stride_y
                - #stride_x() == _stride_x
                - #padding_y() == _padding_y
                - #padding_x() == _padding_x
        !*/

        long nr(
        ) const; 
        /*!
            ensures
                - returns the number of rows in the pooling window or 0 if the window size
                  is "the entire input tensor".
        !*/

        long nc(
        ) const;
        /*!
            ensures
                - returns the number of rows in the pooling window or 0 if the window size
                  is "the entire input tensor".
        !*/

        long stride_y(
        ) const; 
        /*!
            ensures
                - returns the vertical stride used when scanning the pooling window
                  over an image.  That is, each window will be moved stride_y() pixels down
                  at a time when it moves over the image.
        !*/

        long stride_x(
        ) const;
        /*!
            ensures
                - returns the horizontal stride used when scanning the pooling window
                  over an image.  That is, each window will be moved stride_x() pixels down
                  at a time when it moves over the image.
        !*/

        long padding_y(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the top and bottom
                  sides of the image.
        !*/

        long padding_x(
        ) const; 
        /*!
            ensures
                - returns the number of pixels of zero padding added to the left and right 
                  sides of the image.
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/

    };

    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using avg_pool = add_layer<avg_pool_<nr,nc,stride_y,stride_x>, SUBNET>;

    template <
        typename SUBNET
        >
    using avg_pool_everything = add_layer<avg_pool_<0,0,1,1>, SUBNET>;

// ----------------------------------------------------------------------------------------

    class relu_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a rectified linear layer.
                Therefore, it passes its inputs through the function 
                    f(x)=max(x,0) 
                where f() is applied pointwise across the input tensor.
        !*/

    public:

        relu_(
        );

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <typename SUBNET>
    using relu = add_layer<relu_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class prelu_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a parametric rectified linear
                layer.  Therefore, it passes its inputs through the function 
                    f(x) = x>0 ? x : p*x 
                where f() is applied pointwise across the input tensor and p is a scalar
                parameter learned by this layer.


                This is the layer type introduced in the paper:
                    He, Kaiming, et al. "Delving deep into rectifiers: Surpassing
                    human-level performance on imagenet classification." Proceedings of the
                    IEEE International Conference on Computer Vision. 2015.
        !*/

    public:

        explicit prelu_(
            float initial_param_value = 0.25
        );
        /*!
            ensures
                - The p parameter will be initialized with initial_param_value.
                - #get_initial_param_value() == initial_param_value.
        !*/

        float get_initial_param_value (
        ) const;
        /*!
            ensures
                - returns the initial value of the prelu parameter. 
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <typename SUBNET>
    using prelu = add_layer<prelu_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class sig_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a sigmoid layer.  Therefore, it
                passes its inputs through the function 
                    f(x)=1/(1+exp(-x)) 
                where f() is applied pointwise across the input tensor.
        !*/

    public:

        sig_(
        );

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <typename SUBNET>
    using sig = add_layer<sig_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class htan_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a hyperbolic tangent layer.
                Therefore, it passes its inputs through the function 
                    f(x)=std::tanh(x)
                where f() is applied pointwise across the input tensor.
        !*/

    public:

        htan_(
        );

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <typename SUBNET>
    using htan = add_layer<htan_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a softmax layer.  To be precise,
                we define the softmax function s(x) as:
                    s(x) == exp(x)/sum(exp(x)) 
                where x is a vector.  Then this layer treats its input tensor as a
                collection of multi-channel images and applies s() to each spatial location
                in each image.  In each application, the tensor::k() channel elements at
                each position are input to s() and then replaced by the outputs of s().   

                This means that, for example, if you collapsed each output image to a 1
                channel image by adding the channels then you would end up with images
                where each pixel value was 1.  This is because the sum of the outputs of
                s() will always be equal to 1.
        !*/

    public:

        softmax_(
        );

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <typename SUBNET>
    using softmax = add_layer<softmax_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_all_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, it defines a softmax layer.  To be precise,
                we define the softmax function s(x) as:
                    s(x) == exp(x)/sum(exp(x)) 
                where x is a vector.  Then this layer treats its input tensor as a
                collection of tensor::num_samples() vectors and applies s() to each vector
                in the tensor.  Therefore, there are logically tensor::num_samples()
                invocations of s().
        !*/

    public:

        softmax_all_(
        );

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ 
            interface.  Note that this layer doesn't have any parameters, so the tensor
            returned by get_layer_params() is always empty.
        !*/
    };

    template <typename SUBNET>
    using softmax_all = add_layer<softmax_all_, SUBNET>;

// ----------------------------------------------------------------------------------------

    template <
        template<typename> class tag
        >
    class add_prev_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  This layer simply adds the output of two previous layers.
                In particular, it adds the tensor from its immediate predecessor layer,
                sub.get_output(), with the tensor from a deeper layer,
                layer<tag>(sub).get_output().

                Therefore, you supply a tag via add_prev_'s template argument that tells it
                what layer to add to the output of the previous layer.  The result of this
                addition is output by add_prev_.  Finally, the addition happens pointwise
                according to 4D tensor arithmetic.  If the dimensions don't match then
                missing elements are presumed to be equal to 0.  Moreover, each dimension
                of the output tensor is equal to the maximum dimension of either of the
                inputs.  That is, if the tensors A and B are being added to produce C then:
                    - C.num_samples() == max(A.num_samples(), B.num_samples())
                    - C.k()  == max(A.k(), B.k())
                    - C.nr() == max(A.nr(), B.nr())
                    - C.nc() == max(A.nc(), B.nc())
        !*/

    public:
        add_prev_(
        ); 

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };


    template <
        template<typename> class tag,
        typename SUBNET
        >
    using add_prev = add_layer<add_prev_<tag>, SUBNET>;

    // Here we add some convenient aliases for using add_prev_ with the tag layers. 
    template <typename SUBNET> using add_prev1  = add_prev<tag1, SUBNET>;
    template <typename SUBNET> using add_prev2  = add_prev<tag2, SUBNET>;
    template <typename SUBNET> using add_prev3  = add_prev<tag3, SUBNET>;
    template <typename SUBNET> using add_prev4  = add_prev<tag4, SUBNET>;
    template <typename SUBNET> using add_prev5  = add_prev<tag5, SUBNET>;
    template <typename SUBNET> using add_prev6  = add_prev<tag6, SUBNET>;
    template <typename SUBNET> using add_prev7  = add_prev<tag7, SUBNET>;
    template <typename SUBNET> using add_prev8  = add_prev<tag8, SUBNET>;
    template <typename SUBNET> using add_prev9  = add_prev<tag9, SUBNET>;
    template <typename SUBNET> using add_prev10 = add_prev<tag10, SUBNET>;
    using add_prev1_  = add_prev_<tag1>;
    using add_prev2_  = add_prev_<tag2>;
    using add_prev3_  = add_prev_<tag3>;
    using add_prev4_  = add_prev_<tag4>;
    using add_prev5_  = add_prev_<tag5>;
    using add_prev6_  = add_prev_<tag6>;
    using add_prev7_  = add_prev_<tag7>;
    using add_prev8_  = add_prev_<tag8>;
    using add_prev9_  = add_prev_<tag9>;
    using add_prev10_ = add_prev_<tag10>;

// ----------------------------------------------------------------------------------------

    template <
        template<typename> class tag
        >
    class mult_prev_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  This layer simply multiplies the output of two previous
                layers.  In particular, it multiplies the tensor from its immediate
                predecessor layer, sub.get_output(), with the tensor from a deeper layer,
                layer<tag>(sub).get_output().

                Therefore, you supply a tag via mult_prev_'s template argument that tells
                it what layer to multiply with the output of the previous layer.  The
                result of this multiplication is output by mult_prev_.  Finally, the
                multiplication happens pointwise according to 4D tensor arithmetic.  If the
                dimensions don't match then missing elements are presumed to be equal to 0.
                Moreover, each dimension of the output tensor is equal to the maximum
                dimension of either of the inputs.  That is, if the tensors A and B are
                being multiplied to produce C then:
                    - C.num_samples() == max(A.num_samples(), B.num_samples())
                    - C.k()  == max(A.k(), B.k())
                    - C.nr() == max(A.nr(), B.nr())
                    - C.nc() == max(A.nc(), B.nc())
        !*/

    public:
        mult_prev_(
        ); 

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };


    template <
        template<typename> class tag,
        typename SUBNET
        >
    using mult_prev = add_layer<mult_prev_<tag>, SUBNET>;

    // Here we add some convenient aliases for using mult_prev_ with the tag layers. 
    template <typename SUBNET> using mult_prev1  = mult_prev<tag1, SUBNET>;
    template <typename SUBNET> using mult_prev2  = mult_prev<tag2, SUBNET>;
    template <typename SUBNET> using mult_prev3  = mult_prev<tag3, SUBNET>;
    template <typename SUBNET> using mult_prev4  = mult_prev<tag4, SUBNET>;
    template <typename SUBNET> using mult_prev5  = mult_prev<tag5, SUBNET>;
    template <typename SUBNET> using mult_prev6  = mult_prev<tag6, SUBNET>;
    template <typename SUBNET> using mult_prev7  = mult_prev<tag7, SUBNET>;
    template <typename SUBNET> using mult_prev8  = mult_prev<tag8, SUBNET>;
    template <typename SUBNET> using mult_prev9  = mult_prev<tag9, SUBNET>;
    template <typename SUBNET> using mult_prev10 = mult_prev<tag10, SUBNET>;
    using mult_prev1_  = mult_prev_<tag1>;
    using mult_prev2_  = mult_prev_<tag2>;
    using mult_prev3_  = mult_prev_<tag3>;
    using mult_prev4_  = mult_prev_<tag4>;
    using mult_prev5_  = mult_prev_<tag5>;
    using mult_prev6_  = mult_prev_<tag6>;
    using mult_prev7_  = mult_prev_<tag7>;
    using mult_prev8_  = mult_prev_<tag8>;
    using mult_prev9_  = mult_prev_<tag9>;
    using mult_prev10_ = mult_prev_<tag10>;

// ----------------------------------------------------------------------------------------

    template <
        template<typename> class tag
        >
    class scale_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  This layer scales the output channels of the tagged layer
                by multiplying it with the output of the previous layer.  To be specific:
                    - Let INPUT  == layer<tag>(sub).get_output()
                    - Let SCALES == sub.get_output()
                    - This layer takes INPUT and SCALES as input.
                    - The output of this layer has the same dimensions as INPUT.
                    - This layer requires:
                        - SCALES.num_samples() == INPUT.num_samples()
                        - SCALES.k()  == INPUT.k()
                        - SCALES.nr() == 1
                        - SCALES.nc() == 1
                    - The output tensor is produced by pointwise multiplying SCALES with
                      INPUT at each spatial location.  Therefore, if OUT is the output of
                      this layer then we would have:
                        OUT(n,k,r,c) == INPUT(n,k,r,c)*SCALES(n,k)
        !*/

    public:
        scale_(
        ); 

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };


    template <
        template<typename> class tag,
        typename SUBNET
        >
    using scale = add_layer<scale_<tag>, SUBNET>;

    // Here we add some convenient aliases for using scale_ with the tag layers. 
    template <typename SUBNET> using scale1  = scale<tag1, SUBNET>;
    template <typename SUBNET> using scale2  = scale<tag2, SUBNET>;
    template <typename SUBNET> using scale3  = scale<tag3, SUBNET>;
    template <typename SUBNET> using scale4  = scale<tag4, SUBNET>;
    template <typename SUBNET> using scale5  = scale<tag5, SUBNET>;
    template <typename SUBNET> using scale6  = scale<tag6, SUBNET>;
    template <typename SUBNET> using scale7  = scale<tag7, SUBNET>;
    template <typename SUBNET> using scale8  = scale<tag8, SUBNET>;
    template <typename SUBNET> using scale9  = scale<tag9, SUBNET>;
    template <typename SUBNET> using scale10 = scale<tag10, SUBNET>;
    using scale1_  = scale_<tag1>;
    using scale2_  = scale_<tag2>;
    using scale3_  = scale_<tag3>;
    using scale4_  = scale_<tag4>;
    using scale5_  = scale_<tag5>;
    using scale6_  = scale_<tag6>;
    using scale7_  = scale_<tag7>;
    using scale8_  = scale_<tag8>;
    using scale9_  = scale_<tag9>;
    using scale10_ = scale_<tag10>;

// ----------------------------------------------------------------------------------------

    template<
        template<typename> class... TAG_TYPES
        >
    class concat_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  This layer simply concatenates the output of tagged layers.
                Importantly, each input layer must have the same dimensions (i.e.
                num_samples, nr, and nc) except for the k channel, which may vary.  This is
                because the concatenation happens along the k dimension.  That is, the
                output of this network is a tensor, OUT, that is the concatenation of the
                tensors:
                    for each (tag in TAG_TYPES)
                        layer<tag>(subnet).get_output()
                Therefore, out.num_samples(), out.nr(), and out.nc() match the dimensions
                of the input tensors while OUT.k() is the sum of the input layer's k()
                dimensions.
        !*/

    public:
        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        dpoint map_input_to_output(dpoint p) const;
        dpoint map_output_to_input(dpoint p) const;
        const tensor& get_layer_params() const;
        tensor& get_layer_params();
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };


    // concat layer definitions
    template <template<typename> class TAG1,
              template<typename> class TAG2,
              typename SUBNET>
    using concat2 = add_layer<concat_<TAG1, TAG2>, SUBNET>;

    template <template<typename> class TAG1,
              template<typename> class TAG2,
              template<typename> class TAG3,
              typename SUBNET>
    using concat3 = add_layer<concat_<TAG1, TAG2, TAG3>, SUBNET>;

    template <template<typename> class TAG1,
              template<typename> class TAG2,
              template<typename> class TAG3,
              template<typename> class TAG4,
              typename SUBNET>
    using concat4 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4>, SUBNET>;

    template <template<typename> class TAG1,
              template<typename> class TAG2,
              template<typename> class TAG3,
              template<typename> class TAG4,
              template<typename> class TAG5,
              typename SUBNET>
    using concat5 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4, TAG5>, SUBNET>;

// ----------------------------------------------------------------------------------------
    
    /*!A inception layer definitions !*/

    // Now define inception layer tag types.  These layer aliases allow creating
    // the networks described in the paper: 
    //   Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of
    //   the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
    // See the dnn_inception_ex.cpp example for a complete example of their use.  Note also
    // that we use tag ID numbers >= 1000 to avoid conflict with user's tag layers.
    template <typename SUBNET> using itag0  = add_tag_layer< 1000 + 0, SUBNET>;
    template <typename SUBNET> using itag1  = add_tag_layer< 1000 + 1, SUBNET>;
    template <typename SUBNET> using itag2  = add_tag_layer< 1000 + 2, SUBNET>;
    template <typename SUBNET> using itag3  = add_tag_layer< 1000 + 3, SUBNET>;
    template <typename SUBNET> using itag4  = add_tag_layer< 1000 + 4, SUBNET>;
    template <typename SUBNET> using itag5  = add_tag_layer< 1000 + 5, SUBNET>;
    // skip to inception input
    template <typename SUBNET> using iskip  = add_skip_layer< itag0, SUBNET>;

    // here are some templates to be used for creating inception layer groups
    template <template<typename>class B1,
              template<typename>class B2,
              typename SUBNET>
    using inception2 = concat2<itag1, itag2, itag1<B1<iskip< itag2<B2< itag0<SUBNET>>>>>>>;

    template <template<typename>class B1,
              template<typename>class B2,
              template<typename>class B3,
              typename SUBNET>
    using inception3 = concat3<itag1, itag2, itag3, itag1<B1<iskip< itag2<B2<iskip< itag3<B3<  itag0<SUBNET>>>>>>>>>>;

    template <template<typename>class B1,
              template<typename>class B2,
              template<typename>class B3,
              template<typename>class B4,
              typename SUBNET>
    using inception4 = concat4<itag1, itag2, itag3, itag4,
                itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip<  itag4<B4<  itag0<SUBNET>>>>>>>>>>>>>;

    template <template<typename>class B1,
              template<typename>class B2,
              template<typename>class B3,
              template<typename>class B4,
              template<typename>class B5,
              typename SUBNET>
    using inception5 = concat5<itag1, itag2, itag3, itag4, itag5,
                itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip<  itag4<B4<iskip<  itag5<B5<  itag0<SUBNET>>>>>>>>>>>>>>>>;

// ----------------------------------------------------------------------------------------

    const double DEFAULT_L2_NORM_EPS = 1e-5;

    class l2normalize_
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  It takes tensors as input and L2 normalizes them.  In particular,
                it has the following properties:
                    - The output tensors from this layer have the same dimensions as the
                      input tensors.
                    - If you think of each input tensor as a set of tensor::num_samples()
                      vectors, then the output tensor contains the same vectors except they
                      have been length normalized so that their L2 norms are all 1.  I.e. 
                      for each vector v we will have ||v||==1.
        !*/

    public:

        explicit l2normalize_(
            double eps = tt::DEFAULT_L2_NORM_EPS
        );
        /*!
            requires
                - eps > 0
            ensures
                - #get_eps() == eps
        !*/

        double get_eps(
        ) const; 
        /*!
            ensures
                - When we normalize a vector we divide it by its L2 norm.  However, the
                  get_eps() value is added to the squared norm prior to division to avoid
                  ever dividing by zero. 
        !*/

        template <typename SUBNET> void setup (const SUBNET& sub);
        void forward_inplace(const tensor& input, tensor& output);
        void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

// ----------------------------------------------------------------------------------------

    template <
        long _offset,
        long _k,
        long _nr,
        long _nc
        >
    class extract_
    {
        /*!
            REQUIREMENTS ON TEMPLATE ARGUMENTS
                - 0 <= _offset
                - 0 < _k
                - 0 < _nr
                - 0 < _nc

            WHAT THIS OBJECT REPRESENTS
                This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
                defined above.  In particular, the output of this layer is simply a copy of
                the input tensor.  However, you can configure the extract layer to output
                only some subset of the input tensor and also to reshape it.  Therefore,
                the dimensions of the tensor output by this layer are as follows (letting
                IN be the input tensor and OUT the output tensor):
                    - OUT.num_samples() == IN.num_samples()
                    - OUT.k()  == _k 
                    - OUT.nr() == _nr 
                    - OUT.nc() == _nc 

                So the output will always have the same number of samples as the input, but
                within each sample (the k,nr,nc part) we will copy only a subset of the
                values.  Moreover, the _offset parameter controls which part of each sample
                we take.  To be very precise, we will have:
                    - let IN_SIZE   = IN.k()*IN.nr()*IN.nc()
                    - let OUT_SIZE  = _k*_nr*_nc 
                    - for i in range[0,IN.num_samples()) and j in range[0,OUT_SIZE):
                        - OUT.host()[i*OUT_SIZE+j] == IN.host()[i*IN_SIZE+_offset+j]


                Finally, all this means that the input tensor to this layer must have a big
                enough size to accommodate taking a _k*_nr*_nc slice from each of its
                samples.  
        !*/

    public:

        template <typename SUBNET> void setup (const SUBNET& sub);
        template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
        template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
        const tensor& get_layer_params() const; 
        tensor& get_layer_params(); 
        /*!
            These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
        !*/
    };

    template <
        long offset,
        long k,
        long nr,
        long nc,
        typename SUBNET
        >
    using extract = add_layer<extract_<offset,k,nr,nc>, SUBNET>;

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_DNn_LAYERS_ABSTRACT_H_