summaryrefslogtreecommitdiffstats
path: root/ml/dlib/dlib/random_forest/random_forest_regression.h
blob: a61f7a1a2a2cadd108ed4604ae410edc1a6203a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
// Copyright (C) 2018  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_RANdOM_FOREST_REGRESSION_H_
#define DLIB_RANdOM_FOREST_REGRESSION_H_

#include "random_forest_regression_abstract.h"
#include <vector>
#include "../matrix.h"
#include <algorithm>
#include "../threads.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class dense_feature_extractor
    {

    public:
        typedef uint32_t feature;
        typedef matrix<double,0,1> sample_type;

        dense_feature_extractor(
        ) = default;

        void setup (
            const std::vector<sample_type>& x,
            const std::vector<double>& y 
        ) 
        {
            DLIB_CASSERT(x.size() > 0);
            DLIB_CASSERT(x.size() == y.size());
            for (auto& el : x)
                DLIB_CASSERT(el.size() == x[0].size(), "All the vectors in a training set have to have the same dimensionality.");

            DLIB_CASSERT(x[0].size() != 0, "The vectors can't be empty.");

            num_feats = x[0].size();
        }


        void get_random_features (
            dlib::rand& rnd,
            size_t num,
            std::vector<feature>& feats
        ) const
        {
            DLIB_ASSERT(max_num_feats() != 0);
            num = std::min(num, num_feats);

            feats.clear();
            for (size_t i = 0; i < num_feats; ++i)
                feats.push_back(i);

            // now pick num features at random
            for (size_t i = 0; i < num; ++i)
            {
                auto idx = rnd.get_integer_in_range(i,num_feats);
                std::swap(feats[i], feats[idx]);
            }
            feats.resize(num);
        }

        double extract_feature_value (
            const sample_type& item,
            const feature& f
        ) const
        {
            DLIB_ASSERT(max_num_feats() != 0);
            return item(f);
        }

        size_t max_num_feats (
        ) const
        {
            return num_feats;
        }

        friend void serialize(const dense_feature_extractor& item, std::ostream& out)
        {
            serialize("dense_feature_extractor", out);
            serialize(item.num_feats, out);
        }

        friend void deserialize(dense_feature_extractor& item, std::istream& in)
        {
            check_serialized_version("dense_feature_extractor", in);
            deserialize(item.num_feats, in);
        }

    private:
        size_t num_feats = 0;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    struct internal_tree_node
    {
        uint32_t left;
        uint32_t right;
        float split_threshold;
        typename feature_extractor::feature split_feature;
    };

    template <typename feature_extractor>
    void serialize(const internal_tree_node<feature_extractor>& item, std::ostream& out)
    {
        serialize(item.left, out);
        serialize(item.right, out);
        serialize(item.split_threshold, out);
        serialize(item.split_feature, out);
    }

    template <typename feature_extractor>
    void deserialize(internal_tree_node<feature_extractor>& item, std::istream& in)
    {
        deserialize(item.left, in);
        deserialize(item.right, in);
        deserialize(item.split_threshold, in);
        deserialize(item.split_feature, in);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor = dense_feature_extractor
        >
    class random_forest_regression_function
    {

    public:

        typedef feature_extractor feature_extractor_type;
        typedef typename feature_extractor::sample_type sample_type;

        random_forest_regression_function(
        ) = default;

        random_forest_regression_function (
            feature_extractor_type&& fe_,
            std::vector<std::vector<internal_tree_node<feature_extractor>>>&& trees_,
            std::vector<std::vector<float>>&& leaves_
        ) :
            fe(std::move(fe_)),
            trees(std::move(trees_)),
            leaves(std::move(leaves_))
        {
            DLIB_ASSERT(trees.size() > 0);
            DLIB_ASSERT(trees.size() == leaves.size(), "Every set of tree nodes has to have leaves");
#ifdef ENABLE_ASSERTS
            for (size_t i = 0; i < trees.size(); ++i)
            {
                DLIB_ASSERT(trees[i].size() > 0, "A tree can't have 0 leaves.");
                for (auto& node : trees[i])
                {
                    DLIB_ASSERT(trees[i].size()+leaves[i].size() > node.left, "left node index in tree is too big. There is no associated tree node or leaf.");
                    DLIB_ASSERT(trees[i].size()+leaves[i].size() > node.right, "right node index in tree is too big. There is no associated tree node or leaf.");
                }
            }
#endif
        }

        size_t get_num_trees(
        ) const
        {
            return trees.size();
        }

        const std::vector<std::vector<internal_tree_node<feature_extractor>>>& get_internal_tree_nodes (
        ) const { return trees; }

        const std::vector<std::vector<float>>& get_tree_leaves (
        ) const { return leaves; }

        const feature_extractor_type& get_feature_extractor (
        ) const { return fe; }

        double operator() (
            const sample_type& x
        ) const
        {
            DLIB_ASSERT(get_num_trees() > 0);

            double accum = 0;

            for (size_t i = 0; i < trees.size(); ++i)
            {
                auto& tree = trees[i];
                // walk the tree to the leaf
                uint32_t idx = 0;
                while(idx < tree.size())
                {
                    auto feature_value = fe.extract_feature_value(x, tree[idx].split_feature);
                    if (feature_value < tree[idx].split_threshold)
                        idx = tree[idx].left;
                    else
                        idx = tree[idx].right;
                }
                // compute leaf index 
                accum += leaves[i][idx-tree.size()];
            }

            return accum/trees.size();
        }

        friend void serialize(const random_forest_regression_function& item, std::ostream& out)
        {
            serialize("random_forest_regression_function", out);
            serialize(item.fe, out);
            serialize(item.trees, out);
            serialize(item.leaves, out);
        }

        friend void deserialize(random_forest_regression_function& item, std::istream& in)
        {
            check_serialized_version("random_forest_regression_function", in);
            deserialize(item.fe, in);
            deserialize(item.trees, in);
            deserialize(item.leaves, in);
        }

    private:

        /*!
            CONVENTION
                - trees.size() == leaves.size()
                - Any .left or .right index in trees that is larger than the number of
                  nodes in the tree references a leaf. Moreover, the index of the leaf is
                  computed by subtracting the number of nodes in the tree.
        !*/

        feature_extractor_type fe;

        // internal nodes of trees
        std::vector<std::vector<internal_tree_node<feature_extractor>>> trees;
        // leaves of trees
        std::vector<std::vector<float>> leaves;

    };

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor = dense_feature_extractor
        >
    class random_forest_regression_trainer
    {
    public:
        typedef feature_extractor feature_extractor_type;
        typedef random_forest_regression_function<feature_extractor> trained_function_type;
        typedef typename feature_extractor::sample_type sample_type;


        random_forest_regression_trainer (
        ) = default;

        const feature_extractor_type& get_feature_extractor (
        ) const
        {
            return fe_;
        }

        void set_feature_extractor (
            const feature_extractor_type& feat_extractor
        )
        {
            fe_ = feat_extractor;
        }

        void set_seed (
            const std::string& seed
        )
        {
            random_seed = seed;
        }

        const std::string& get_random_seed (
        ) const
        {
            return random_seed;
        }

        size_t get_num_trees (
        ) const
        {
            return num_trees;
        }

        void set_num_trees (
            size_t num
        )
        {
            DLIB_CASSERT(num > 0);
            num_trees = num;
        }

        void set_feature_subsampling_fraction (
            double frac
        )
        {
            DLIB_CASSERT(0 < frac && frac <= 1);
            feature_subsampling_frac = frac;
        }

        double get_feature_subsampling_frac(
        ) const
        {
            return feature_subsampling_frac;
        }

        void set_min_samples_per_leaf (
            size_t num
        )
        {
            DLIB_ASSERT(num > 0);
            min_samples_per_leaf = num;
        }

        size_t get_min_samples_per_leaf(
        ) const
        {
            return min_samples_per_leaf;
        }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

        trained_function_type train (
            const std::vector<sample_type>& x,
            const std::vector<double>& y 
        ) const
        {
            std::vector<double> junk; 
            return do_train(x,y,junk,false);
        }

        trained_function_type train (
            const std::vector<sample_type>& x,
            const std::vector<double>& y,
            std::vector<double>& oob_values 
        ) const
        {
            return do_train(x,y,oob_values,true);
        }

    private:

        trained_function_type do_train (
            const std::vector<sample_type>& x,
            const std::vector<double>& y,
            std::vector<double>& oob_values, 
            bool compute_oob_values
        ) const 
        {
            DLIB_CASSERT(x.size() == y.size());
            DLIB_CASSERT(x.size() > 0);

            feature_extractor_type fe = fe_;
            fe.setup(x,y);

            DLIB_CASSERT(fe.max_num_feats() != 0);

            std::vector<std::vector<internal_tree_node<feature_extractor>>> all_trees(num_trees);
            std::vector<std::vector<float>> all_leaves(num_trees);

            const double sumy = sum(mat(y));

            const size_t feats_per_node = std::max(1.0,std::round(fe.max_num_feats()*feature_subsampling_frac));

            // Each tree couldn't have more than this many interior nodes.  It might
            // end up having less though. We need to know this value because the way
            // we mark a left or right pointer in a tree as pointing to a leaf is by
            // making its index larger than the number of interior nodes in the tree.
            // But we don't know the tree's size before we finish building it.  So we
            // will use max_num_nodes as a proxy during tree construction and then go
            // back and fix it once a tree's size is known.
            const uint32_t max_num_nodes = y.size(); 

            std::vector<uint32_t> oob_hits;

            if (compute_oob_values)
            {
                oob_values.resize(y.size());
                oob_hits.resize(y.size());
            }


            std::mutex m;

            // Calling build_tree(i) creates the ith tree and stores the results in
            // all_trees and all_leaves.
            auto build_tree = [&](long i)
            {
                dlib::rand rnd(random_seed + std::to_string(i));
                auto& tree = all_trees[i];
                auto& leaves = all_leaves[i];

                // Check if there are fewer than min_samples_per_leaf and if so then
                // don't make any tree.  Just average the things and be done. 
                if (y.size() <= min_samples_per_leaf)
                {
                    leaves.push_back(sumy/y.size());
                    return;
                }


                // pick a random bootstrap of the data.
                std::vector<std::pair<float,uint32_t>> idxs(y.size());
                for (auto& idx : idxs)
                    idx = std::make_pair(0,rnd.get_integer(y.size()));

                // We are going to use ranges_to_process as a stack that tracks which
                // range of samples we are going to split next.
                std::vector<range_t> ranges_to_process;
                // start with the root of the tree, i.e. the entire range of training
                // samples.
                ranges_to_process.emplace_back(sumy,0,y.size());
                // push an unpopulated root node into the tree.  We will populate it
                // when we process its corresponding range. 
                tree.emplace_back();

                std::vector<typename feature_extractor::feature> feats;

                while(ranges_to_process.size() > 0)
                {
                    // Grab the next range/node to process.
                    const auto range = ranges_to_process.back();
                    ranges_to_process.pop_back();


                    // Get the split features we will consider at this node.
                    fe.get_random_features(rnd, feats_per_node, feats);
                    // Then find the best split
                    auto best_split = find_best_split_among_feats(fe, range, feats, x, y, idxs); 

                    range_t left_split(best_split.left_sum, range.begin, best_split.split_idx);
                    range_t right_split(best_split.right_sum, best_split.split_idx, range.end);

                    DLIB_ASSERT(left_split.begin < left_split.end);
                    DLIB_ASSERT(right_split.begin < right_split.end);

                    // Now that we know the split we can populate the parent node we popped
                    // from ranges_to_process.
                    tree[range.tree_idx].split_threshold = best_split.split_threshold; 
                    tree[range.tree_idx].split_feature = best_split.split_feature; 

                    // If the left split is big enough to make a new interior leaf
                    // node. We also stop splitting if all the samples went into this node.
                    // This could happen if the features are all uniform so there just
                    // isn't any way to split them anymore.
                    if (left_split.size() > min_samples_per_leaf && right_split.size() != 0)
                    {
                        // allocate an interior leaf node for it.
                        left_split.tree_idx = tree.size();
                        tree.emplace_back(); 
                        // set the pointer in the parent node to the newly allocated
                        // node.
                        tree[range.tree_idx].left  = left_split.tree_idx;

                        ranges_to_process.emplace_back(left_split);
                    }
                    else
                    {
                        // Add to leaves.  Don't forget to set the pointer in the
                        // parent node to the newly allocated leaf node.
                        tree[range.tree_idx].left = leaves.size() + max_num_nodes;
                        leaves.emplace_back(left_split.avg()); 
                    }


                    // If the right split is big enough to make a new interior leaf
                    // node. We also stop splitting if all the samples went into this node.
                    // This could happen if the features are all uniform so there just
                    // isn't any way to split them anymore.
                    if (right_split.size() > min_samples_per_leaf && left_split.size() != 0)
                    {
                        // allocate an interior leaf node for it.
                        right_split.tree_idx = tree.size();
                        tree.emplace_back(); 
                        // set the pointer in the parent node to the newly allocated
                        // node.
                        tree[range.tree_idx].right  = right_split.tree_idx;

                        ranges_to_process.emplace_back(right_split);
                    }
                    else
                    {
                        // Add to leaves.  Don't forget to set the pointer in the
                        // parent node to the newly allocated leaf node.
                        tree[range.tree_idx].right = leaves.size() + max_num_nodes;
                        leaves.emplace_back(right_split.avg()); 
                    }
                } // end while (still building tree)

                // Fix the leaf pointers in the tree now that we know the correct
                // tree.size() value.
                DLIB_CASSERT(max_num_nodes >= tree.size()); 
                const auto offset = max_num_nodes - tree.size();
                for (auto& n : tree)
                {
                    if (n.left >= max_num_nodes)
                        n.left -= offset;
                    if (n.right >= max_num_nodes)
                        n.right -= offset;
                }
                

                if (compute_oob_values)
                {
                    std::sort(idxs.begin(), idxs.end(), 
                        [](const std::pair<float,uint32_t>& a, const std::pair<float,uint32_t>& b) {return a.second<b.second; });

                    std::lock_guard<std::mutex> lock(m);

                    size_t j = 0;
                    for (size_t i = 0; i < oob_values.size(); ++i)
                    {
                        // check if i is in idxs
                        while(j < idxs.size() && i > idxs[j].second)
                            ++j;

                        // i isn't in idxs so it's an oob sample and we should process it.
                        if (j == idxs.size() || idxs[j].second != i)
                        {
                            oob_hits[i]++;

                            // walk the tree to find the leaf value for this oob sample
                            uint32_t idx = 0;
                            while(idx < tree.size())
                            {
                                auto feature_value = fe.extract_feature_value(x[i], tree[idx].split_feature);
                                if (feature_value < tree[idx].split_threshold)
                                    idx = tree[idx].left;
                                else
                                    idx = tree[idx].right;
                            }
                            oob_values[i] += leaves[idx-tree.size()];
                        }
                    }
                }
            };

            if (verbose)
                parallel_for_verbose(0, num_trees, build_tree);
            else
                parallel_for(0, num_trees, build_tree);


            if (compute_oob_values)
            {
                double meanval = 0;
                double cnt = 0;
                for (size_t i = 0; i < oob_values.size(); ++i)
                {
                    if (oob_hits[i] != 0)
                    {
                        oob_values[i] /= oob_hits[i];
                        meanval += oob_values[i];
                        ++cnt;
                    }
                }

                // If there are some elements that didn't get hits, we set their oob values
                // to the mean oob value.
                if (cnt != 0)
                {
                    const double typical_value = meanval/cnt;
                    for (size_t i = 0; i < oob_values.size(); ++i)
                    {
                        if (oob_hits[i] == 0)
                            oob_values[i] = typical_value;
                    }
                }
            }

            return trained_function_type(std::move(fe), std::move(all_trees), std::move(all_leaves));
        }

        struct range_t 
        {
            range_t(
                double sumy,
                uint32_t begin,
                uint32_t end
            ) : sumy(sumy), begin(begin), end(end), tree_idx(0) {}

            double sumy;
            uint32_t begin;
            uint32_t end;

            // Every range object corresponds to an entry in a tree. This tells you the
            // tree node that owns the range.
            uint32_t tree_idx; 

            uint32_t size() const { return end-begin; }
            double avg() const { return sumy/size(); }
        };

        struct best_split_details
        {
            double score = -std::numeric_limits<double>::infinity();
            double left_sum;
            double right_sum;
            uint32_t split_idx;
            double split_threshold;
            typename feature_extractor::feature split_feature;

            bool operator < (const best_split_details& rhs) const
            {
                return score < rhs.score;
            }
        };

        static best_split_details find_best_split (
            const range_t& range,
            const std::vector<double>& y,
            const std::vector<std::pair<float,uint32_t>>& idxs
        )
        /*!
            requires
                - max(mat(idxs)) < y.size()
                - range.sumy == sum of y[idxs[j].second] for all valid j in range [range.begin, range.end). 
            ensures
                - finds a threshold T such that there exists an i satisfying the following:
                    - y[idxs[j].second] < T for all j <= i
                    - y[idxs[j].second] > T for all j > i
                  Therefore, the threshold T partitions the contents of y into two groups,
                  relative to the ordering established by idxs.  Moreover the partitioning
                  of y values into two groups has the additional requirement that it is
                  optimal in the sense that the sum of the squared deviations from each
                  partition's mean is minimized.
        !*/
        {

            size_t best_i = range.begin;
            double best_score = -1;
            double left_sum = 0;
            double best_left_sum = y[idxs[range.begin].second];
            const auto size = range.size();
            size_t left_size = 0;
            for (size_t i = range.begin; i+1 < range.end; ++i)
            {
                ++left_size;
                left_sum += y[idxs[i].second];

                // Don't split here because the next element has the same feature value so
                // we can't *really* split here.
                if (idxs[i].first==idxs[i+1].first)
                    continue;

                const double right_sum = range.sumy-left_sum;

                const double score = left_sum*left_sum/left_size + right_sum*right_sum/(size-left_size);

                if (score > best_score)
                {
                    best_score = score;
                    best_i = i;
                    best_left_sum = left_sum;
                }
            }

            best_split_details result;
            result.score = best_score;
            result.left_sum = best_left_sum;
            result.right_sum = range.sumy-best_left_sum;
            result.split_idx = best_i+1; // one past the end of the left range
            result.split_threshold = (idxs[best_i].first+idxs[best_i+1].first)/2;

            return result;
        }


        static best_split_details find_best_split_among_feats(
            const feature_extractor& fe,
            const range_t& range, 
            const std::vector<typename feature_extractor::feature>& feats, 
            const std::vector<sample_type>& x,
            const std::vector<double>& y,
            std::vector<std::pair<float,uint32_t>>& idxs
        )
        {
            auto compare_first = [](const std::pair<float,uint32_t>& a, const std::pair<float,uint32_t>& b) { return a.first<b.first; };
            best_split_details best;
            for (auto& feat : feats)
            {
                // Extract feature values for this feature and sort the indexes based on
                // that feature so we can then find the best split.
                for (auto i = range.begin; i < range.end; ++i)
                    idxs[i].first = fe.extract_feature_value(x[idxs[i].second], feat);

                std::sort(idxs.begin()+range.begin, idxs.begin()+range.end, compare_first);

                auto split = find_best_split(range, y, idxs);

                if (best < split)
                {
                    best = split;
                    best.split_feature = feat;
                }
            }

            // resort idxs based on winning feat
            for (auto i = range.begin; i < range.end; ++i)
                idxs[i].first = fe.extract_feature_value(x[idxs[i].second], best.split_feature);
            std::sort(idxs.begin()+range.begin, idxs.begin()+range.end, compare_first);

            return best;
        }

        std::string random_seed;
        size_t num_trees = 1000;
        double feature_subsampling_frac = 1.0/3.0;
        size_t min_samples_per_leaf = 5;
        feature_extractor_type fe_;
        bool verbose = false;
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_RANdOM_FOREST_REGRESSION_H_