summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/entropy_decoder_model/entropy_decoder_model_kernel_5.h
blob: 9253e950be8386cb44b933d9bb622ade5a0af625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
// Copyright (C) 2005  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ENTROPY_DECODER_MODEL_KERNEl_5_
#define DLIB_ENTROPY_DECODER_MODEL_KERNEl_5_

#include "../algs.h"
#include "entropy_decoder_model_kernel_abstract.h"
#include "../assert.h"


namespace dlib
{

    namespace edmk5
    {
        struct node
        {            
            node* next;
            node* child_context;
            node* parent_context;

            unsigned short symbol;
            unsigned short count;
            unsigned short total;
            unsigned short escapes;
        };
    }


    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    class entropy_decoder_model_kernel_5 
    {
        /*!
            REQUIREMENTS ON total_nodes
                - 4096 < total_nodes
                - this is the total number of nodes that we will use in the tree

            REQUIREMENTS ON order
                - 0 <= order
                - this is the maximum depth-1 the tree will be allowed to go (note 
                  that the root level is depth 0).  


            GENERAL NOTES
                This implementation follows more or less the implementation 
                strategy laid out by Alistair Moffat in his paper
                Implementing the PPM data compression scheme.  Published in IEEE 
                Transactions on Communications, 38(11):1917-1921, 1990.

                The escape method used will be method D. 

                This also uses Dmitry Shkarin's Information Inheritance scheme.
                (described in "PPM: one step to practicality" and "Improving the 
                Efficiency of the PPM Algorithm")


            INITIAL VALUE
                - root == pointer to an array of total_nodes nodes
                - next_node == 1
                - cur == root
                - cur_order = 0
                - root->next == 0
                - root->parent_context == 0
                - root->child_context == 0
                - root->escapes == 0
                - root->total == 0
                - stack_size == 0
                - exc_used == false
                - for all i: exc[i] == 0

            CONVENTION
                - exc_used == something_is_excluded()
                - pop() == stack[stack_size-1].n and stack[stack_size-1].nc
                - is_excluded(symbol) == bit symbol&0x1F from exc[symbol>>5]
                - &get_entropy_decoder() == coder
                - root == pointer to an array of total_nodes nodes.
                  this is also the root of the tree.
                - if (next_node < total_nodes) then
                    - next_node == the next node in root that has not yet been allocated                                

                - root->next == 0
                - root->parent_context == 0
              

                - for every node in the tree:
                  {
                    - NOTATION: 
                        - The "context" of a node is the string of symbols seen
                          when you go from the root of the tree down (down though
                          child context pointers) to the node, including the symbol at 
                          the node itself.  (note that the context of the root node 
                          is "" or the empty string)
                        - A set of nodes is in the same "context set" if all the node's
                          contexts are of length n and all the node's contexts share
                          the same prefix of length n-1.
                        - The "child context set" of a node is a set of nodes with
                          contexts that are one symbol longer and prefixed by the node's 
                          context.  For example, if a node has a context "abc" then the 
                          nodes for contexts "abca", "abcb", "abcc", etc. are all in 
                          the child context set of the node.
                        - The "parent context" of a node is the context that is one 
                          symbol shorter than the node's context and includes the 
                          symbol in the node.  So the parent context of a node with 
                          context "abcd" would be the context "bcd".


                    - if (next != 0) then 
                        - next == pointer to the next node in the same context set
                    - if (child_context != 0) then
                        - child_context == pointer to the first node of the child 
                          context set for this node.
                        - escapes > 0 
                    - if (parent_context != 0) then
                        - parent_context == pointer to the parent context of this node.
                    - else
                        - this node is the root node of the tree
                  

                    - if (this is not the root node) then
                        - symbol == the symbol represented with this node
                        - count == the number of times this symbol has been seen in its
                          parent context.
                    - else
                        - the root doesn't have a symbol.  i.e. the context for the
                          root node is "" or the empty string.

                    - total == The sum of the counts of all the nodes 
                      in the child context set + escapes. 
                    - escapes == the escape count for the context represented
                      by the node.
                    - count > 0
                }


                - cur_order < order
                - cur_order == the depth of the node cur in the tree.
                  (note that the root node has depth 0)
                - cur == pointer to the node in the tree who's context matches
                  the most recent symbols we have seen.


        !*/

        typedef edmk5::node node;

    public:

        typedef entropy_decoder entropy_decoder_type;

        entropy_decoder_model_kernel_5 (
            entropy_decoder& coder
        );

        virtual ~entropy_decoder_model_kernel_5 (
        );
        
        inline void clear(
        );

        inline void decode (
            unsigned long& symbol
        );

        entropy_decoder& get_entropy_decoder (
        ) { return coder; }

        static unsigned long get_alphabet_size (
        ) { return alphabet_size; }

    private:


        inline void push (
            node* n,
            node* nc
        );
        /*!
            requires
                - stack_size < order
            ensures
                - #pop(a,b): a == n && b == nc
        !*/

        inline void pop (
            node*& n,
            node*& nc
        );
        /*!
            requires
                - stack_size > 0
            ensures
                - returns the two nodes at the top of the stack
        !*/

        inline edmk5::node* allocate_node (
        );
        /*!
            requires
                - space_left() == true
            ensures
                - returns a pointer to a new node
        !*/

        inline bool space_left (
        ) const;
        /*!
            ensures
                - returns true if there is at least 1 free node left.
                - returns false otherwise
        !*/

        inline void exclude (
            unsigned short symbol
        );
        /*!
            ensures
                - #is_excluded(symbol) == true
                - #something_is_excluded() == true
        !*/

        inline bool is_excluded (
            unsigned short symbol
        );
        /*!
            ensures
                - if (symbol has been excluded) then
                    - returns true
                - else
                    - returns false
        !*/

        inline bool something_is_excluded (
        );
        /*!
            ensures
                - returns true if some symbol has been excluded.
                  returns false otherwise
        !*/

        inline void clear_exclusions (
        );
        /*!
            ensures
                - for all symbols #is_excluded(symbol) == false
                - #something_is_excluded() == false
        !*/

        inline void scale_counts (
            node* n
        );
        /*!
            ensures
                - divides all the counts in the child context set of n by 2.
                - none of the nodes in the child context set will have a count of 0
        !*/

        struct nodes
        {
            node* n;
            node* nc;
        };

        entropy_decoder& coder;
        unsigned long next_node;        
        node* root;
        node* cur;
        unsigned long cur_order;
        unsigned long exc[alphabet_size/32+1];
        nodes stack[order+1];
        unsigned long stack_size;
        bool exc_used;

        // restricted functions
        entropy_decoder_model_kernel_5(entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>&);        // copy constructor
        entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>& operator=(entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>&);    // assignment operator

    };   

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
    // member function definitions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    entropy_decoder_model_kernel_5 (
        entropy_decoder& coder_
    ) : 
        coder(coder_),
        next_node(1),
        cur_order(0),
        stack_size(0)
    {
        COMPILE_TIME_ASSERT( 1 < alphabet_size && alphabet_size < 65535);
        COMPILE_TIME_ASSERT( 4096 < total_nodes );

        root = new node[total_nodes];  
        cur = root;

        root->child_context = 0;
        root->escapes = 0;
        root->next = 0;
        root->parent_context = 0;
        root->total = 0; 

        clear_exclusions();
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    ~entropy_decoder_model_kernel_5 (
    )
    {
        delete [] root;
    }
    
// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    clear(
    )
    {
        next_node = 1;
        root->child_context = 0;
        root->escapes = 0;
        root->total = 0;
        cur = root;
        cur_order = 0;
        stack_size = 0;

        clear_exclusions();
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    decode (
        unsigned long& symbol
    )
    {        
        node* temp = cur;
        cur = 0;
        unsigned long low_count, high_count, total_count;
        unsigned long target;
        node* new_node = 0;

        // local_order will track the level of temp in the tree
        unsigned long local_order = cur_order;


        unsigned short c; // c == t(a|sk)
        unsigned short t; // t == T(sk)


        if (something_is_excluded())
            clear_exclusions();

        while (true)
        {            
            high_count = 0;
            if (space_left())
            {
                total_count = temp->total;
                
                if (total_count > 0)
                {
                    // check if we need to scale the counts
                    if (total_count > 10000)
                    {
                        scale_counts(temp);
                        total_count = temp->total;
                    }

                    if (something_is_excluded())
                    {
                        node* n = temp->child_context;
                        total_count = temp->escapes;
                        while (true)
                        {
                            if (is_excluded(n->symbol) == false)
                            {
                                total_count += n->count;
                            }
                            if (n->next == 0)
                                break;
                            n = n->next;
                        }
                    }
                   


                    target = coder.get_target(total_count);

                    // find either the symbol we are looking for or the 
                    // end of the context set
                    node* n = temp->child_context;
                    node* last = 0;   
                    while (true)
                    {
                        if (is_excluded(n->symbol) == false)
                        {
                            high_count += n->count;
                            exclude(n->symbol);
                        }

                        
                        if (high_count > target || n->next == 0)
                            break;
                        last = n;
                        n = n->next;
                    }             


                    // if we found the symbol
                    if (high_count > target)
                    {
                        low_count = high_count - n->count;

                        if (new_node != 0)
                        {
                            new_node->parent_context = n;                            
                        }

                        symbol = n->symbol;
            
                        coder.decode(low_count,high_count);
                        c = n->count += 8;
                        t = temp->total += 8;


                        // move this node to the front 
                        if (last)
                        {
                            last->next = n->next;
                            n->next = temp->child_context;
                            temp->child_context = n;
                        }

                        if (cur == 0)
                        {
                            if (local_order < order)
                            {
                                cur_order = local_order+1;
                                cur = n;
                            }  
                            else
                            {
                                cur = n->parent_context;
                                cur_order = local_order;
                            }
                        }

                        break;
                     
                     
                    }
                    // if we hit the end of the context set without finding the symbol
                    else
                    {   
                        if (new_node != 0)
                        {
                            new_node->parent_context = allocate_node();
                            new_node = new_node->parent_context;
                        }
                        else
                        {
                            new_node = allocate_node();
                        }

                        n->next = new_node;

                        // get the escape code
                        coder.decode(high_count,total_count);
                    }
                        
                } 
                else // if (total_count == 0)
                {
                    // this means that temp->child_context == 0 so we should make
                    // a new node here.
                    if (new_node != 0)
                    {
                        new_node->parent_context = allocate_node();
                        new_node = new_node->parent_context;
                    }
                    else
                    {
                        new_node = allocate_node();
                    }

                    temp->child_context = new_node;
                }

                if (cur == 0 && local_order < order)
                {
                    cur = new_node;
                    cur_order = local_order+1;
                }

                // fill out the new node
                new_node->child_context = 0;
                new_node->escapes = 0;
                new_node->next = 0;
                push(new_node,temp);
                new_node->total = 0;


              
                if (temp != root)
                {
                    temp = temp->parent_context;
                    --local_order;
                    continue;
                }
                
                t = 2056;
                c = 8;

                // since this is the root we are going to the order-(-1) context
                // so we can just take care of that here.
                target = coder.get_target(alphabet_size);
                new_node->parent_context = root;
                coder.decode(target,target+1);
                symbol = target;

                if (cur == 0)
                {
                    cur = root;
                    cur_order = 0;
                }
                break;                          
            }
            else 
            {
                // there isn't enough space so we should rebuild the tree                
                clear();
                temp = cur;
                local_order = cur_order;
                cur = 0;   
                new_node = 0;
            }
        } // while (true)

        // initialize the counts and symbol for any new nodes we have added
        // to the tree.
        node* n, *nc;
        while (stack_size > 0)
        {            
            pop(n,nc);        

            n->symbol = static_cast<unsigned short>(symbol);

            // if nc is not a determnistic context
            if (nc->total)
            {
                unsigned long temp2 = t-c+nc->total - nc->escapes - nc->escapes;
                unsigned long temp = nc->total;
                temp *= c;
                temp /= (temp2|1); // this oring by 1 is just to make sure that temp2 is never zero
                temp += 2;
                if (temp > 50000) temp = 50000;
                n->count = static_cast<unsigned short>(temp);

               
                nc->escapes += 4;
                nc->total += static_cast<unsigned short>(temp) + 4;
            }
            else
            {
                n->count = 3 + 5*(c)/(t-c);

                nc->escapes = 4;
                nc->total = n->count + 4;
            }
        
            while (nc->total > 10000)
            {
                scale_counts(nc);
            }
        }
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
    // private member function definitions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    edmk5::node* entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    allocate_node (
    )    
    {
        node* temp;
        temp = root + next_node;
        ++next_node;
        return temp;
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    bool entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    space_left (
    ) const
    {
        return (next_node < total_nodes);
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    exclude (
        unsigned short symbol
    )
    {
        exc_used = true;
        unsigned long temp = 1;
        temp <<= symbol&0x1F;
        exc[symbol>>5] |= temp;
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    bool entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    is_excluded (
        unsigned short symbol
    )
    {
        unsigned long temp = 1;
        temp <<= symbol&0x1F;
        return ((exc[symbol>>5]&temp) != 0);     
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    clear_exclusions (
    )
    {
        exc_used = false;
        for (unsigned long i = 0; i < alphabet_size/32+1; ++i)
        {
            exc[i] = 0;
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    push (
        node* n,
        node* nc
    )
    {
        stack[stack_size].n = n;
        stack[stack_size].nc = nc;
        ++stack_size;
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    pop (
        node*& n,
        node*& nc
    )
    {   
        --stack_size;
        n = stack[stack_size].n;
        nc = stack[stack_size].nc;
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    bool entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    something_is_excluded (
    )
    {
        return exc_used;
    }

// ----------------------------------------------------------------------------------------

    template <
        unsigned long alphabet_size,
        typename entropy_decoder,
        unsigned long total_nodes,
        unsigned long order
        >
    void entropy_decoder_model_kernel_5<alphabet_size,entropy_decoder,total_nodes,order>::
    scale_counts (
        node* temp
    )
    {
        if (temp->escapes > 1)
            temp->escapes >>= 1;
        temp->total = temp->escapes;

        node* n = temp->child_context;
        while (n != 0)
        {
            if (n->count > 1)
                n->count >>= 1;

            temp->total += n->count;
            n = n->next;
        }
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ENTROPY_DECODER_MODEL_KERNEl_5_