summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/image_transforms/segment_image.h
blob: 3b57e4801716e39a5903b9de596d636a7d012614 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// Copyright (C) 2011  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SEGMENT_ImAGE_Hh_
#define DLIB_SEGMENT_ImAGE_Hh_

#include "segment_image_abstract.h"
#include "../algs.h"
#include <vector>
#include "../geometry.h"
#include "../disjoint_subsets.h"
#include "../set.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        template <typename T>
        inline T edge_diff_uint(
            const T& a,
            const T& b
        )
        {
            if (a > b)
                return a - b;
            else
                return b - a;
        }

    // ----------------------------------------

        template <typename T, typename enabled = void>
        struct edge_diff_funct 
        {
            typedef double diff_type;

            template <typename pixel_type>
            double operator()(
                const pixel_type& a,
                const pixel_type& b
            ) const
            {
                return length(pixel_to_vector<double>(a) - pixel_to_vector<double>(b));
            }
        };

        template <>
        struct edge_diff_funct<uint8,void>
        { 
            typedef uint8 diff_type; 
            uint8 operator()( const uint8& a, const uint8& b) const { return edge_diff_uint(a,b); } 
        };

        template <>
        struct edge_diff_funct<uint16,void>
        { 
            typedef uint16 diff_type; 
            uint16 operator()( const uint16& a, const uint16& b) const { return edge_diff_uint(a,b); } 
        };

        template <>
        struct edge_diff_funct<uint32,void>
        { 
            typedef uint32 diff_type; 
            uint32 operator()( const uint32& a, const uint32& b) const { return edge_diff_uint(a,b); } 
        };

        template <>
        struct edge_diff_funct<double,void>
        { 
            typedef double diff_type; 
            double operator()( const double& a, const double& b) const { return std::abs(a-b); } 
        };

        template <typename T>
        struct edge_diff_funct<T, typename enable_if<is_matrix<T> >::type>
        {
            typedef double diff_type;
            double operator()(
                const T& a,
                const T& b
            ) const
            {
                return length(a-b);
            }
        };

    // ------------------------------------------------------------------------------------

        template <typename T>
        struct graph_image_segmentation_data_T
        {
            graph_image_segmentation_data_T() : component_size(1), internal_diff(0) {}
            unsigned long component_size;
            T internal_diff;
        };

    // ------------------------------------------------------------------------------------

        template <typename T>
        struct segment_image_edge_data_T
        {
            segment_image_edge_data_T (){}

            segment_image_edge_data_T (
                const rectangle& rect,
                const point& p1,
                const point& p2,
                const T& diff_
            ) :
                idx1(p1.y()*rect.width() + p1.x()),
                idx2(p2.y()*rect.width() + p2.x()),
                diff(diff_)
            {}

            bool operator<(const segment_image_edge_data_T& item) const
            { return diff < item.diff; }

            unsigned long idx1;
            unsigned long idx2;
            T diff;
        };

    // ------------------------------------------------------------------------------------

        template <typename image_view_type>
        struct uint8_or_uint16_pixels
        {
            typedef typename image_view_type::pixel_type pixel_type;
            const static bool value = is_same_type<pixel_type,uint8>::value ||
                is_same_type<pixel_type,uint16>::value;
        };

        // This is an overload of get_pixel_edges() that is optimized to segment images
        // with 8bit or 16bit  pixels very quickly.  We do this by using a radix sort
        // instead of quicksort.
        template <typename in_image_type, typename T>
        typename enable_if<uint8_or_uint16_pixels<in_image_type> >::type 
        get_pixel_edges (
            const in_image_type& in_img,
            std::vector<segment_image_edge_data_T<T> >& sorted_edges
        )
        {
            typedef typename in_image_type::pixel_type ptype;
            typedef T diff_type;
            std::vector<unsigned long> counts(std::numeric_limits<ptype>::max()+1, 0);

            edge_diff_funct<ptype> edge_diff;

            border_enumerator be(get_rect(in_img), 1);
            // we are going to do a radix sort on the edge weights.  So the first step
            // is to accumulate them into count.
            const rectangle area = get_rect(in_img);
            while (be.move_next())
            {
                const long r = be.element().y();
                const long c = be.element().x();
                const ptype pix = in_img[r][c];
                if (area.contains(c-1,r))   counts[edge_diff(pix, in_img[r  ][c-1])] += 1;
                if (area.contains(c+1,r))   counts[edge_diff(pix, in_img[r  ][c+1])] += 1;
                if (area.contains(c  ,r-1)) counts[edge_diff(pix, in_img[r-1][c  ])] += 1;
                if (area.contains(c  ,r+1)) counts[edge_diff(pix, in_img[r+1][c  ])] += 1;
            }
            for (long r = 1; r+1 < in_img.nr(); ++r)
            {
                for (long c = 1; c+1 < in_img.nc(); ++c)
                {
                    const ptype pix = in_img[r][c];
                    counts[edge_diff(pix, in_img[r-1][c+1])] += 1;
                    counts[edge_diff(pix, in_img[r  ][c+1])] += 1;
                    counts[edge_diff(pix, in_img[r+1][c  ])] += 1;
                    counts[edge_diff(pix, in_img[r+1][c+1])] += 1;
                }
            }

            const unsigned long num_edges = shrink_rect(area,1).area()*4 + in_img.nr()*2*3 - 4 + (in_img.nc()-2)*2*3;
            typedef segment_image_edge_data_T<T> segment_image_edge_data;
            sorted_edges.resize(num_edges);

            // integrate counts.  The idea is to have sorted_edges[counts[i]] be the location that edges
            // with an edge_diff of i go.  So counts[0] == 0, counts[1] == number of 0 edge diff edges, etc.
            unsigned long prev = counts[0];
            for (unsigned long i = 1; i < counts.size(); ++i)
            {
                const unsigned long temp = counts[i];
                counts[i] += counts[i-1];
                counts[i-1] -= prev;
                prev = temp;
            }
            counts[counts.size()-1] -= prev;


            // now build a sorted list of all the edges
            be.reset();
            while(be.move_next())
            {
                const point p = be.element();
                const long r = p.y();
                const long c = p.x();
                const ptype pix = in_img[r][c];
                if (area.contains(c-1,r))
                {
                    const diff_type diff = edge_diff(pix, in_img[r  ][c-1]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c-1,r),diff);
                }

                if (area.contains(c+1,r))
                {
                    const diff_type diff = edge_diff(pix, in_img[r  ][c+1]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r),diff);
                }

                if (area.contains(c  ,r-1))
                {
                    const diff_type diff = edge_diff(pix, in_img[r-1][c  ]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c  ,r-1),diff);
                }

                if (area.contains(c  ,r+1))
                {
                    const diff_type diff = edge_diff(pix, in_img[r+1][c  ]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c  ,r+1),diff);
                }
            }
            // same thing as the above loop but now we do it on the interior of the image and therefore
            // don't have to include the boundary checking if statements used above.
            for (long r = 1; r+1 < in_img.nr(); ++r)
            {
                for (long c = 1; c+1 < in_img.nc(); ++c)
                {
                    const point p(c,r);
                    const ptype pix = in_img[r][c];
                    diff_type diff;

                    diff = edge_diff(pix, in_img[r  ][c+1]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r),diff);
                    diff = edge_diff(pix, in_img[r-1][c+1]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r-1),diff);
                    diff = edge_diff(pix, in_img[r+1][c+1]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c+1,r+1),diff);
                    diff = edge_diff(pix, in_img[r+1][c  ]);
                    sorted_edges[counts[diff]++] = segment_image_edge_data(area,p,point(c  ,r+1),diff);
                }
            }
        }
        
    // ----------------------------------------------------------------------------------------

        // This is the general purpose version of get_pixel_edges().  It handles all pixel types.
        template <typename in_image_type, typename T>
        typename disable_if<uint8_or_uint16_pixels<in_image_type> >::type 
        get_pixel_edges (
            const in_image_type& in_img,
            std::vector<segment_image_edge_data_T<T> >& sorted_edges
        )
        {   
            const rectangle area = get_rect(in_img);
            sorted_edges.reserve(area.area()*4);

            typedef typename in_image_type::pixel_type ptype;
            edge_diff_funct<ptype> edge_diff;
            typedef T diff_type;
            typedef segment_image_edge_data_T<T> segment_image_edge_data;

            border_enumerator be(get_rect(in_img), 1);

            // now build a sorted list of all the edges
            be.reset();
            while(be.move_next())
            {
                const point p = be.element();
                const long r = p.y();
                const long c = p.x();
                const ptype& pix = in_img[r][c];
                if (area.contains(c-1,r))
                {
                    const diff_type diff = edge_diff(pix, in_img[r  ][c-1]);
                    sorted_edges.push_back(segment_image_edge_data(area,p,point(c-1,r),diff));
                }

                if (area.contains(c+1,r))
                {
                    const diff_type diff = edge_diff(pix, in_img[r  ][c+1]);
                    sorted_edges.push_back(segment_image_edge_data(area,p,point(c+1,r),diff));
                }

                if (area.contains(c  ,r-1))
                {
                    const diff_type diff = edge_diff(pix, in_img[r-1][c  ]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c  ,r-1),diff));
                }
                if (area.contains(c  ,r+1))
                {
                    const diff_type diff = edge_diff(pix, in_img[r+1][c  ]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c  ,r+1),diff));
                }
            }
            // same thing as the above loop but now we do it on the interior of the image and therefore
            // don't have to include the boundary checking if statements used above.
            for (long r = 1; r+1 < in_img.nr(); ++r)
            {
                for (long c = 1; c+1 < in_img.nc(); ++c)
                {
                    const point p(c,r);
                    const ptype& pix = in_img[r][c];
                    diff_type diff;

                    diff = edge_diff(pix, in_img[r  ][c+1]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c+1,r),diff));
                    diff = edge_diff(pix, in_img[r+1][c+1]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c+1,r+1),diff));
                    diff = edge_diff(pix, in_img[r+1][c  ]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c  ,r+1),diff));
                    diff = edge_diff(pix, in_img[r-1][c+1]);
                    sorted_edges.push_back( segment_image_edge_data(area,p,point(c+1,r-1),diff));
                }
            }

            std::sort(sorted_edges.begin(), sorted_edges.end());

        }

    // ------------------------------------------------------------------------------------

    } // end of namespace impl

// ----------------------------------------------------------------------------------------

    template <
        typename in_image_type,
        typename out_image_type
        >
    void segment_image (
        const in_image_type& in_img_,
        out_image_type& out_img_,
        const double k = 200,
        const unsigned long min_size = 10
    )
    {
        using namespace dlib::impl;
        typedef typename image_traits<in_image_type>::pixel_type ptype;
        typedef typename edge_diff_funct<ptype>::diff_type diff_type;

        // make sure requires clause is not broken
        DLIB_ASSERT(is_same_object(in_img_, out_img_) == false,
            "\t void segment_image()"
            << "\n\t The input images can't be the same object."
            );

        COMPILE_TIME_ASSERT(is_unsigned_type<typename image_traits<out_image_type>::pixel_type>::value);

        const_image_view<in_image_type> in_img(in_img_);
        image_view<out_image_type> out_img(out_img_);

        out_img.set_size(in_img.nr(), in_img.nc());
        // don't bother doing anything if the image is too small
        if (in_img.nr() < 2 || in_img.nc() < 2)
        {
            assign_all_pixels(out_img,0);
            return;
        }

        disjoint_subsets sets;
        sets.set_size(in_img.size());

        std::vector<segment_image_edge_data_T<diff_type> > sorted_edges;
        get_pixel_edges(in_img, sorted_edges);

        std::vector<graph_image_segmentation_data_T<diff_type> > data(in_img.size());

        // now start connecting blobs together to make a minimum spanning tree.
        for (unsigned long i = 0; i < sorted_edges.size(); ++i)
        {
            const unsigned long idx1 = sorted_edges[i].idx1;
            const unsigned long idx2 = sorted_edges[i].idx2;

            unsigned long set1 = sets.find_set(idx1);
            unsigned long set2 = sets.find_set(idx2);
            if (set1 != set2)
            {
                const diff_type diff = sorted_edges[i].diff;
                const diff_type tau1 = static_cast<diff_type>(k/data[set1].component_size);
                const diff_type tau2 = static_cast<diff_type>(k/data[set2].component_size);

                const diff_type mint = std::min(data[set1].internal_diff + tau1, 
                                                data[set2].internal_diff + tau2);
                if (diff <= mint)
                {
                    const unsigned long new_set = sets.merge_sets(set1, set2);
                    data[new_set].component_size = data[set1].component_size + data[set2].component_size;
                    data[new_set].internal_diff = diff;
                }
            }
        }

        // now merge any really small blobs
        if (min_size != 0)
        {
            for (unsigned long i = 0; i < sorted_edges.size(); ++i)
            {
                const unsigned long idx1 = sorted_edges[i].idx1;
                const unsigned long idx2 = sorted_edges[i].idx2;

                unsigned long set1 = sets.find_set(idx1);
                unsigned long set2 = sets.find_set(idx2);
                if (set1 != set2 && (data[set1].component_size < min_size || data[set2].component_size < min_size))
                {
                    const unsigned long new_set = sets.merge_sets(set1, set2);
                    data[new_set].component_size = data[set1].component_size + data[set2].component_size;
                    //data[new_set].internal_diff = sorted_edges[i].diff;
                }
            }
        }

        unsigned long idx = 0;
        for (long r = 0; r < out_img.nr(); ++r)
        {
            for (long c = 0; c < out_img.nc(); ++c)
            {
                out_img[r][c] = sets.find_set(idx++);
            }
        }
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                     Candidate object location generation code.
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    namespace impl
    {
        struct edge_data
        {
            double edge_diff;
            unsigned long set1;  
            unsigned long set2;
            bool operator<(const edge_data& item) const
            {
                return edge_diff < item.edge_diff;
            }
        };

        template <
            typename in_image_type,
            typename diff_type
            >
        void find_basic_candidate_object_locations (
            const in_image_type& in_img,
            const std::vector<dlib::impl::segment_image_edge_data_T<diff_type> >& sorted_edges,
            std::vector<rectangle>& out_rects,
            std::vector<edge_data>& edges,
            const double k,
            const unsigned long min_size 
        )
        {
            using namespace dlib::impl;

            std::vector<dlib::impl::segment_image_edge_data_T<diff_type> > rejected_edges;
            rejected_edges.reserve(sorted_edges.size());

            out_rects.clear();
            edges.clear();

            // don't bother doing anything if the image is too small
            if (in_img.nr() < 2 || in_img.nc() < 2)
            {
                return;
            }

            disjoint_subsets sets;
            sets.set_size(in_img.size());


            std::vector<graph_image_segmentation_data_T<diff_type> > data(in_img.size());



            std::pair<unsigned long,unsigned long> last_blob_edge(std::numeric_limits<unsigned long>::max(),
                                                                  std::numeric_limits<unsigned long>::max());;
            // now start connecting blobs together to make a minimum spanning tree.
            for (unsigned long i = 0; i < sorted_edges.size(); ++i)
            {
                const unsigned long idx1 = sorted_edges[i].idx1;
                const unsigned long idx2 = sorted_edges[i].idx2;

                unsigned long set1 = sets.find_set(idx1);
                unsigned long set2 = sets.find_set(idx2);
                if (set1 != set2)
                {
                    const diff_type diff = sorted_edges[i].diff;
                    const diff_type tau1 = static_cast<diff_type>(k/data[set1].component_size);
                    const diff_type tau2 = static_cast<diff_type>(k/data[set2].component_size);

                    const diff_type mint = std::min(data[set1].internal_diff + tau1, 
                        data[set2].internal_diff + tau2);
                    if (diff <= mint)
                    {
                        const unsigned long new_set = sets.merge_sets(set1, set2);
                        data[new_set].component_size = data[set1].component_size + data[set2].component_size;
                        data[new_set].internal_diff = diff;
                    }
                    else
                    {
                        // Don't bother keeping multiple edges from the same pair of blobs, we
                        // only need one for what we will do later.
                        if (std::make_pair(set1,set2) != last_blob_edge)
                        {
                            segment_image_edge_data_T<diff_type> temp = sorted_edges[i];
                            temp.idx1 = set1;
                            temp.idx2 = set2;
                            rejected_edges.push_back(temp);
                            last_blob_edge = std::make_pair(set1,set2);
                        }
                    }
                }
            }


            // merge small blobs
            for (unsigned long i = 0; i < rejected_edges.size(); ++i)
            {
                const unsigned long idx1 = rejected_edges[i].idx1;
                const unsigned long idx2 = rejected_edges[i].idx2;

                unsigned long set1 = sets.find_set(idx1);
                unsigned long set2 = sets.find_set(idx2);
                rejected_edges[i].idx1 = set1;
                rejected_edges[i].idx2 = set2;
                if (set1 != set2 && (data[set1].component_size < min_size || data[set2].component_size < min_size))
                {
                    const unsigned long new_set = sets.merge_sets(set1, set2);
                    data[new_set].component_size = data[set1].component_size + data[set2].component_size;
                    data[new_set].internal_diff = rejected_edges[i].diff;
                }
            }

            // find bounding boxes of each blob
            std::map<unsigned long, rectangle> boxes;
            std::map<unsigned long, unsigned long> box_id_map;
            unsigned long idx = 0;
            for (long r = 0; r < in_img.nr(); ++r)
            {
                for (long c = 0; c < in_img.nc(); ++c)
                {
                    const unsigned long id = sets.find_set(idx++);
                    // Accumulate the current point into its box and if it is the first point
                    // in the box then also record the id number for this box.
                    if ((boxes[id] += point(c,r)).area() == 1)
                        box_id_map[id] = boxes.size()-1;
                }
            }

            // copy boxes into out_rects
            out_rects.resize(boxes.size());
            for (std::map<unsigned long,rectangle>::iterator i = boxes.begin(); i != boxes.end(); ++i)
            {
                out_rects[box_id_map[i->first]] = i->second;
            }

            // Now find the edges between the boxes 
            typedef dlib::memory_manager<char>::kernel_2c mm_type;
            dlib::set<std::pair<unsigned long, unsigned long>, mm_type>::kernel_1a neighbors_final;
            for (unsigned long i = 0; i < rejected_edges.size(); ++i)
            {
                const unsigned long idx1 = rejected_edges[i].idx1;
                const unsigned long idx2 = rejected_edges[i].idx2;

                unsigned long set1 = sets.find_set(idx1);
                unsigned long set2 = sets.find_set(idx2);
                if (set1 != set2)
                {
                    std::pair<unsigned long, unsigned long> p = std::make_pair(set1,set2);
                    if (!neighbors_final.is_member(p))
                    {
                        neighbors_final.add(p);

                        edge_data temp;
                        const diff_type mint = std::min(data[set1].internal_diff , 
                                                        data[set2].internal_diff );
                        temp.edge_diff = rejected_edges[i].diff - mint;
                        temp.set1 = box_id_map[set1];
                        temp.set2 = box_id_map[set2];
                        edges.push_back(temp);
                    }
                }
            }

            std::sort(edges.begin(), edges.end());
        }
    } // end namespace impl

// ----------------------------------------------------------------------------------------

    template <typename alloc>
    void remove_duplicates (
        std::vector<rectangle,alloc>& rects
    )
    {
        std::sort(rects.begin(), rects.end(), std::less<rectangle>());
        unsigned long num_unique = 1;
        for (unsigned long i = 1; i < rects.size(); ++i)
        {
            if (rects[i] != rects[i-1])
            {
                rects[num_unique++] = rects[i];
            }
        }
        if (rects.size() != 0)
            rects.resize(num_unique);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename in_image_type,
        typename EXP
        >
    void find_candidate_object_locations (
        const in_image_type& in_img_,
        std::vector<rectangle>& rects,
        const matrix_exp<EXP>& kvals,
        const unsigned long min_size = 20,
        const unsigned long max_merging_iterations = 50
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(is_vector(kvals) && kvals.size() > 0,
            "\t void find_candidate_object_locations()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t is_vector(kvals): " << is_vector(kvals)
            << "\n\t kvals.size():     " << kvals.size()
            );

        typedef dlib::memory_manager<char>::kernel_2c mm_type;
        typedef dlib::set<rectangle, mm_type>::kernel_1a set_of_rects;

        using namespace dlib::impl;
        typedef typename image_traits<in_image_type>::pixel_type ptype;
        typedef typename edge_diff_funct<ptype>::diff_type diff_type;

        const_image_view<in_image_type> in_img(in_img_);

        // don't bother doing anything if the image is too small
        if (in_img.nr() < 2 || in_img.nc() < 2)
        {
            return;
        }

        std::vector<edge_data> edges;
        std::vector<rectangle> working_rects;
        std::vector<segment_image_edge_data_T<diff_type> > sorted_edges;
        get_pixel_edges(in_img, sorted_edges);

        disjoint_subsets sets;

        for (long j = 0; j < kvals.size(); ++j)
        {
            const double k = kvals(j);

            find_basic_candidate_object_locations(in_img, sorted_edges, working_rects, edges, k, min_size);
            rects.insert(rects.end(), working_rects.begin(), working_rects.end());


            // Now iteratively merge all the rectangles we have and record the results.
            // Note that, unlike what is described in the paper 
            //    Segmentation as Selective Search for Object Recognition" by Koen E. A. van de Sande, et al.
            // we don't use any kind of histogram/SIFT like thing to order the edges
            // between the blobs.  Here we simply order by the pixel difference value.
            // Additionally, note that we keep progressively merging boxes in the outer
            // loop rather than performing just a single iteration as indicated in the
            // paper.
            set_of_rects detected_rects;
            bool did_merge = true;
            for (unsigned long iter = 0; did_merge && iter < max_merging_iterations; ++iter) 
            {
                did_merge = false;
                sets.clear();
                sets.set_size(working_rects.size());

                // recursively merge neighboring blobs until we have merged everything
                for (unsigned long i = 0; i < edges.size(); ++i)
                {
                    edge_data temp = edges[i];

                    temp.set1 = sets.find_set(temp.set1);
                    temp.set2 = sets.find_set(temp.set2);
                    if (temp.set1 != temp.set2)
                    {
                        rectangle merged_rect = working_rects[temp.set1] + working_rects[temp.set2];
                        // Skip merging this pair of blobs if it was merged in a previous
                        // iteration.  Doing this lets us consider other possible blob
                        // merges.
                        if (!detected_rects.is_member(merged_rect))
                        {
                            const unsigned long new_set = sets.merge_sets(temp.set1, temp.set2);
                            rects.push_back(merged_rect);
                            working_rects[new_set] = merged_rect;
                            did_merge = true;
                            detected_rects.add(merged_rect);
                        }
                    }
                }
            }
        }

        remove_duplicates(rects);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename in_image_type
        >
    void find_candidate_object_locations (
        const in_image_type& in_img,
        std::vector<rectangle>& rects
    )
    {
        find_candidate_object_locations(in_img, rects, linspace(50, 200, 3));
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SEGMENT_ImAGE_Hh_