summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/image_processing/shape_predictor_trainer.h
blob: 3090998f9495713ed496593219b16e9cde6b2537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SHAPE_PREDICToR_TRAINER_H_
#define DLIB_SHAPE_PREDICToR_TRAINER_H_

#include "shape_predictor_trainer_abstract.h"
#include "shape_predictor.h"
#include "../console_progress_indicator.h"
#include "../threads.h"
#include "../data_io/image_dataset_metadata.h"
#include "box_overlap_testing.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class shape_predictor_trainer
    {
        /*!
            This thing really only works with unsigned char or rgb_pixel images (since we assume the threshold 
            should be in the range [-128,128]).
        !*/
    public:

        enum padding_mode_t
        {
            bounding_box_relative,
            landmark_relative 
        };

        shape_predictor_trainer (
        )
        {
            _cascade_depth = 10;
            _tree_depth = 4;
            _num_trees_per_cascade_level = 500;
            _nu = 0.1;
            _oversampling_amount = 20;
            _feature_pool_size = 400;
            _lambda = 0.1;
            _num_test_splits = 20;
            _feature_pool_region_padding = 0;
            _verbose = false;
            _num_threads = 0;
            _padding_mode = landmark_relative;
        }

        unsigned long get_cascade_depth (
        ) const { return _cascade_depth; }

        void set_cascade_depth (
            unsigned long depth
        )
        {
            DLIB_CASSERT(depth > 0, 
                "\t void shape_predictor_trainer::set_cascade_depth()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t depth:  " << depth
            );

            _cascade_depth = depth;
        }

        unsigned long get_tree_depth (
        ) const { return _tree_depth; }

        void set_tree_depth (
            unsigned long depth
        )
        {
            DLIB_CASSERT(depth > 0, 
                "\t void shape_predictor_trainer::set_tree_depth()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t depth:  " << depth
            );

            _tree_depth = depth;
        }

        unsigned long get_num_trees_per_cascade_level (
        ) const { return _num_trees_per_cascade_level; }

        void set_num_trees_per_cascade_level (
            unsigned long num
        )
        {
            DLIB_CASSERT( num > 0,
                "\t void shape_predictor_trainer::set_num_trees_per_cascade_level()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t num:  " << num
            );
            _num_trees_per_cascade_level = num;
        }

        double get_nu (
        ) const { return _nu; } 
        void set_nu (
            double nu
        )
        {
            DLIB_CASSERT(0 < nu && nu <= 1,
                "\t void shape_predictor_trainer::set_nu()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t nu:  " << nu 
            );

            _nu = nu;
        }

        std::string get_random_seed (
        ) const { return rnd.get_seed(); }
        void set_random_seed (
            const std::string& seed
        ) { rnd.set_seed(seed); }

        unsigned long get_oversampling_amount (
        ) const { return _oversampling_amount; }
        void set_oversampling_amount (
            unsigned long amount
        )
        {
            DLIB_CASSERT(amount > 0, 
                "\t void shape_predictor_trainer::set_oversampling_amount()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t amount: " << amount 
            );

            _oversampling_amount = amount;
        }

        unsigned long get_feature_pool_size (
        ) const { return _feature_pool_size; }
        void set_feature_pool_size (
            unsigned long size
        ) 
        {
            DLIB_CASSERT(size > 1, 
                "\t void shape_predictor_trainer::set_feature_pool_size()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t size: " << size 
            );

            _feature_pool_size = size;
        }

        double get_lambda (
        ) const { return _lambda; }
        void set_lambda (
            double lambda
        )
        {
            DLIB_CASSERT(lambda > 0,
                "\t void shape_predictor_trainer::set_lambda()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t lambda: " << lambda 
            );

            _lambda = lambda;
        }

        unsigned long get_num_test_splits (
        ) const { return _num_test_splits; }
        void set_num_test_splits (
            unsigned long num
        )
        {
            DLIB_CASSERT(num > 0, 
                "\t void shape_predictor_trainer::set_num_test_splits()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t num: " << num 
            );

            _num_test_splits = num;
        }

        void set_padding_mode (
            padding_mode_t mode
        )
        {
            _padding_mode = mode;
        }

        padding_mode_t get_padding_mode (
        ) const { return _padding_mode; }

        double get_feature_pool_region_padding (
        ) const { return _feature_pool_region_padding; }
        void set_feature_pool_region_padding (
            double padding 
        )
        {
            DLIB_CASSERT(padding > -0.5,
                "\t void shape_predictor_trainer::set_feature_pool_region_padding()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t padding: " << padding 
            );

            _feature_pool_region_padding = padding;
        }

        void be_verbose (
        )
        {
            _verbose = true;
        }

        void be_quiet (
        )
        {
            _verbose = false;
        }

        unsigned long get_num_threads (
        ) const { return _num_threads; }
        void set_num_threads (
                unsigned long num
        )
        {
            _num_threads = num;
        }

        template <typename image_array>
        shape_predictor train (
            const image_array& images,
            const std::vector<std::vector<full_object_detection> >& objects
        ) const
        {
            using namespace impl;
            DLIB_CASSERT(images.size() == objects.size() && images.size() > 0,
                "\t shape_predictor shape_predictor_trainer::train()"
                << "\n\t Invalid inputs were given to this function. "
                << "\n\t images.size():  " << images.size() 
                << "\n\t objects.size(): " << objects.size() 
            );
            // make sure the objects agree on the number of parts and that there is at
            // least one full_object_detection. 
            unsigned long num_parts = 0;
            std::vector<int> part_present;
            for (unsigned long i = 0; i < objects.size(); ++i)
            {
                for (unsigned long j = 0; j < objects[i].size(); ++j)
                {
                    if (num_parts == 0)
                    {
                        num_parts = objects[i][j].num_parts();
                        DLIB_CASSERT(objects[i][j].num_parts() != 0,
                            "\t shape_predictor shape_predictor_trainer::train()"
                            << "\n\t You can't give objects that don't have any parts to the trainer."
                        );
                        part_present.resize(num_parts);
                    }
                    else
                    {
                        DLIB_CASSERT(objects[i][j].num_parts() == num_parts,
                            "\t shape_predictor shape_predictor_trainer::train()"
                            << "\n\t All the objects must agree on the number of parts. "
                            << "\n\t objects["<<i<<"]["<<j<<"].num_parts(): " << objects[i][j].num_parts()
                            << "\n\t num_parts:  " << num_parts 
                        );
                    }
                    for (unsigned long p = 0; p < objects[i][j].num_parts(); ++p)
                    {
                        if (objects[i][j].part(p) != OBJECT_PART_NOT_PRESENT)
                            part_present[p] = 1;
                    }
                }
            }
            DLIB_CASSERT(num_parts != 0,
                "\t shape_predictor shape_predictor_trainer::train()"
                << "\n\t You must give at least one full_object_detection if you want to train a shape model and it must have parts."
            );
            DLIB_CASSERT(sum(mat(part_present)) == (long)num_parts,
                "\t shape_predictor shape_predictor_trainer::train()"
                << "\n\t Each part must appear at least once in this training data.  That is, "
                << "\n\t you can't have a part that is always set to OBJECT_PART_NOT_PRESENT."
            );

            // creating thread pool. if num_threads <= 1, trainer should work in caller thread
            thread_pool tp(_num_threads > 1 ? _num_threads : 0);

            // determining the type of features used for this type of images
            typedef typename std::remove_const<typename std::remove_reference<decltype(images[0])>::type>::type image_type;
            typedef typename image_traits<image_type>::pixel_type pixel_type;
            typedef typename pixel_traits<pixel_type>::basic_pixel_type feature_type;

            rnd.set_seed(get_random_seed());

            std::vector<training_sample<feature_type>> samples;
            const matrix<float,0,1> initial_shape = populate_training_sample_shapes(objects, samples);
            const std::vector<std::vector<dlib::vector<float,2> > > pixel_coordinates = randomly_sample_pixel_coordinates(initial_shape);

            unsigned long trees_fit_so_far = 0;
            console_progress_indicator pbar(get_cascade_depth()*get_num_trees_per_cascade_level());
            if (_verbose)
                std::cout << "Fitting trees..." << std::endl;

            std::vector<std::vector<impl::regression_tree> > forests(get_cascade_depth());
            // Now start doing the actual training by filling in the forests
            for (unsigned long cascade = 0; cascade < get_cascade_depth(); ++cascade)
            {
                // Each cascade uses a different set of pixels for its features.  We compute
                // their representations relative to the initial shape first.
                std::vector<unsigned long> anchor_idx; 
                std::vector<dlib::vector<float,2> > deltas;
                create_shape_relative_encoding(initial_shape, pixel_coordinates[cascade], anchor_idx, deltas);

                // First compute the feature_pixel_values for each training sample at this
                // level of the cascade.
                parallel_for(tp, 0, samples.size(), [&](unsigned long i)
                {
                    impl::extract_feature_pixel_values(images[samples[i].image_idx], samples[i].rect,
                                                 samples[i].current_shape, initial_shape, anchor_idx,
                                                 deltas, samples[i].feature_pixel_values);
                }, 1);

                // Now start building the trees at this cascade level.
                for (unsigned long i = 0; i < get_num_trees_per_cascade_level(); ++i)
                {
                    forests[cascade].push_back(make_regression_tree(tp, samples, pixel_coordinates[cascade]));

                    if (_verbose)
                    {
                        ++trees_fit_so_far;
                        pbar.print_status(trees_fit_so_far);
                    }
                }
            }

            if (_verbose)
                std::cout << "Training complete                          " << std::endl;

            return shape_predictor(initial_shape, forests, pixel_coordinates);
        }

    private:

        static void object_to_shape (
            const full_object_detection& obj,
            matrix<float,0,1>& shape,
            matrix<float,0,1>& present // a mask telling which elements of #shape are present.
        )
        {
            shape.set_size(obj.num_parts()*2);
            present.set_size(obj.num_parts()*2);
            const point_transform_affine tform_from_img = impl::normalizing_tform(obj.get_rect());
            for (unsigned long i = 0; i < obj.num_parts(); ++i)
            {
                if (obj.part(i) != OBJECT_PART_NOT_PRESENT)
                {
                    vector<float,2> p = tform_from_img(obj.part(i));
                    shape(2*i)   = p.x();
                    shape(2*i+1) = p.y();
                    present(2*i)   = 1;
                    present(2*i+1) = 1;

                    if (length(p) > 100)
                    {
                        std::cout << "Warning, one of your objects has parts that are way outside its bounding box!  This is probably an error in your annotation." << std::endl;
                    }
                }
                else
                {
                    shape(2*i)   = 0;
                    shape(2*i+1) = 0;
                    present(2*i)   = 0;
                    present(2*i+1) = 0;
                }
            }
        }

        template<typename feature_type>
        struct training_sample
        {
            /*!

            CONVENTION
                - feature_pixel_values.size() == get_feature_pool_size()
                - feature_pixel_values[j] == the value of the j-th feature pool
                  pixel when you look it up relative to the shape in current_shape.

                - target_shape == The truth shape.  Stays constant during the whole
                  training process (except for the parts that are not present, those are
                  always equal to the current_shape values).
                - present == 0/1 mask saying which parts of target_shape are present.
                - rect == the position of the object in the image_idx-th image.  All shape
                  coordinates are coded relative to this rectangle.
                - diff_shape == temporary value for holding difference between current
                  shape and target shape
            !*/

            unsigned long image_idx;
            rectangle rect;
            matrix<float,0,1> target_shape;
            matrix<float,0,1> present;

            matrix<float,0,1> current_shape;
            matrix<float,0,1> diff_shape;
            std::vector<feature_type> feature_pixel_values;

            void swap(training_sample& item)
            {
                std::swap(image_idx, item.image_idx);
                std::swap(rect, item.rect);
                target_shape.swap(item.target_shape);
                present.swap(item.present);
                current_shape.swap(item.current_shape);
                diff_shape.swap(item.diff_shape);
                feature_pixel_values.swap(item.feature_pixel_values);
            }
        };

        template<typename feature_type>
        impl::regression_tree make_regression_tree (
            thread_pool& tp,
            std::vector<training_sample<feature_type>>& samples,
            const std::vector<dlib::vector<float,2> >& pixel_coordinates
        ) const
        {
            using namespace impl;
            std::deque<std::pair<unsigned long, unsigned long> > parts;
            parts.push_back(std::make_pair(0, (unsigned long)samples.size()));

            impl::regression_tree tree;

            // walk the tree in breadth first order
            const unsigned long num_split_nodes = static_cast<unsigned long>(std::pow(2.0, (double)get_tree_depth())-1);
            std::vector<matrix<float,0,1> > sums(num_split_nodes*2+1);
            if (tp.num_threads_in_pool() > 1)
            {
                // Here we need to calculate shape differences and store sum of differences into sums[0]
                // to make it. I am splitting samples into blocks, each block will be processed by
                // separate thread, and the sum of differences of each block is stored into separate
                // place in block_sums

                const unsigned long num_workers = std::max(1UL, tp.num_threads_in_pool());
                const unsigned long num =  samples.size();
                const unsigned long block_size = std::max(1UL, (num + num_workers - 1) / num_workers);
                std::vector<matrix<float,0,1> > block_sums(num_workers);

                parallel_for(tp, 0, num_workers, [&](unsigned long block)
                {
                    const unsigned long block_begin = block * block_size;
                    const unsigned long block_end =  std::min(num, block_begin + block_size);
                    for (unsigned long i = block_begin; i < block_end; ++i)
                    {
                        samples[i].diff_shape = samples[i].target_shape - samples[i].current_shape;
                        block_sums[block] += samples[i].diff_shape;
                    }
                }, 1);

                // now calculate the total result from separate blocks
                for (unsigned long i = 0; i < block_sums.size(); ++i)
                    sums[0] += block_sums[i];
            }
            else
            {
                // synchronous implementation
                for (unsigned long i = 0; i < samples.size(); ++i)
                {
                    samples[i].diff_shape = samples[i].target_shape - samples[i].current_shape;
                    sums[0] += samples[i].diff_shape;
                }
            }

            for (unsigned long i = 0; i < num_split_nodes; ++i)
            {
                std::pair<unsigned long,unsigned long> range = parts.front();
                parts.pop_front();

                const impl::split_feature split = generate_split(tp, samples, range.first,
                    range.second, pixel_coordinates, sums[i], sums[left_child(i)],
                    sums[right_child(i)]);
                tree.splits.push_back(split);
                const unsigned long mid = partition_samples(split, samples, range.first, range.second);

                parts.push_back(std::make_pair(range.first, mid));
                parts.push_back(std::make_pair(mid, range.second));
            }

            // Now all the parts contain the ranges for the leaves so we can use them to
            // compute the average leaf values.
            matrix<float,0,1> present_counts(samples[0].target_shape.size());
            tree.leaf_values.resize(parts.size());
            for (unsigned long i = 0; i < parts.size(); ++i)
            {
                // Get the present counts for each dimension so we can divide each
                // dimension by the number of observations we have on it to find the mean
                // displacement in each leaf.
                present_counts = 0;
                for (unsigned long j = parts[i].first; j < parts[i].second; ++j)
                    present_counts += samples[j].present;
                present_counts = dlib::reciprocal(present_counts);

                if (parts[i].second != parts[i].first)
                    tree.leaf_values[i] = pointwise_multiply(present_counts,sums[num_split_nodes+i]*get_nu());
                else
                    tree.leaf_values[i] = zeros_matrix(samples[0].target_shape);

                // now adjust the current shape based on these predictions
                parallel_for(tp, parts[i].first, parts[i].second, [&](unsigned long j)
                {
                    samples[j].current_shape += tree.leaf_values[i];
                    // For parts that aren't present in the training data, we just make
                    // sure that the target shape always matches and therefore gives zero
                    // error.  So this makes the algorithm simply ignore non-present
                    // landmarks.
                    for (long k = 0; k < samples[j].present.size(); ++k)
                    {
                        // if this part is not present
                        if (samples[j].present(k) == 0)
                            samples[j].target_shape(k) = samples[j].current_shape(k);
                    }
                }, 1);
            }

            return tree;
        }

        impl::split_feature randomly_generate_split_feature (
            const std::vector<dlib::vector<float,2> >& pixel_coordinates
        ) const
        {
            const double lambda = get_lambda(); 
            impl::split_feature feat;
            const size_t max_iters = get_feature_pool_size()*get_feature_pool_size();
            for (size_t i = 0; i < max_iters; ++i)
            {
                feat.idx1   = rnd.get_integer(get_feature_pool_size());
                feat.idx2   = rnd.get_integer(get_feature_pool_size());
                while (feat.idx1 == feat.idx2)
                    feat.idx2   = rnd.get_integer(get_feature_pool_size());
                const double dist = length(pixel_coordinates[feat.idx1]-pixel_coordinates[feat.idx2]);
                const double accept_prob = std::exp(-dist/lambda);
                if (accept_prob > rnd.get_random_double())
                    break;
            }

            feat.thresh = (rnd.get_random_double()*256 - 128)/2.0;

            return feat;
        }

        template<typename feature_type>
        impl::split_feature generate_split (
            thread_pool& tp,
            const std::vector<training_sample<feature_type>>& samples,
            unsigned long begin,
            unsigned long end,
            const std::vector<dlib::vector<float,2> >& pixel_coordinates,
            const matrix<float,0,1>& sum,
            matrix<float,0,1>& left_sum,
            matrix<float,0,1>& right_sum 
        ) const
        {
            // generate a bunch of random splits and test them and return the best one.

            const unsigned long num_test_splits = get_num_test_splits();  

            // sample the random features we test in this function
            std::vector<impl::split_feature> feats;
            feats.reserve(num_test_splits);
            for (unsigned long i = 0; i < num_test_splits; ++i)
                feats.push_back(randomly_generate_split_feature(pixel_coordinates));

            std::vector<matrix<float,0,1> > left_sums(num_test_splits);
            std::vector<unsigned long> left_cnt(num_test_splits);

            const unsigned long num_workers = std::max(1UL, tp.num_threads_in_pool());
            const unsigned long block_size = std::max(1UL, (num_test_splits + num_workers - 1) / num_workers);

            // now compute the sums of vectors that go left for each feature
            parallel_for(tp, 0, num_workers, [&](unsigned long block)
            {
                const unsigned long block_begin = block * block_size;
                const unsigned long block_end   = std::min(block_begin + block_size, num_test_splits);

                for (unsigned long j = begin; j < end; ++j)
                {
                    for (unsigned long i = block_begin; i < block_end; ++i)
                    {
                        if ((float)samples[j].feature_pixel_values[feats[i].idx1] - (float)samples[j].feature_pixel_values[feats[i].idx2] > feats[i].thresh)
                        {
                            left_sums[i] += samples[j].diff_shape;
                            ++left_cnt[i];
                        }
                    }
                }

            }, 1);

            // now figure out which feature is the best
            double best_score = -1;
            unsigned long best_feat = 0;
            matrix<float,0,1> temp;
            for (unsigned long i = 0; i < num_test_splits; ++i)
            {
                // check how well the feature splits the space.
                double score = 0;
                unsigned long right_cnt = end-begin-left_cnt[i];
                if (left_cnt[i] != 0 && right_cnt != 0)
                {
                    temp = sum - left_sums[i];
                    score = dot(left_sums[i],left_sums[i])/left_cnt[i] + dot(temp,temp)/right_cnt;
                    if (score > best_score)
                    {
                        best_score = score;
                        best_feat = i;
                    }
                }
            }

            left_sums[best_feat].swap(left_sum);
            if (left_sum.size() != 0)
            {
                right_sum = sum - left_sum;
            }
            else
            {
                right_sum = sum;
                left_sum = zeros_matrix(sum);
            }
            return feats[best_feat];
        }

        template<typename feature_type>
        unsigned long partition_samples (
            const impl::split_feature& split,
            std::vector<training_sample<feature_type>>& samples,
            unsigned long begin,
            unsigned long end
        ) const
        {
            // splits samples based on split (sorta like in quick sort) and returns the mid
            // point.  make sure you return the mid in a way compatible with how we walk
            // through the tree.

            unsigned long i = begin;
            for (unsigned long j = begin; j < end; ++j)
            {
                if ((float)samples[j].feature_pixel_values[split.idx1] - (float)samples[j].feature_pixel_values[split.idx2] > split.thresh)
                {
                    samples[i].swap(samples[j]);
                    ++i;
                }
            }
            return i;
        }



        template<typename feature_type>
        matrix<float,0,1> populate_training_sample_shapes(
            const std::vector<std::vector<full_object_detection> >& objects,
            std::vector<training_sample<feature_type>>& samples
        ) const
        {
            samples.clear();
            matrix<float,0,1> mean_shape;
            matrix<float,0,1> count;
            // first fill out the target shapes
            for (unsigned long i = 0; i < objects.size(); ++i)
            {
                for (unsigned long j = 0; j < objects[i].size(); ++j)
                {
                    training_sample<feature_type> sample;
                    sample.image_idx = i;
                    sample.rect = objects[i][j].get_rect();
                    object_to_shape(objects[i][j], sample.target_shape, sample.present);
                    for (unsigned long itr = 0; itr < get_oversampling_amount(); ++itr)
                        samples.push_back(sample);
                    mean_shape += sample.target_shape;
                    count += sample.present;
                }
            }

            mean_shape = pointwise_multiply(mean_shape,reciprocal(count));

            // now go pick random initial shapes
            for (unsigned long i = 0; i < samples.size(); ++i)
            {
                if ((i%get_oversampling_amount()) == 0)
                {
                    // The mean shape is what we really use as an initial shape so always
                    // include it in the training set as an example starting shape.
                    samples[i].current_shape = mean_shape;
                }
                else
                {
                    samples[i].current_shape.set_size(0);

                    matrix<float,0,1> hits(mean_shape.size());
                    hits = 0;

                    int iter = 0;
                    // Pick a few samples at random and randomly average them together to
                    // make the initial shape.  Note that we make sure we get at least one
                    // observation (i.e. non-OBJECT_PART_NOT_PRESENT) on each part
                    // location.
                    while(min(hits) == 0 || iter < 2)
                    {
                        ++iter;
                        const unsigned long rand_idx = rnd.get_random_32bit_number()%samples.size();
                        const double alpha = rnd.get_random_double()+0.1;
                        samples[i].current_shape += alpha*samples[rand_idx].target_shape;
                        hits += alpha*samples[rand_idx].present;
                    }
                    samples[i].current_shape = pointwise_multiply(samples[i].current_shape, reciprocal(hits));
                }

            }
            for (unsigned long i = 0; i < samples.size(); ++i)
            {
                for (long k = 0; k < samples[i].present.size(); ++k)
                {
                    // if this part is not present
                    if (samples[i].present(k) == 0)
                        samples[i].target_shape(k) = samples[i].current_shape(k);
                }
            }


            return mean_shape;
        }


        void randomly_sample_pixel_coordinates (
            std::vector<dlib::vector<float,2> >& pixel_coordinates,
            const double min_x,
            const double min_y,
            const double max_x,
            const double max_y
        ) const
        /*!
            ensures
                - #pixel_coordinates.size() == get_feature_pool_size() 
                - for all valid i:
                    - pixel_coordinates[i] == a point in the box defined by the min/max x/y arguments.
        !*/
        {
            pixel_coordinates.resize(get_feature_pool_size());
            for (unsigned long i = 0; i < get_feature_pool_size(); ++i)
            {
                pixel_coordinates[i].x() = rnd.get_random_double()*(max_x-min_x) + min_x;
                pixel_coordinates[i].y() = rnd.get_random_double()*(max_y-min_y) + min_y;
            }
        }

        std::vector<std::vector<dlib::vector<float,2> > > randomly_sample_pixel_coordinates (
            const matrix<float,0,1>& initial_shape
        ) const
        {
            const double padding = get_feature_pool_region_padding();
            // Figure out the bounds on the object shapes.  We will sample uniformly
            // from this box.
            matrix<float> temp = reshape(initial_shape, initial_shape.size()/2, 2);
            double min_x = min(colm(temp,0));
            double min_y = min(colm(temp,1));
            double max_x = max(colm(temp,0));
            double max_y = max(colm(temp,1));

            if (get_padding_mode() == bounding_box_relative)
            {
                min_x = std::min(0.0, min_x);
                min_y = std::min(0.0, min_y);
                max_x = std::max(1.0, max_x);
                max_y = std::max(1.0, max_y);
            }

            min_x -= padding;
            min_y -= padding;
            max_x += padding;
            max_y += padding;

            std::vector<std::vector<dlib::vector<float,2> > > pixel_coordinates;
            pixel_coordinates.resize(get_cascade_depth());
            for (unsigned long i = 0; i < get_cascade_depth(); ++i)
                randomly_sample_pixel_coordinates(pixel_coordinates[i], min_x, min_y, max_x, max_y);
            return pixel_coordinates;
        }



        mutable dlib::rand rnd;

        unsigned long _cascade_depth;
        unsigned long _tree_depth;
        unsigned long _num_trees_per_cascade_level;
        double _nu;
        unsigned long _oversampling_amount;
        unsigned long _feature_pool_size;
        double _lambda;
        unsigned long _num_test_splits;
        double _feature_pool_region_padding;
        bool _verbose;
        unsigned long _num_threads;
        padding_mode_t _padding_mode;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename some_type_of_rectangle
        >
    image_dataset_metadata::dataset make_bounding_box_regression_training_data (
        const image_dataset_metadata::dataset& truth,
        const std::vector<std::vector<some_type_of_rectangle>>& detections
    )
    {
        DLIB_CASSERT(truth.images.size() == detections.size(), 
            "truth.images.size(): "<< truth.images.size() <<
            "\tdetections.size(): "<< detections.size()
        );
        image_dataset_metadata::dataset result = truth;

        for (size_t i = 0; i < truth.images.size(); ++i)
        {
            result.images[i].boxes.clear();
            for (auto truth_box : truth.images[i].boxes)
            {
                if (truth_box.ignore)
                    continue;

                // Find the detection that best matches the current truth_box.
                auto det = max_scoring_element(detections[i], [&truth_box](const rectangle& r) { return box_intersection_over_union(r, truth_box.rect); });
                if (det.second > 0.5)
                {
                    // Remove any existing parts and replace them with the truth_box corners.
                    truth_box.parts.clear();
                    auto b = truth_box.rect;
                    truth_box.parts["left"]     = (b.tl_corner()+b.bl_corner())/2;
                    truth_box.parts["right"]    = (b.tr_corner()+b.br_corner())/2;
                    truth_box.parts["top"]      = (b.tl_corner()+b.tr_corner())/2;
                    truth_box.parts["bottom"]   = (b.bl_corner()+b.br_corner())/2;
                    truth_box.parts["middle"]   = center(b);

                    // Now replace the bounding truth_box with the detector's bounding truth_box.
                    truth_box.rect = det.first;

                    result.images[i].boxes.push_back(truth_box);
                }
            }
        }
        return result;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SHAPE_PREDICToR_TRAINER_H_