summaryrefslogtreecommitdiffstats
path: root/ml/dlib/docs/docs/ml.xml
blob: f97e7da579aaf24324237dff35b407ea94b1754a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Machine Learning</title>

   <!-- ************************************************************************* -->

   <body>

         <a href="ml_guide.svg"><img src="ml_guide.svg" width="100%"/></a>
         <br/>
         <br/>
         <p><font style='font-size:1.4em;line-height:1.1em'>   
            Dlib contains a wide range of machine learning algorithms.  All
            designed to be highly modular, quick to execute, and simple to use
            via a clean and modern C++ API.   It is used in a wide range of
            applications including robotics, embedded devices, mobile phones, and large
            high performance computing environments.  If you use dlib in your
            research please cite:
         </font></p>
         <pre>
Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09a.pdf">Dlib-ml: A Machine Learning Toolkit</a>. 
   <i>Journal of Machine Learning Research</i>, 2009

@Article{dlib09,
  author = {Davis E. King},
  title = {Dlib-ml: A Machine Learning Toolkit},
  journal = {Journal of Machine Learning Research},
  year = {2009},
  volume = {10},
  pages = {1755-1758},
}
         </pre>

   </body>

   <!-- ************************************************************************* -->

   <menu width="150">
    <top>

      <center><h2><u>Primary Algorithms</u></h2></center>
      <section>
         <name>Binary Classification</name>
         <item>svm_nu_trainer</item> 
         <item>svm_c_trainer</item> 
         <item>svm_c_linear_trainer</item> 
         <item>svm_c_linear_dcd_trainer</item> 
         <item>svm_c_ekm_trainer</item> 
         <item>rvm_trainer</item> 
         <item>svm_pegasos</item> 
         <item>train_probabilistic_decision_function</item> 
      </section>
      <section>
         <name>Multiclass Classification</name>
         <item>one_vs_one_trainer</item> 
         <item>one_vs_all_trainer</item> 
         <item>svm_multiclass_linear_trainer</item> 
      </section>
      <section>
         <name>Regression</name>
         <item>mlp</item> 
         <item>krls</item>
         <item>rls</item>
         <item>krr_trainer</item> 
         <item>rr_trainer</item> 
         <item>svr_trainer</item> 
         <item>svr_linear_trainer</item> 
         <item>rvm_regression_trainer</item> 
         <item>rbf_network_trainer</item> 
         <item>random_forest_regression_trainer</item> 
      </section>
      <section>
         <name>Structured Prediction</name>
         <item nolink="true">
            <name>Problem Instances</name>
            <sub>
               <item>structural_svm_sequence_labeling_problem</item> 
               <item>structural_svm_object_detection_problem</item> 
               <item>structural_svm_assignment_problem</item> 
               <item>structural_svm_graph_labeling_problem</item> 
            </sub>
         </item>
         <item nolink="true">
            <name>Core Tools</name>
            <sub>
               <item>structural_svm_problem</item> 
               <item>structural_svm_problem_threaded</item> 
               <item>svm_struct_controller_node</item> 
               <item>svm_struct_processing_node</item> 
            </sub>
         </item>
         <item>structural_object_detection_trainer</item> 
         <item>structural_sequence_labeling_trainer</item> 
         <item>structural_sequence_segmentation_trainer</item> 
         <item>structural_assignment_trainer</item> 
         <item>structural_track_association_trainer</item> 
         <item>structural_graph_labeling_trainer</item> 
         <item>svm_rank_trainer</item> 
         <item>shape_predictor_trainer</item> 
      </section>
      <section>
         <name>Deep Learning</name>

         <item nolink="true">
            <name>Core Tools</name>
            <sub>
               <item>dnn_trainer</item>
               <item>add_layer</item>
               <item>add_loss_layer</item>
               <item>repeat</item>
               <item>add_tag_layer</item>
               <item>add_skip_layer</item>
               <item>layer</item>
               <item>test_layer</item>
               <item>resizable_tensor</item>
               <item>alias_tensor</item>
            </sub>
         </item>
         <item nolink="true">
            <name>Input Layers</name>
            <sub>
               <item>input</item>
               <item>input_rgb_image</item>
               <item>input_rgb_image_sized</item>
               <item>input_rgb_image_pyramid</item>
               <item>
                  <name>EXAMPLE_INPUT_LAYER</name>
                  <link>dlib/dnn/input_abstract.h.html#EXAMPLE_INPUT_LAYER</link>
               </item>
            </sub>
         </item>
         <item nolink="true">
            <name>Computational Layers</name>
            <sub>
               <item>
                  <name>EXAMPLE_COMPUTATIONAL_LAYER</name>
                  <link>dlib/dnn/layers_abstract.h.html#EXAMPLE_COMPUTATIONAL_LAYER_</link>
               </item>
               <item>
                  <name>fc</name>
                  <link>dlib/dnn/layers_abstract.h.html#fc_</link>
               </item>
               <item>
                  <name>con</name>
                  <link>dlib/dnn/layers_abstract.h.html#con_</link>
               </item>
               <item>
                  <name>cont</name>
                  <link>dlib/dnn/layers_abstract.h.html#cont_</link>
               </item>
               <item>
                  <name>scale</name>
                  <link>dlib/dnn/layers_abstract.h.html#scale_</link>
               </item>
               <item>
                  <name>extract</name>
                  <link>dlib/dnn/layers_abstract.h.html#extract_</link>
               </item>
               <item>
                  <name>mult_prev</name>
                  <link>dlib/dnn/layers_abstract.h.html#mult_prev_</link>
               </item>
               <item>
                  <name>upsample</name>
                  <link>dlib/dnn/layers_abstract.h.html#upsample_</link>
               </item>
               <item>
                  <name>l2normalize</name>
                  <link>dlib/dnn/layers_abstract.h.html#l2normalize_</link>
               </item>
               <item>
                  <name>dropout</name>
                  <link>dlib/dnn/layers_abstract.h.html#dropout_</link>
               </item>
               <item>
                  <name>multiply</name>
                  <link>dlib/dnn/layers_abstract.h.html#multiply_</link>
               </item>
               <item>
                  <name>bn</name>
                  <link>dlib/dnn/layers_abstract.h.html#bn_</link>
               </item>
               <item>
                  <name>affine</name>
                  <link>dlib/dnn/layers_abstract.h.html#affine_</link>
               </item>
               <item>
                  <name>max_pool</name>
                  <link>dlib/dnn/layers_abstract.h.html#max_pool_</link>
               </item>
               <item>
                  <name>avg_pool</name>
                  <link>dlib/dnn/layers_abstract.h.html#avg_pool_</link>
               </item>
               <item>
                  <name>relu</name>
                  <link>dlib/dnn/layers_abstract.h.html#relu_</link>
               </item>
               <item>
                  <name>concat</name>
                  <link>dlib/dnn/layers_abstract.h.html#concat_</link>
               </item>
               <item>
                  <name>prelu</name>
                  <link>dlib/dnn/layers_abstract.h.html#prelu_</link>
               </item>
               <item>
                  <name>sig</name>
                  <link>dlib/dnn/layers_abstract.h.html#sig_</link>
               </item>
               <item>
                  <name>htan</name>
                  <link>dlib/dnn/layers_abstract.h.html#htan_</link>
               </item>
               <item>
                  <name>softmax_all</name>
                  <link>dlib/dnn/layers_abstract.h.html#softmax_all_</link>
               </item>
               <item>
                  <name>softmax</name>
                  <link>dlib/dnn/layers_abstract.h.html#softmax_</link>
               </item>
               <item>
                  <name>add_prev</name>
                  <link>dlib/dnn/layers_abstract.h.html#add_prev_</link>
               </item>
               <item>
                  <name>inception</name>
                  <link>dlib/dnn/layers_abstract.h.html#inception</link>
               </item>
            </sub>
         </item>
         <item nolink="true">
            <name>Loss Layers</name>
            <sub>
               <item>
                  <name>EXAMPLE_LOSS_LAYER</name>
                  <link>dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_</link>
               </item>
               <item>
                  <name>loss_dot</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_dot_</link>
               </item>
               <item>
                  <name>loss_epsilon_insensitive</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_epsilon_insensitive_</link>
               </item>
               <item>
                  <name>loss_ranking</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_ranking_</link>
               </item>
               <item>
                  <name>loss_binary_hinge</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_binary_hinge_</link>
               </item>
               <item>
                  <name>loss_binary_log</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_binary_log_</link>
               </item>
               <item>
                  <name>loss_multimulticlass_log</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_multimulticlass_log_</link>
               </item>
               <item>
                  <name>loss_multiclass_log</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_multiclass_log_</link>
               </item>
               <item>
                  <name>loss_multiclass_log_per_pixel</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_multiclass_log_per_pixel_</link>
               </item>
               <item>
                  <name>loss_multiclass_log_per_pixel_weighted</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_multiclass_log_per_pixel_weighted_</link>
               </item>
               <item>
                  <name>loss_mmod</name>
                  <link>#loss_mmod_</link>
               </item>
               <item>
                  <name>loss_metric</name>
                  <link>#loss_metric_</link>
               </item>
               <item>
                  <name>loss_mean_squared</name>
                  <link>#loss_mean_squared_</link>
               </item>
               <item>
                  <name>loss_mean_squared_per_pixel</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_mean_squared_per_pixel_</link>
               </item>
               <item>
                  <name>loss_mean_squared_multioutput</name>
                  <link>dlib/dnn/loss_abstract.h.html#loss_mean_squared_multioutput_</link>
               </item>
            </sub>
         </item>
         <item nolink="true">
            <name>Solvers</name>
            <sub>
               <item>
                  <name>EXAMPLE_SOLVER</name>
                  <link>dlib/dnn/solvers_abstract.h.html#EXAMPLE_SOLVER</link>
               </item>
               <item>
                  <name>sgd</name>
                  <link>dlib/dnn/solvers_abstract.h.html#sgd</link>
               </item>
               <item>
                  <name>adam</name>
                  <link>dlib/dnn/solvers_abstract.h.html#adam</link>
               </item>
            </sub>
         </item>
      </section>

      <section>
         <name>Clustering</name>
         <item>pick_initial_centers</item> 
         <item>kkmeans</item>
         <item>find_clusters_using_kmeans</item> 
         <item>find_clusters_using_angular_kmeans</item> 
         <item>nearest_center</item> 
         <item>newman_cluster</item> 
         <item>spectral_cluster</item> 
         <item>chinese_whispers</item> 
         <item>bottom_up_cluster</item> 
         <item>segment_number_line</item> 
         <item>modularity</item> 
      </section>
      <section>
         <name>Unsupervised</name>
         <item>kcentroid</item>
         <item>linearly_independent_subset_finder</item>
         <item>empirical_kernel_map</item>
         <item>svm_one_class_trainer</item> 
         <item>vector_normalizer</item> 
         <item>vector_normalizer_pca</item> 
         <item>sammon_projection</item> 
         <item>cca</item> 
      </section>
      <section>
         <name>Semi-Supervised/Metric Learning</name>
         <item>linear_manifold_regularizer</item>
         <item>discriminant_pca</item> 
         <item>vector_normalizer_frobmetric</item> 
         <item>compute_lda_transform</item> 
      </section>
      <section>
         <name>Reinforcement Learning</name>
         <item>lspi</item> 
      </section>
      <section>
         <name>Feature Selection</name>
         <item>rank_features</item> 
         <item>sort_basis_vectors</item> 
         <item>rank_unlabeled_training_samples</item> 
      </section>

      <center><h2><u>Other Tools</u></h2></center>
      <section>
         <name>Validation</name>
         <item>cross_validate_trainer</item> 
         <item>cross_validate_object_detection_trainer</item> 
         <item>cross_validate_trainer_threaded</item> 
         <item>cross_validate_multiclass_trainer</item> 
         <item>cross_validate_regression_trainer</item> 
         <item>cross_validate_sequence_labeler</item> 
         <item>cross_validate_sequence_segmenter</item> 
         <item>cross_validate_assignment_trainer</item> 
         <item>cross_validate_track_association_trainer</item> 
         <item>cross_validate_graph_labeling_trainer</item> 
         <item>cross_validate_ranking_trainer</item> 
         <item>test_binary_decision_function</item> 
         <item>test_multiclass_decision_function</item> 
         <item>test_regression_function</item> 
         <item>test_object_detection_function</item> 
         <item>test_sequence_labeler</item>
         <item>test_sequence_segmenter</item>
         <item>test_assignment_function</item>
         <item>test_track_association_function</item>
         <item>test_graph_labeling_function</item>
         <item>test_ranking_function</item>
         <item>test_shape_predictor</item>
         <item>average_precision</item>
         <item>equal_error_rate</item>
         <item>compute_roc_curve</item>
      </section>

      <section>
         <name>Trainer Adapters</name>
         <item>reduced</item> 
         <item>reduced2</item> 
         <item>batch</item> 
         <item>probabilistic</item> 
         <item>verbose_batch</item> 
         <item>batch_cached</item> 
         <item>verbose_batch_cached</item> 
         <item>null_trainer</item> 
         <item>roc_c1_trainer</item> 
         <item>roc_c2_trainer</item> 
      </section>

      <section>
         <name>Kernels</name>
         <item>radial_basis_kernel</item>
         <item>polynomial_kernel</item>
         <item>sigmoid_kernel</item>
         <item>linear_kernel</item>
         <item>histogram_intersection_kernel</item>
         <item>offset_kernel</item>

         <item>sparse_radial_basis_kernel</item>
         <item>sparse_polynomial_kernel</item>
         <item>sparse_sigmoid_kernel</item>
         <item>sparse_linear_kernel</item>
         <item>sparse_histogram_intersection_kernel</item>

      </section>

      <section>
         <name>Function Objects</name>
         <item>random_forest_regression_function</item>
         <item>decision_function</item>
         <item>projection_function</item>
         <item>distance_function</item>
         <item>probabilistic_decision_function</item>
         <item>probabilistic_function</item>
         <item>normalized_function</item>
         <item>one_vs_one_decision_function</item>
         <item>multiclass_linear_decision_function</item>
         <item>one_vs_all_decision_function</item>
         <item>sequence_labeler</item>
         <item>sequence_segmenter</item>
         <item>assignment_function</item>
         <item>track_association_function</item>
         <item>graph_labeler</item>
         <item>policy</item>
      </section>

      <section>
         <name>Data IO</name>
         <item>load_image_dataset_metadata</item> 
         <item>load_image_dataset</item> 
         <item>save_image_dataset_metadata</item> 
         <item>load_libsvm_formatted_data</item> 
         <item>save_libsvm_formatted_data</item> 
         <item>fix_nonzero_indexing</item>
         <item>make_bounding_box_regression_training_data</item>
      </section>

      <section>
         <name>Miscellaneous</name>
         <item>simplify_linear_decision_function</item> 
         <item>fill_lisf</item> 
         <item>randomize_samples</item> 
         <item>is_binary_classification_problem</item> 
         <item>is_sequence_labeling_problem</item> 
         <item>is_sequence_segmentation_problem</item> 
         <item>is_graph_labeling_problem</item> 
         <item>is_assignment_problem</item> 
         <item>is_track_association_problem</item> 
         <item>is_forced_assignment_problem</item> 
         <item>approximate_distance_function</item> 
         <item>is_learning_problem</item> 
         <item>select_all_distinct_labels</item> 
         <item>find_gamma_with_big_centroid_gap</item> 
         <item>compute_mean_squared_distance</item> 
         <item>kernel_matrix</item> 
         <item>ranking_pair</item>
         <item>is_ranking_problem</item>
         <item>count_ranking_inversions</item>
         <item>learn_platt_scaling</item>
         <item>process_sample</item>

         

      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   

   <!-- ************************************************************************* -->

      <component>
         <name>add_layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            In dlib, a deep neural network is composed of 3 main parts.  An 
            <a href="dlib/dnn/input_abstract.h.html#EXAMPLE_INPUT_LAYER">input layer</a>, a bunch of 
            <a href="dlib/dnn/layers_abstract.h.html#EXAMPLE_COMPUTATIONAL_LAYER_">computational layers</a>, 
            and optionally a 
            <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a>.  The add_layer
            class is the central object which adds a computational layer onto an 
            input layer or an entire network.  Therefore, deep neural networks are created
            by stacking many layers on top of each other using the add_layer class.
            <p>
               For a tutorial showing how this is accomplished read 
               the <a href="dnn_introduction_ex.cpp.html">DNN Introduction part 1</a> and
               <a href="dnn_introduction2_ex.cpp.html">DNN Introduction part 2</a>.
            </p>
         </description>
         <examples>
            <example>dnn_introduction_ex.cpp.html</example>
            <example>dnn_introduction2_ex.cpp.html</example>
            <example>dnn_inception_ex.cpp.html</example>
            <example>dnn_imagenet_ex.cpp.html</example>
            <example>dnn_imagenet_train_ex.cpp.html</example>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_find_cars2_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_face_detection_ex.cpp.html</example>
            <example>dnn_mmod_dog_hipsterizer.cpp.html</example>
            <example>dnn_metric_learning_ex.cpp.html</example>
            <example>dnn_metric_learning_on_images_ex.cpp.html</example>
            <example>dnn_face_recognition_ex.cpp.html</example>
            <example>dnn_semantic_segmentation_ex.cpp.html</example>
            <example>dnn_semantic_segmentation_train_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>dnn_trainer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/trainer_abstract.h</spec_file>
         <description>
            This object is a tool training a deep neural network. 
            <p>
               For a tutorial showing how this is accomplished read 
               the <a href="dnn_introduction_ex.cpp.html">DNN Introduction part 1</a> and
               <a href="dnn_introduction2_ex.cpp.html">DNN Introduction part 2</a>.
            </p>
         </description>
         <examples>
            <example>dnn_introduction_ex.cpp.html</example>
            <example>dnn_introduction2_ex.cpp.html</example>
            <example>dnn_inception_ex.cpp.html</example>
            <example>dnn_imagenet_ex.cpp.html</example>
            <example>dnn_imagenet_train_ex.cpp.html</example>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
            <example>dnn_metric_learning_ex.cpp.html</example>
            <example>dnn_metric_learning_on_images_ex.cpp.html</example>
            <example>dnn_semantic_segmentation_train_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>add_loss_layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This object is a tool for stacking a <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a> 
            on the top of a deep neural network.
         </description>
         <examples>
            <example>dnn_introduction_ex.cpp.html</example>
            <example>dnn_introduction2_ex.cpp.html</example>
            <example>dnn_inception_ex.cpp.html</example>
            <example>dnn_imagenet_ex.cpp.html</example>
            <example>dnn_imagenet_train_ex.cpp.html</example>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
            <example>dnn_metric_learning_ex.cpp.html</example>
            <example>dnn_metric_learning_on_images_ex.cpp.html</example>
            <example>dnn_face_recognition_ex.cpp.html</example>
            <example>dnn_mmod_face_detection_ex.cpp.html</example>
            <example>dnn_mmod_dog_hipsterizer.cpp.html</example>
            <example>dnn_semantic_segmentation_train_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>repeat</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This object adds N copies of a computational layer onto a deep neural network. 
            It is essentially the same as using <a href="#add_layer">add_layer</a> N times, 
            except that it involves less typing, and for large N, will compile much faster.
         </description>
         <examples>
            <example>dnn_introduction2_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>add_tag_layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This object is a tool for tagging layers in a deep neural network.  These tags make it
            easy to refer to the tagged layer in other parts of your code.
            Specifically, this object adds a new layer onto a deep neural network.
            However, this layer simply performs the identity transform.
            This means it is a no-op and its presence does not change the
            behavior of the network.  It exists solely to be used by <a
            href="#add_skip_layer">add_skip_layer</a> or <a href="#layer">layer()</a> to reference a
            particular part of a network.

            <p>
               For a tutorial showing how to use tagging see the 
               <a href="dnn_introduction2_ex.cpp.html">dnn_introduction2_ex.cpp</a>
               example program.
            </p>
         </description>
         <examples>
            <example>dnn_introduction2_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>add_skip_layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This object adds a new layer to a deep neural network which draws its input
            from a <a href="#add_tag_layer">tagged layer</a> rather than from
            the immediate predecessor layer as is normally done.

            <p>
               For a tutorial showing how to use tagging see the 
               <a href="dnn_introduction2_ex.cpp.html">dnn_introduction2_ex.cpp</a>
               example program.
            </p>
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This global function references a <a href="#add_tag_layer">tagged layer</a> 
            inside a deep neural network object.

            <p>
               For a tutorial showing how to use tagging see the 
               <a href="dnn_introduction2_ex.cpp.html">dnn_introduction2_ex.cpp</a>
               example program.
            </p>
         </description>
         <examples>
            <example>dnn_introduction2_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>input</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/input_abstract.h</spec_file>
         <description>
            This is a simple input layer type for use in a deep neural network which
            takes some kind of image as input and loads it into a network.
         </description>
         <examples>
            <example>dnn_introduction_ex.cpp.html</example>
            <example>dnn_introduction2_ex.cpp.html</example>
            <example>dnn_inception_ex.cpp.html</example>
            <example>dnn_imagenet_ex.cpp.html</example>
            <example>dnn_imagenet_train_ex.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>input_rgb_image</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/input_abstract.h</spec_file>
         <description>
            This is a simple input layer type for use in a deep neural network
            which takes an RGB image as input and loads it into a network.  It
            is very similar to the <a href="#input">input layer</a> except that
            it allows you to subtract the average color value from each color
            channel when converting an image to a tensor.
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>input_rgb_image_sized</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/input_abstract.h</spec_file>
         <description>
            This layer has an interface and behavior identical to <a href="#input_rgb_image">input_rgb_image</a>
            except that it requires input images to have a particular size. 
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>input_rgb_image_pyramid</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/input_abstract.h</spec_file>
         <description>
            This input layer works with RGB images of type <tt>matrix&lt;rgb_pixel&gt;</tt>.  It is
            identical to <a href="#input_rgb_image">input_rgb_image</a> except that it
            outputs a tensor containing a <a href="imaging.html#create_tiled_pyramid">tiled image pyramid</a> 
            of each input image rather than a simple copy of each image.  
            This input layer is meant to be used with a loss layer such as the <a href="#loss_mmod_">MMOD loss layer</a>.
         </description>
         <examples>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_find_cars2_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_face_detection_ex.cpp.html</example>
            <example>dnn_mmod_dog_hipsterizer.cpp.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>loss_mmod_</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/loss_abstract.h</spec_file>
         <description>
            This object is a <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a> 
            for a deep neural network.  In particular, it implements the Max Margin Object Detection 
            loss defined in the paper:
            <blockquote><a href="http://arxiv.org/abs/1502.00046">Max-Margin Object Detection</a> by Davis E. King.</blockquote>
         
            This means you use this loss if you want to detect the locations of objects
            in images.  For example, here are some videos that uses loss_mmod to find cars:

            <center><youtube src="https://www.youtube.com/embed/4B3bzmxMAZU"/></center>
            <br/>
            <center><youtube src="https://www.youtube.com/embed/OHbJ7HhbG74"/></center>

         </description>
         <examples>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_find_cars2_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
            <example>dnn_mmod_face_detection_ex.cpp.html</example>
            <example>dnn_mmod_dog_hipsterizer.cpp.html</example>
            <example>cnn_face_detector.py.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>loss_metric_</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/loss_abstract.h</spec_file>
         <description>
            This object is a <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a> 
            for a deep neural network.   In particular, it allows you to learn to map objects
            into a vector space where objects sharing the same class label are close to
            each other, while objects with different labels are far apart.   
         </description>
         <examples>
            <example>dnn_metric_learning_ex.cpp.html</example>
            <example>dnn_metric_learning_on_images_ex.cpp.html</example>
            <example>dnn_face_recognition_ex.cpp.html</example>
            <example>face_recognition.py.html</example>
            <example>face_clustering.py.html</example>
         </examples>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>loss_mean_squared_</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/loss_abstract.h</spec_file>
         <description>
            This object is a <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a> 
            for a deep neural network. In particular, it implements the mean squared loss, which is
            appropriate for regression problems.
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>loss_mean_squared_multioutput_</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/loss_abstract.h</spec_file>
         <description>
            This object is a <a href="dlib/dnn/loss_abstract.h.html#EXAMPLE_LOSS_LAYER_">loss layer</a> 
            for a deep neural network. In particular, it implements the mean squared loss, which is
            appropriate for regression problems.  It is identical to the <a href="#loss_mean_squared_">loss_mean_squared_</a> 
            loss except this version supports multiple output values.
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>test_layer</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/core_abstract.h</spec_file>
         <description>
            This is a function which tests if a layer object correctly implements
            the <a href="dlib/dnn/layers_abstract.h.html#EXAMPLE_COMPUTATIONAL_LAYER_">documented contract</a>
            for a computational layer in a deep neural network.
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>resizable_tensor</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/tensor_abstract.h</spec_file>
         <description>
               This object represents a 4D array of float values, all stored contiguously
               in memory.  Importantly, it keeps two copies of the floats, one on the host
               CPU side and another on the GPU device side. It automatically performs the
               necessary host/device transfers to keep these two copies of the data in
               sync.

               <p>
                All transfers to the device happen asynchronously with respect to the
                default CUDA stream so that CUDA kernel computations can overlap with data
                transfers.  However, any transfers from the device to the host happen
                synchronously in the default CUDA stream.  Therefore, you should perform
                all your CUDA kernel launches on the default stream so that transfers back
                to the host do not happen before the relevant computations have completed.
               </p>

               <p>
                If DLIB_USE_CUDA is not #defined then this object will not use CUDA at all.
                Instead, it will simply store one host side memory block of floats.  
               </p>

               <p>
                Finally, the convention in dlib code is to interpret the tensor as a set of
                num_samples() 3D arrays, each of dimension k() by nr() by nc().  Also,
                while this class does not specify a memory layout, the convention is to
                assume that indexing into an element at coordinates (sample,k,nr,nc) can be
                accomplished via:
                <tt>host()[((sample*t.k() + k)*t.nr() + nr)*t.nc() + nc]</tt>
               </p>

         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>alias_tensor</name>
         <file>dlib/dnn.h</file>
         <spec_file link="true">dlib/dnn/tensor_abstract.h</spec_file>
         <description>
            This object is a <a href="#resizable_tensor">tensor</a> that
            aliases another tensor.  That is, it doesn't have its own block of
            memory but instead simply holds pointers to the memory of another
            tensor object.  It therefore allows you to efficiently break a tensor
            into pieces and pass those pieces into functions.
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>modularity</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/modularity_clustering_abstract.h</spec_file>
         <description>
            This function computes the modularity of a particular graph clustering.  This
            is a number that tells you how good the clustering is.  In particular, it 
            is the measure optimized by the <a href="#newman_cluster">newman_cluster</a> 
            routine.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>newman_cluster</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/modularity_clustering_abstract.h</spec_file>
         <description>
             This function performs the clustering algorithm described in the paper
             <blockquote>Modularity and community structure in networks by M. E. J. Newman.</blockquote> 
             In particular, this is a method for automatically clustering the nodes in a
             graph into groups.  The method is able to automatically determine the number
             of clusters and does not have any parameters.  In general, it is a very good
             clustering technique.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>spectral_cluster</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/spectral_cluster_abstract.h</spec_file>
         <description>
             This function performs the clustering algorithm described in the paper
             <blockquote>On spectral clustering: Analysis and an algorithm by Ng, Jordan, and Weiss.</blockquote> 
         </description>
         <examples>
            <example>kkmeans_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>bottom_up_cluster</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/bottom_up_cluster_abstract.h</spec_file>
         <description>
             This function runs a bottom up agglomerative clustering algorithm.   
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>segment_number_line</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/bottom_up_cluster_abstract.h</spec_file>
         <description>
            This routine clusters real valued scalars in essentially linear time.  
            It uses a combination of bottom up clustering and a simple greedy scan
            to try and find the most compact set of ranges that contain all
            given scalar values. 
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>chinese_whispers</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/clustering/chinese_whispers_abstract.h</spec_file>
         <description>
             This function performs the clustering algorithm described in the paper
             <blockquote>Chinese Whispers - an Efficient Graph Clustering Algorithm and its
              Application to Natural Language Processing Problems by Chris Biemann.</blockquote> 
             In particular, this is a method for automatically clustering the nodes in a
             graph into groups.  The method is able to automatically determine the number
             of clusters.  
         </description>
         <examples>
            <example>dnn_face_recognition_ex.cpp.html</example>
            <example>face_clustering.py.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_clusters_using_kmeans</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This is a simple linear kmeans clustering implementation.
            It uses Euclidean distance to compare samples.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_clusters_using_angular_kmeans</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This is a simple linear kmeans clustering implementation.
            To compare a sample to a cluster, it measures the angle between them
            with respect to the origin.  Therefore, it tries to find clusters
            of points that all have small angles between each cluster member.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>nearest_center</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This function takes a list of cluster centers and a query vector
            and identifies which cluster center is nearest to the query vector. 
         </description>
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>pick_initial_centers</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
            This is a function that you can use to seed data clustering algorithms
            like the <a href="#kkmeans">kkmeans</a> clustering method.  What it 
            does is pick reasonable starting points for clustering by basically
            trying to find a set of points that are all far away from each other.
         </description>
         <examples>
            <example>kkmeans_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>ranking_pair</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
         <description>
                This object is used to contain a ranking example.  Therefore, ranking_pair
                objects are used to represent training examples for learning-to-rank tasks,
                such as those used by the <a href="#svm_rank_trainer">svm_rank_trainer</a>.
         </description>
         <examples>
            <example>svm_rank_ex.cpp.html</example>
            <example>svm_rank.py.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>kernel_matrix</name>
         <file>dlib/svm.h</file>
         <spec_file>dlib/svm/kernel_matrix_abstract.h</spec_file>
         <description>
            This is a simple set of functions that makes it easy to turn a kernel 
            object and a set of samples into a kernel matrix.  It takes these two
            things and returns a <a href="dlib/matrix/matrix_exp_abstract.h.html#matrix_exp">matrix expression</a>
            that represents the kernel matrix.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>is_ranking_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a learning-to-rank problem
            and reports back if it could possibly be a well formed problem.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>count_ranking_inversions</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
         <description>
            Given two sets of objects, X and Y, and an ordering relationship defined
            between their elements, this function counts how many times we see an element
            in the set Y ordered before an element in the set X.   Additionally, this
            routine executes efficiently in O(n*log(n)) time via the use of quick sort.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component checked="true">
         <name>mlp</name>
         <file>dlib/mlp.h</file>
         <spec_file>dlib/mlp/mlp_kernel_abstract.h</spec_file>
         <description>
            <p>
                This object represents a multilayer layer perceptron network that is
                trained using the back propagation algorithm.  The training algorithm also
                incorporates the momentum method.  That is, each round of back propagation
                training also adds a fraction of the previous update.  This fraction
                is controlled by the momentum term set in the constructor.  
            </p>
            <p>
               It is worth noting that a MLP is, in general, very inferior to modern
               kernel algorithms such as the support vector machine.  So if you haven't
               tried any other techniques with your data you really should.  
            </p>
         </description>

         <examples>
            <example>mlp_ex.cpp.html</example>
         </examples>
         
         <implementations>
            <implementation>
               <name>mlp_kernel_1</name>
               <file>dlib/mlp/mlp_kernel_1.h</file>
               <description> 
                  This is implemented in the obvious way.
               </description> 
    
               <typedefs>
                  <typedef>
                     <name>kernel_1a</name>
                     <description>is a typedef for mlp_kernel_1</description>
                  </typedef>
               </typedefs>                
               
            </implementation> 
                     
         </implementations>
                        
      </component>
            
   <!-- ************************************************************************* -->
      
      <component>
         <name>krls</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/krls_abstract.h</spec_file>
         <description>
                This is an implementation of the kernel recursive least squares algorithm 
                described in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
            <p>
                The long and short of this algorithm is that it is an online kernel based 
                regression algorithm.  You give it samples (x,y) and it learns the function
                f(x) == y.  For a detailed description of the algorithm read the above paper.
            </p>
               <p>
                  Note that if you want to use the linear kernel then you would
                  be better off using the <a href="#rls">rls</a> object as it
                  is optimized for this case.
               </p>
         </description>

         <examples>
            <example>krls_ex.cpp.html</example>
            <example>krls_filter_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>rls</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rls_abstract.h</spec_file>
         <description>
            This is an implementation of the linear version of the recursive least 
            squares algorithm.  It accepts training points incrementally and, at 
            each step, maintains the solution to the following optimization problem:
            <blockquote>
               find w minimizing: 0.5*dot(w,w) + C*sum_i(y_i - trans(x_i)*w)^2
            </blockquote>
            Where (x_i,y_i) are training pairs.  x_i is some vector and y_i is a target
            scalar value.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_pegasos</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
                This object implements an online algorithm for training a support 
                vector machine for solving binary classification problems.  

            <p>
                The implementation of the Pegasos algorithm used by this object is based
                on the following excellent paper:
               <blockquote>
                    Pegasos: Primal estimated sub-gradient solver for SVM (2007)
                    by Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro 
                    In ICML 
               </blockquote>
            </p>
            <p>
                This SVM training algorithm has two interesting properties.  First, the 
                pegasos algorithm itself converges to the solution in an amount of time
                unrelated to the size of the training set (in addition to being quite fast
                to begin with).  This makes it an appropriate algorithm for learning from
                very large datasets.  Second, this object uses the <a href="#kcentroid">kcentroid</a> object 
                to maintain a sparse approximation of the learned decision function.  
                This means that the number of support vectors in the resulting decision 
                function is also unrelated to the size of the dataset (in normal SVM
                training algorithms, the number of support vectors grows approximately 
                linearly with the size of the training set).  
            </p>
            <p>
              However, if you are considering using svm_pegasos, you should also try the 
              <a href="#svm_c_linear_trainer">svm_c_linear_trainer</a> for linear
              kernels or <a href="#svm_c_ekm_trainer">svm_c_ekm_trainer</a> for non-linear
              kernels since these other trainers are, usually, faster and easier to use
              than svm_pegasos.
            </p>
         </description>

         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
            <example>svm_sparse_ex.cpp.html</example>
            <example>svm_binary_classifier.py.html</example>
         </examples>
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>kkmeans</name>
         <file>dlib/clustering.h</file>
         <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
         <description>
                This is an implementation of a kernelized k-means clustering algorithm.  
                It performs k-means clustering by using the <a href="#kcentroid">kcentroid</a> object.  
                <p>
                   If you want to use the linear kernel (i.e. do a normal k-means clustering) then you
                   should use the <a href="#find_clusters_using_kmeans">find_clusters_using_kmeans</a> routine.
                </p>
         </description>

         <examples>
            <example>kkmeans_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>vector_normalizer</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/statistics_abstract.h</spec_file>
         <description>
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  
         </description>

         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>vector_normalizer_frobmetric</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/vector_normalizer_frobmetric_abstract.h</spec_file>
         <description>
                This object is a tool for performing the FrobMetric distance metric
                learning algorithm described in the following paper:
                <blockquote>
                    A Scalable Dual Approach to Semidefinite Metric Learning
                    By Chunhua Shen, Junae Kim, Lei Wang, in CVPR 2011
                </blockquote>
                Therefore, this object is a tool that takes as input training triplets
                (anchor, near, far) of vectors and attempts to learn a linear
                transformation T such that:
                <blockquote> <tt>length(T*anchor-T*near) + 1 &lt; length(T*anchor - T*far)</tt> </blockquote>
                That is, you give a bunch of anchor vectors and for each anchor vector you
                specify some vectors which should be near to it and some that should be far
                form it.  This object then tries to find a transformation matrix that makes
                the "near" vectors close to their anchors while the "far" vectors are
                farther away.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>compute_lda_transform</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/lda_abstract.h</spec_file>
         <description>
            This function performs the dimensionality reducing version of linear
            discriminant analysis.  That is, you give it a set of labeled vectors and it
            returns a linear transform that maps the input vectors into a new space that
            is good for distinguishing between the different classes. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>discriminant_pca</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/dpca_abstract.h</spec_file>
         <description>
                This object implements the Discriminant PCA technique described in the paper:
                  <blockquote>
                    A New Discriminant Principal Component Analysis Method with Partial Supervision (2009)
                    by Dan Sun and Daoqiang Zhang
                  </blockquote>
                This algorithm is basically a straightforward generalization of the classical PCA
                technique to handle partially labeled data.  It is useful if you want to learn a linear
                dimensionality reduction rule using a bunch of data that is partially labeled.  
         </description>

      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sammon_projection</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/sammon_abstract.h</spec_file>
         <description>
                This is a function object that computes the Sammon projection of a set
                of N points in a L-dimensional vector space onto a d-dimensional space
                (d &lt; L), according to the paper:
                <blockquote>
                    A Nonlinear Mapping for Data Structure Analysis (1969) by J.W. Sammon
                </blockquote>
         </description>

      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>cca</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/cca_abstract.h</spec_file>
         <description>
              This function performs a canonical correlation analysis between two sets
              of vectors.  Additionally, it is designed to be very fast, even for large
              datasets of over a million high dimensional vectors.
         </description>

      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>vector_normalizer_pca</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/statistics_abstract.h</spec_file>
         <description>
                This object represents something that can learn to normalize a set 
                of column vectors.  In particular, normalized column vectors should 
                have zero mean and a variance of one.  

                This object also uses principal component analysis for the purposes 
                of reducing the number of elements in a vector.  
         </description>

      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>linearly_independent_subset_finder</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/linearly_independent_subset_finder_abstract.h</spec_file>
         <description>
            <p>
                This is an implementation of an online algorithm for recursively finding a
                set (aka dictionary) of linearly independent vectors in a kernel induced 
                feature space.  To use it you decide how large you would like the dictionary 
                to be and then you feed it sample points.  
            </p>
            <p>
                The implementation uses the Approximately Linearly Dependent metric described 
                in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel to 
                decide which points are more linearly independent than others.  The metric is 
                simply the squared distance between a test point and the subspace spanned by 
                the set of dictionary vectors.
            </p>
            <p>
                Each time you present this object with a new sample point  
                it calculates the projection distance and if it is sufficiently large then this 
                new point is included into the dictionary.  Note that this object can be configured 
                to have a maximum size.  Once the max dictionary size is reached each new point 
                kicks out a previous point.  This is done by removing the dictionary vector that 
                has the smallest projection distance onto the others.  That is, the "least linearly 
                independent" vector is removed to make room for the new one.
            </p>
         </description>
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
         </examples>

      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>fill_lisf</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/linearly_independent_subset_finder_abstract.h</spec_file>
         <description>
               This is a simple function for filling a 
               <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a>
               with data points by using random sampling.   
         </description>
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
         </examples>

      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sort_basis_vectors</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sort_basis_vectors_abstract.h</spec_file>
         <description>
              A kernel based learning method ultimately needs to select a set of basis functions
              represented by a particular choice of kernel and a set of basis vectors.  
              sort_basis_vectors() is a function which attempts to perform supervised
              basis set selection.  In particular, you give it a candidate set of basis
              vectors and it sorts them according to how useful they are for solving
              a particular decision problem.
         </description>
      </component>
      
      
   <!-- ************************************************************************* -->

      <component>
         <name>rank_unlabeled_training_samples</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/active_learning_abstract.h</spec_file>
         <description>
            This routine implements an active learning method for selecting the most
            informative data sample to label out of a set of unlabeled samples. 
            In particular, it implements the MaxMin Margin and Ratio Margin methods 
            described in the paper:
            <blockquote>
                Support Vector Machine Active Learning with Applications to Text Classification
                by Simon Tong and Daphne Koller.
            </blockquote>
         </description>
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>linear_manifold_regularizer</name>
         <file>dlib/manifold_regularization.h</file>
         <spec_file link="true">dlib/manifold_regularization/linear_manifold_regularizer_abstract.h</spec_file>
         <description>
            <p>
                Many learning algorithms attempt to minimize a function that, at a high 
                level, looks like this:   
<pre>
   f(w) == complexity + training_set_error
</pre>
            </p>

               <p>
                The idea is to find the set of parameters, w, that gives low error on 
                your training data but also is not "complex" according to some particular
                measure of complexity.  This strategy of penalizing complexity is 
                usually called regularization.
               </p>

                <p>
                In the above setting, all the training data consists of labeled samples.  
                However, it would be nice to be able to benefit from unlabeled data.  
                The idea of manifold regularization is to extract useful information from 
                unlabeled data by first defining which data samples are "close" to each other 
                (perhaps by using their 3 <a href="graph_tools.html#find_k_nearest_neighbors">nearest neighbors</a>) 
                and then adding a term to 
                the above function that penalizes any decision rule which produces 
                different outputs on data samples which we have designated as being close.
               </p>
                
                <p>
                It turns out that it is possible to transform these manifold regularized learning
                problems into the normal form shown above by applying a certain kind of 
                preprocessing to all our data samples.  Once this is done we can use a 
                normal learning algorithm, such as the <a href="#svm_c_linear_trainer">svm_c_linear_trainer</a>, 
                on just the
                labeled data samples and obtain the same output as the manifold regularized
                learner would have produced.  
               </p>
                
                <p>
                The linear_manifold_regularizer is a tool for creating this preprocessing 
                transformation.  In particular, the transformation is linear.  That is, it 
                is just a matrix you multiply with all your samples.  For a more detailed 
                discussion of this topic you should consult the following paper.  In 
                particular, see section 4.2.  This object computes the inverse T matrix 
                described in that section.
               <blockquote>
                    Linear Manifold Regularization for Large Scale Semi-supervised Learning
                    by Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin
               </blockquote>
               </p>

         </description>
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>empirical_kernel_map</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/empirical_kernel_map_abstract.h</spec_file>
         <description>
            <p>
                This object represents a map from objects of sample_type (the kind of object 
                a <a href="dlib/svm/kernel_abstract.h.html#Kernel_Function_Objects">kernel function</a> 
                operates on) to finite dimensional column vectors which 
                represent points in the kernel feature space defined by whatever kernel 
                is used with this object. 
            </p>

            <p>
                To use the empirical_kernel_map you supply it with a particular kernel and a set of 
                basis samples.  After that you can present it with new samples and it will project 
                them into the part of kernel feature space spanned by your basis samples.   
            </p>
                
            <p>
                This means the empirical_kernel_map is a tool you can use to very easily kernelize 
                any algorithm that operates on column vectors.  All you have to do is select a 
                set of basis samples and then use the empirical_kernel_map to project all your 
                data points into the part of kernel feature space spanned by those basis samples.
                Then just run your normal algorithm on the output vectors and it will be effectively 
                kernelized.  
            </p>

            <p>
                Regarding methods to select a set of basis samples, if you are working with only a 
                few thousand samples then you can just use all of them as basis samples.  
                Alternatively, the 
                <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a> 
                often works well for selecting a basis set.  I also find that picking a 
                <a href="algorithms.html#random_subset_selector">random subset</a> typically works well.
            </p>
         </description>
         <examples>
            <example>empirical_kernel_map_ex.cpp.html</example>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
      </component>
      
      
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>kcentroid</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kcentroid_abstract.h</spec_file>
         <description>

                This object represents a weighted sum of sample points in a kernel induced
                feature space.  It can be used to kernelize any algorithm that requires only
                the ability to perform vector addition, subtraction, scalar multiplication,
                and inner products.  

                  <p>
                An example use of this object is as an online algorithm for recursively estimating 
                the centroid of a sequence of training points.  This object then allows you to 
                compute the distance between the centroid and any test points.  So you can use 
                this object to predict how similar a test point is to the data this object has 
                been trained on (larger distances from the centroid indicate dissimilarity/anomalous 
                points).  
                  </p>

                  <p>
                The object internally keeps a set of "dictionary vectors" 
                that are used to represent the centroid.  It manages these vectors using the 
                sparsification technique described in the paper The Kernel Recursive Least 
                Squares Algorithm by Yaakov Engel.  This technique allows us to keep the 
                number of dictionary vectors down to a minimum.  In fact, the object has a 
                user selectable tolerance parameter that controls the trade off between 
                accuracy and number of stored dictionary vectors.
                  </p>

         </description>

         <examples>
            <example>kcentroid_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>train_probabilistic_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            <p>
               Trains a <a href="#probabilistic_function">probabilistic_function</a> using 
               some sort of binary classification trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or
               <a href="#krr_trainer">krr_trainer</a>.
            </p>
            The probability model is created by using the technique described in the following papers:
            <blockquote>
                Probabilistic Outputs for Support Vector Machines and
                Comparisons to Regularized Likelihood Methods by 
                John C. Platt.  March 26, 1999
            </blockquote>
            <blockquote>
                A Note on Platt's Probabilistic Outputs for Support Vector Machines
                by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
            </blockquote>
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>learn_platt_scaling</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>

            <p>
              This function is an implementation of the algorithm described in the following
              papers: 
              <blockquote>
                Probabilistic Outputs for Support Vector Machines and Comparisons to
                Regularized Likelihood Methods by John C. Platt.  March 26, 1999
                <br/>
                <br/>
                A Note on Platt's Probabilistic Outputs for Support Vector Machines
                by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
              </blockquote>
            </p>
            <p>
               This function is the tool used to implement the 
               <a href="#train_probabilistic_decision_function">train_probabilistic_decision_function</a> routine.
            </p>

         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>probabilistic</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This is a trainer adapter which simply runs the trainer it is given though the
            <a href="#train_probabilistic_decision_function">train_probabilistic_decision_function</a>
            function.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>rbf_network_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rbf_network_abstract.h</spec_file>
         <description>
               Trains a radial basis function network and outputs a <a href="#decision_function">decision_function</a>. 
               This object can be used for either regression or binary classification problems.
               It's worth pointing out that this object is essentially an unregularized version 
               of <a href="#krr_trainer">kernel ridge regression</a>.  This means 
               you should really prefer to use kernel ridge regression instead.
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>random_forest_regression_trainer</name>
         <file>dlib/random_forest.h</file>
         <spec_file link="true">dlib/random_forest/random_forest_regression_abstract.h</spec_file>
         <description>
            This object implements Breiman's classic random forest regression
            algorithm.  
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>random_forest_regression_function</name>
         <file>dlib/random_forest.h</file>
         <spec_file link="true">dlib/random_forest/random_forest_regression_abstract.h</spec_file>
         <description>
            This object represents a random forest that maps objects to real numbers.  You
            can learn its parameters using the <a href="#random_forest_regression_trainer">random_forest_regression_trainer</a>.
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>rvm_regression_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
         <description>
            <p>
               Trains a relevance vector machine for solving regression problems.  
               Outputs a <a href="#decision_function">decision_function</a> that represents the learned 
               regression function. 
            </p>
               The implementation of the RVM training algorithm used by this library is based
               on the following paper:
               <blockquote>
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.
               </blockquote>
         </description>
         <examples>
            <example>rvm_regression_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      
      <component>
         <name>rvm_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
         <description>
            <p>
               Trains a relevance vector machine for solving binary classification problems.  
               Outputs a <a href="#decision_function">decision_function</a> that represents the learned classifier. 
            </p>
               The implementation of the RVM training algorithm used by this library is based
               on the following paper:
               <blockquote>
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.
               </blockquote>
         </description>
         <examples>
            <example>rvm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>krr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/krr_trainer_abstract.h</spec_file>
         <description>
            <p>
               Performs kernel ridge regression and outputs a <a href="#decision_function">decision_function</a> that 
               represents the learned function. 
            </p>
            The implementation is done using the <a href="#empirical_kernel_map">empirical_kernel_map</a> and 
            <a href="#linearly_independent_subset_finder">linearly_independent_subset_finder</a> to kernelize
            the <a href="#rr_trainer">rr_trainer</a> object.  Thus it allows you to run the algorithm on large 
            datasets and obtain sparse outputs.  It is also capable of automatically estimating its 
            regularization parameter using leave-one-out cross-validation.
         </description>
         <examples>
            <example>krr_regression_ex.cpp.html</example>
            <example>krr_classification_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->

      <component>
         <name>rr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/rr_trainer_abstract.h</spec_file>
         <description>
            <p>
               Performs linear ridge regression and outputs a <a href="#decision_function">decision_function</a> that 
               represents the learned function.  In particular, this object can only be used with
               the <a href="#linear_kernel">linear_kernel</a>.  It is optimized for the linear case where
               the number of features in each sample vector is small (i.e. on the order of 1000 or less since the 
               algorithm is cubic in the number of features.).  
               If you want to use a nonlinear kernel then you should use the <a href="#krr_trainer">krr_trainer</a>.
            </p>
              This object is capable of automatically estimating its regularization parameter using 
              leave-one-out cross-validation.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svr_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svr_trainer_abstract.h</spec_file>
         <description>
            <p>
                This object implements a trainer for performing epsilon-insensitive support 
                vector regression.  It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm, 
                allowing the use of non-linear kernels.
                If you are interested in performing support vector regression with a linear kernel and you
                have a lot of training data then you should use the <a href="#svr_linear_trainer">svr_linear_trainer</a>
                which is highly optimized for this case.
            </p>
                The implementation of the eps-SVR training algorithm used by this object is based
                on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
         <examples>
            <example>svr_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svr_linear_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svr_linear_trainer_abstract.h</spec_file>
         <description>
                This object implements a trainer for performing epsilon-insensitive support
                vector regression.  It uses the <a href="optimization.html#oca">oca</a> 
                optimizer so it is very efficient at solving this problem when
                linear kernels are used, making it suitable for use with large
                datasets. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_nu_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_nu_trainer_abstract.h</spec_file>
         <description>
            <p>
               Trains a nu support vector machine for solving binary classification problems and 
               outputs a <a href="#decision_function">decision_function</a>. 
               It is implemented using the <a href="optimization.html#solve_qp2_using_smo">SMO</a> algorithm.
            </p>
               The implementation of the nu-svm training algorithm used by this library is based
               on the following excellent papers:
               <ul>
                  <li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_one_class_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_one_class_trainer_abstract.h</spec_file>
         <description>
            <p>
               Trains a one-class support vector classifier and outputs a <a href="#decision_function">decision_function</a>. 
               It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
            </p>
               The implementation of the one-class training algorithm used by this library is based
               on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
         <examples>
            <example>one_class_classifiers_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_c_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_trainer_abstract.h</spec_file>
         <description>
            <p>
               Trains a C support vector machine for solving binary classification problems 
               and outputs a <a href="#decision_function">decision_function</a>. 
               It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm.
            </p>
               The implementation of the C-SVM training algorithm used by this library is based
               on the following paper:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
               </ul>
         </description>
         <examples>
            <example>svm_c_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_c_linear_dcd_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_linear_dcd_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training the C formulation of 
                a support vector machine to solve binary classification problems. 
                It is optimized for the case where linear kernels are used and  
                is implemented using the method described in the 
                following paper:
                <blockquote>
                    A Dual Coordinate Descent Method for Large-scale Linear SVM
                    by Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin
                </blockquote>

                This trainer has the ability to disable the bias term and also
                to force the last element of the learned weight vector to be 1.
                Additionally, it can be warm-started from the solution to a previous
                training run.
         </description>
         <examples>
            <example>one_class_classifiers_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_c_linear_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_linear_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training the C formulation of 
                a support vector machine to solve binary classification problems. 
                It is optimized for the case where linear kernels are used and  
                is implemented using the <a href="optimization.html#oca">oca</a>  
                optimizer and uses the exact line search described in the 
                following paper:
                <blockquote>
                    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
                      by  Vojtech Franc, Soren Sonnenburg; Journal of Machine Learning 
                      Research, 10(Oct):2157--2192, 2009. 
                </blockquote>

               This trainer has the ability to restrict the learned weights to non-negative
               values.
         </description>
         <examples>
            <example>svm_sparse_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_rank_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_rank_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training a ranking support vector machine
                using linear kernels.  In particular, this object is a tool for training
                the Ranking SVM described in the paper: 
                <blockquote>
                    Optimizing Search Engines using Clickthrough Data by Thorsten Joachims
                </blockquote>
                Finally, note that the implementation of this object is done using the 
                <a href="optimization.html#oca">oca</a> optimizer and 
                <a href="#count_ranking_inversions">count_ranking_inversions</a> method.
                This means that it runs in O(n*log(n)) time, making it suitable for use
                with large datasets.
         </description>
         <examples>
            <example>svm_rank_ex.cpp.html</example>
            <example>svm_rank.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>shape_predictor_trainer</name>
         <file>dlib/image_processing.h</file>
         <spec_file link="true">dlib/image_processing/shape_predictor_trainer_abstract.h</spec_file>
         <description>
               This object is a tool for training <a href="imaging.html#shape_predictor">shape_predictors</a> 
               based on annotated training images.  Its implementation uses the algorithm described in:
                <blockquote>
                    One Millisecond Face Alignment with an Ensemble of Regression Trees
                    by Vahid Kazemi and Josephine Sullivan, CVPR 2014
                </blockquote>
               It is capable of learning high quality shape models.  For example, this is an example output
               for one of the faces in the HELEN face dataset: <br/><br/>
               <img src='face_landmarking_example.png'/>

         </description>
         <examples>
            <example>train_shape_predictor_ex.cpp.html</example>
            <example>train_shape_predictor.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>svm_c_ekm_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_c_ekm_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training the C formulation of 
                a support vector machine for solving binary classification problems.   
                It is implemented using the <a href="#empirical_kernel_map">empirical_kernel_map</a>
                to kernelize the <a href="#svm_c_linear_trainer">svm_c_linear_trainer</a>.  This makes it a very fast algorithm
                capable of learning from very large datasets.

         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>normalized_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a container for another function
                object and an instance of the <a href="#vector_normalizer">vector_normalizer</a> object.  

                It automatically normalizes all inputs before passing them
                off to the contained function object.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->


      <component>
         <name>probabilistic_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a binary decision function for use with
                kernel-based learning-machines.  It returns an 
                estimate of the probability that a given sample is in the +1 class. 
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>probabilistic_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a binary decision function for use with
                any kind of binary classifier.  It returns an 
                estimate of the probability that a given sample is in the +1 class. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>distance_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a point in kernel induced feature space. 
                You may use this object to find the distance from the point it 
                represents to points in input space as well as other points
                represented by distance_functions.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a classification or regression function that was 
                learned by a kernel based learning algorithm.  Therefore, it is a function 
                object that takes a sample object and returns a scalar value.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_one_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_one_decision_function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out
                of a set of binary classifiers.  Each binary classifier
                is used to vote for the correct multiclass label using a 
                one vs. one strategy.  Therefore, if you have N classes then
                there will be N*(N-1)/2 binary classifiers inside this object.
         </description>
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
            <example>custom_trainer_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_one_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/one_vs_one_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for turning a bunch of binary classifiers
                into a multiclass classifier.  It does this by training the binary
                classifiers in a one vs. one fashion.  That is, if you have N possible
                classes then it trains N*(N-1)/2 binary classifiers which are then used
                to vote on the identity of a test sample.
         </description>
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
            <example>custom_trainer_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_all_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/one_vs_all_decision_function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out
                of a set of binary classifiers.  Each binary classifier
                is used to vote for the correct multiclass label using a 
                one vs. all strategy.  Therefore, if you have N classes then
                there will be N binary classifiers inside this object.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sequence_labeler</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sequence_labeler_abstract.h</spec_file>
         <description>
               This object is a tool for doing sequence labeling.  In particular,
               it is capable of representing sequence labeling models such as
               those produced by Hidden Markov SVMs or Conditional Random fields.
               See the following papers for an introduction to these techniques:
               <blockquote>
                    Hidden Markov Support Vector Machines by 
                     Y. Altun, I. Tsochantaridis, T. Hofmann
                  <br/>
                    Shallow Parsing with Conditional Random Fields by 
                     Fei Sha and Fernando Pereira
               </blockquote>
         </description>
         <examples>
            <example>sequence_labeler_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sequence_segmenter</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sequence_segmenter_abstract.h</spec_file>
         <description>
                This object is a tool for segmenting a sequence of objects into a set of
                non-overlapping chunks.  An example sequence segmentation task is to take
                English sentences and identify all the named entities.  In this example,
                you would be using a sequence_segmenter to find all the chunks of
                contiguous words which refer to proper names.

               <p>
                Internally, the sequence_segmenter uses the BIO (Begin, Inside, Outside) or
                BILOU (Begin, Inside, Last, Outside, Unit) sequence tagging model.
                Moreover, it is implemented using a <a href="#sequence_labeler">sequence_labeler</a>
                object and therefore sequence_segmenter objects are examples of
                chain structured conditional random field style sequence
                taggers. 
               </p>
         </description>
         <examples>
            <example>sequence_segmenter.py.html</example>
            <example>sequence_segmenter_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>assignment_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/assignment_function_abstract.h</spec_file>
         <description>
                This object is a tool for solving the optimal assignment problem given a 
                user defined method for computing the quality of any particular assignment. 
         </description>
         <examples>
            <example>assignment_learning_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>track_association_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/track_association_function_abstract.h</spec_file>
         <description>
                This object is a tool that helps you implement an object tracker.  So for
                example, if you wanted to track people moving around in a video then this
                object can help.  In particular, imagine you have a tool for detecting the
                positions of each person in an image.  Then you can run this person
                detector on the video and at each time step, i.e. at each frame, you get a
                set of person detections.  However, that by itself doesn't tell you how
                many people there are in the video and where they are moving to and from.
                To get that information you need to figure out which detections match each
                other from frame to frame.  This is where the track_association_function
                comes in.  It performs the detection to track association.  It will also do
                some of the track management tasks like creating a new track when a
                detection doesn't match any of the existing tracks.

               <p>
                  Internally, this object is implemented using the 
                  <a href="#assignment_function">assignment_function</a> object.  
                In fact, it's really just a thin wrapper around assignment_function and
                exists just to provide a more convenient interface to users doing detection
                to track association.   
               </p>
         </description>
         <examples>
            <example>learning_to_track_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>lspi</name>
         <file>dlib/control.h</file>
         <spec_file link="true">dlib/control/lspi_abstract.h</spec_file>
         <description>
            This object is an implementation of the reinforcement learning algorithm
            described in the following paper:
            <blockquote>
               Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy
               iteration." The Journal of Machine Learning Research 4 (2003):
               1107-1149.
            </blockquote>
                
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>policy</name>
         <file>dlib/control.h</file>
         <spec_file link="true">dlib/control/approximate_linear_models_abstract.h</spec_file>
         <description>
                This is a policy (i.e. a control law) based on a linear function approximator.
                You can use a tool like <a href="#lspi">lspi</a> to learn the parameters
                of a policy.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>process_sample</name>
         <file>dlib/control.h</file>
         <spec_file link="true">dlib/control/approximate_linear_models_abstract.h</spec_file>
         <description>
                This object holds a training sample for a reinforcement learning algorithm 
                (e.g. <a href="#lspi">lspi</a>).
                In particular, it contains a state, action, reward, next state sample from
                some process.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>graph_labeler</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/graph_labeler_abstract.h</spec_file>
         <description>
            This object is a tool for labeling each node in a <a href="containers.html#graph">graph</a> 
            with a value of true or false, subject to a labeling consistency constraint between 
            nodes that share an edge.  In particular, this object is useful for 
            representing a graph labeling model learned via some machine learning 
            method, such as the <a href="#structural_graph_labeling_trainer">structural_graph_labeling_trainer</a>.
         </description>
         <examples>
            <example>graph_labeling_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>multiclass_linear_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
                This object represents a multiclass classifier built out of a set of 
                binary classifiers.  Each binary classifier is used to vote for the 
                correct multiclass label using a one vs. all strategy.  Therefore, 
                if you have N classes then there will be N binary classifiers inside 
                this object.  Additionally, this object is linear in the sense that
                each of these binary classifiers is a simple linear plane.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>one_vs_all_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/one_vs_all_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for turning a bunch of binary classifiers
                into a multiclass classifier.  It does this by training the binary
                classifiers in a one vs. all fashion.  That is, if you have N possible
                classes then it trains N binary classifiers which are then used
                to vote on the identity of a test sample.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_multiclass_linear_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/svm_multiclass_linear_trainer_abstract.h</spec_file>
         <description>
                This object represents a tool for training a multiclass support 
                vector machine.  It is optimized for the case where linear kernels 
                are used and implemented using the <a href="#structural_svm_problem">structural_svm_problem</a>
                object.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>projection_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/function_abstract.h</spec_file>
         <description>
               This object represents a function that takes a data sample and projects
               it into kernel feature space.  The result is a real valued column vector that 
               represents a point in a kernel feature space.   Instances of
               this object are created using the 
               <a href="#empirical_kernel_map">empirical_kernel_map</a>.
         </description>
         <examples>
            <example>linear_manifold_regularizer_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>offset_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a kernel with a fixed value offset
                added to it.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>linear_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a linear function kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>histogram_intersection_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a histogram intersection kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sigmoid_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a sigmoid kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>polynomial_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a polynomial kernel for use with
                kernel learning machines.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>radial_basis_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/kernel_abstract.h</spec_file>
         <description>
                This object represents a radial basis function kernel for use with
                kernel learning machines.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_histogram_intersection_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a histogram intersection kernel kernel for use with
                kernel learning machines that operate on 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sparse_sigmoid_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a sigmoid kernel for use with
                kernel learning machines that operate on 
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>sparse_linear_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a linear kernel for use with
                kernel learning machines that operate on
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_polynomial_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a polynomial kernel for use with
                kernel learning machines that operate on
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>sparse_radial_basis_kernel</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/sparse_kernel_abstract.h</spec_file>
         <description>
                This object represents a radial basis function kernel for use with
                kernel learning machines that operate on
                <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
         </description>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_binary_classification_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
             This function simply takes two vectors, the first containing feature vectors and
             the second containing labels, and reports back if the two could possibly 
             contain data for a well formed classification problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_sequence_labeling_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a sequence labeling problem
            and reports back if it could possibly be a well formed sequence labeling problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_sequence_segmentation_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a sequence segmentation problem
            and reports back if it could possibly be a well formed sequence segmentation problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_assignment_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This function takes a set of training data for an assignment problem
            and reports back if it could possibly be a well formed assignment problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_track_association_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a track association learning problem
            and reports back if it could possibly be a well formed track association problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_graph_labeling_problem</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_graph_labeling_problem_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a graph labeling problem
            and reports back if it could possibly be a well formed problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_forced_assignment_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            This function takes a set of training data for a forced assignment problem
            and reports back if it could possibly be a well formed forced assignment problem.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>is_learning_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
             This function simply takes two vectors, the first containing feature vectors and
             the second containing labels, and reports back if the two could possibly 
             contain data for a well formed learning problem.  In this case it just means
             that the two vectors have the same length and aren't empty.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>select_all_distinct_labels</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/multiclass_tools_abstract.h</spec_file>
         <description>
              This is a function which determines all distinct values present in a 
              std::vector and returns the result.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>simplify_linear_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/simplify_linear_decision_function_abstract.h</spec_file>
         <description>
            This is a set of functions that takes various forms of linear <a href="#decision_function">decision functions</a>
            and collapses them down so that they only compute a single dot product when invoked. 
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>randomize_samples</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
               Randomizes the order of samples in a column vector containing sample data.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>rank_features</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
             Finds a ranking of the top N (a user supplied parameter) features in a set of data 
             from a two class classification problem.  It  
              does this by computing the distance between the centroids of both classes in kernel defined 
              feature space.  Good features are then ones that result in the biggest separation between
              the two centroids. 
         </description>
         <examples>
            <example>rank_features_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>load_mnist_dataset</name>
         <file>dlib/data_io.h</file>
         <spec_file>dlib/data_io/mnist_abstract.h</spec_file>
         <description>
            Loads the <a href="http://yann.lecun.com/exdb/mnist/">MNIST dataset</a> from disk.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>load_image_dataset</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/load_image_dataset_abstract.h</spec_file>
         <description>
            This is a function which loads the list of images indicated by an
            <a href="#load_image_dataset_metadata">image dataset metadata file</a>
            as well as the box locations for each image.  It makes loading the
            data necessary to train an <a href="imaging.html#object_detector">object_detector</a> 
            a little more convenient.
         </description>
         <examples>
            <example>fhog_object_detector_ex.cpp.html</example>
            <example>train_object_detector.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>load_image_dataset_metadata</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/image_dataset_metadata.h</spec_file>
         <description>
            dlib comes with a graphical tool for annotating images with
            labeled rectangles.  The tool produces an XML file containing these
            annotations.  Therefore, load_image_dataset_metadata() is a routine
            for parsing these XML files.  Note also that this is the metadata
            format used by the image labeling tool included with dlib in the
            tools/imglab folder.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>save_image_dataset_metadata</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/image_dataset_metadata.h</spec_file>
         <description>
            This routine is a tool for saving labeled image metadata to an 
            XML file.  In particular, this routine saves the metadata into a
            form which can be read by the <a href="#load_image_dataset_metadata">load_image_dataset_metadata</a>
            routine.  Note also that this is the metadata
            format used by the image labeling tool included with dlib in the
            tools/imglab folder.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>load_libsvm_formatted_data</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is a function that loads the data from a file that uses
            the LIBSVM format.  It loads the data into a std::vector of
            <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a>.
            If you want to load data into dense vectors (i.e.
            dlib::matrix objects) then you can use the <a href="linear_algebra.html#sparse_to_dense">sparse_to_dense</a>
            function to perform the conversion.  Also, some LIBSVM formatted files number
            their features beginning with 1 rather than 0.  If this bothers you, then you
            can fix it by using the <a href="#fix_nonzero_indexing">fix_nonzero_indexing</a> function
            on the data after it is loaded.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>save_libsvm_formatted_data</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is actually a pair of overloaded functions.  Between the two of them
            they let you save <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse</a> 
            or dense data vectors to file using the LIBSVM format.  
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>make_bounding_box_regression_training_data</name>
         <file>dlib/image_processing.h</file>
         <spec_file link="true">dlib/image_processing/shape_predictor_trainer_abstract.h</spec_file>
         <description>
            Suppose you have an object detector that can roughly locate objects in an
            image.  This means your detector draws boxes around objects, but these are
            <i>rough</i> boxes in the sense that they aren't positioned super accurately.  For
            instance, HOG based detectors usually have a stride of 8 pixels.  So the
            positional accuracy is going to be, at best, +/-8 pixels.  
              
            <p>
            If you want to get better positional accuracy one easy thing to do is train a
            <a href="#shape_predictor_trainer">shape_predictor</a> to give you the location
            of the object's box.  The make_bounding_box_regression_training_data() routine
            helps you do this by creating an appropriate training dataset.  
            </p>
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>fix_nonzero_indexing</name>
         <file>dlib/data_io.h</file>
         <spec_file link="true">dlib/data_io/libsvm_io_abstract.h</spec_file>
         <description>
            This is a simple function that takes a std::vector of 
            <a href="dlib/svm/sparse_vector_abstract.h.html#sparse_vectors">sparse vectors</a> 
            and makes sure they are zero-indexed (e.g. makes sure the first index value is zero).   
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>find_gamma_with_big_centroid_gap</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
            This is a function that tries to pick a reasonable default value for the
            gamma parameter of the <a href="#radial_basis_kernel">radial_basis_kernel</a>.  It
            picks the parameter that gives the largest separation between the centroids, in 
            kernel feature space, of two classes of data.
         </description>
         <examples>
            <example>rank_features_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>compute_mean_squared_distance</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/feature_ranking_abstract.h</spec_file>
         <description>
            This is a function that simply finds the average squared distance between all
            pairs of a set of data samples.  It is often convenient to use the reciprocal
            of this value as the estimate of the gamma parameter of the 
            <a href="#radial_basis_kernel">radial_basis_kernel</a>.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.
         </description>
         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>verbose_batch</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.  This function
            generates a batch_trainer that will print status messages to standard
            output so that you can observe the progress of a training algorithm.
         </description>
         <examples>
            <example>svm_pegasos_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch_cached</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects that are setup
            to use a kernel matrix cache.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>verbose_batch_cached</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#batch_trainer">batch_trainer</a> objects.  This function
            generates a batch_trainer that will print status messages to standard
            output so that you can observe the progress of a training algorithm.
            It will also be configured to use a kernel matrix cache.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>batch_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/pegasos_abstract.h</spec_file>
         <description>
               This is a batch trainer object that is meant to wrap online trainer objects 
               that create <a href="#decision_function">decision_functions</a>.  It
               turns an online learning algorithm such as <a href="#svm_pegasos">svm_pegasos</a>
               into a batch learning object.  This allows you to use objects like
               svm_pegasos with functions (e.g. <a href="#cross_validate_trainer">cross_validate_trainer</a>)
               that expect batch mode training objects. 
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>null_trainer_type</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/null_trainer_abstract.h</spec_file>
         <description>
                This object is a simple tool for turning a <a href="#decision_function">decision_function</a> 
                (or any object with an interface compatible with decision_function)
                into a trainer object that always returns the original decision
                function when you try to train with it.  

               <p>
                dlib contains a few "training post processing" algorithms (e.g. 
                <a href="#reduced">reduced</a> and <a href="#reduced2">reduced2</a>).  These tools 
                take in a trainer object,
                tell it to perform training, and then they take the output decision
                function and do some kind of post processing to it.  The null_trainer_type 
                object is useful because you can use it to run an already
                learned decision function through the training post processing
                algorithms by turning a decision function into a null_trainer_type
                and then giving it to a post processor.  
               </p>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>null_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/null_trainer_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#null_trainer_type">null_trainer_type</a>
            objects.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_c1_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#roc_trainer_type">roc_trainer_type</a> objects that are
            setup to pick a point on the ROC curve with respect to the +1 class.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_c2_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#roc_trainer_type">roc_trainer_type</a> objects that are
            setup to pick a point on the ROC curve with respect to the -1 class.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>roc_trainer_type</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/roc_trainer_abstract.h</spec_file>
         <description>
                This object is a simple trainer post processor that allows you to 
                easily adjust the bias term in a trained decision_function object.
                That is, this object lets you pick a point on the ROC curve and 
                it will adjust the bias term appropriately.  

               <p>
                So for example, suppose you wanted to set the bias term so that
                the accuracy of your decision function on +1 labeled samples was 99%.
                To do this you would use an instance of this object declared as follows:
                <tt>roc_trainer_type&lt;trainer_type&gt;(your_trainer, 0.99, +1);</tt>
               </p>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>reduced_decision_function_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
               This is a batch trainer object that is meant to wrap other batch trainer objects 
               that create <a href="#decision_function">decision_function</a> objects.
               It performs post processing on the output decision_function objects 
               with the intent of representing the decision_function with fewer 
               basis vectors.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>reduced</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#reduced_decision_function_trainer">reduced_decision_function_trainer</a>
            objects.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>reduced2</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
            This is a convenience function for creating 
            <a href="#reduced_decision_function_trainer2">reduced_decision_function_trainer2</a>
            objects.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>reduced_decision_function_trainer2</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
               <p>
               This is a batch trainer object that is meant to wrap other batch trainer objects 
               that create <a href="#decision_function">decision_function</a> objects.
               It performs post processing on the output decision_function objects 
               with the intent of representing the decision_function with fewer 
               basis vectors.  
               </p>
               <p>
               It begins by performing the same post processing as
               the <a href="#reduced_decision_function_trainer">reduced_decision_function_trainer</a>
               object but it also performs a global gradient based optimization 
               to further improve the results.  The gradient based optimization is
               implemented using the <a href="#approximate_distance_function">approximate_distance_function</a> routine.
               </p>
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>approximate_distance_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/reduced_abstract.h</spec_file>
         <description>
              This function attempts to find a <a href="#distance_function">distance_function</a> object which is close
              to a target distance_function.  That is, it searches for an X such that target(X) is
              minimized.  Critically, X may be set to use fewer basis vectors than the target.   

              <p>The optimization begins with an initial guess supplied by the user 
              and searches for an X which locally minimizes target(X).  Since
              this problem can have many local minima the quality of the starting point
              can significantly influence the results.   </p>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_binary_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
            Tests a <a href="#decision_function">decision_function</a> that represents a binary decision function and
            returns the test accuracy.  

         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_multiclass_decision_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_multiclass_trainer_abstract.h</spec_file>
         <description>
            Tests a multiclass decision function (e.g. <a href="#one_vs_one_decision_function">one_vs_one_decision_function</a>)
            and returns a confusion matrix describing the results.
         </description>
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
            <example>custom_trainer_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>cross_validate_trainer_threaded</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/svm_threaded_abstract.h</spec_file>
         <description>
               Performs k-fold cross validation on a user supplied binary classification trainer object such
               as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or <a href="#rbf_network_trainer">rbf_network_trainer</a>.  
               This function does the same thing as <a href="#cross_validate_trainer">cross_validate_trainer</a>
               except this function also allows you to specify how many threads of execution to use.
               So you can use this function to take advantage of a multi-core system to perform
               cross validation faster.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
         <description>
               Performs k-fold cross validation on a user supplied binary classification trainer object such
               as the <a href="#svm_nu_trainer">svm_nu_trainer</a> or <a href="#rbf_network_trainer">rbf_network_trainer</a>.
         </description>
         <examples>
            <example>svm_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_multiclass_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_multiclass_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied multiclass classification trainer object such
            as the <a href="#one_vs_one_trainer">one_vs_one_trainer</a>.  The result is described by a 
            confusion matrix.
         </description>
         <examples>
            <example>multiclass_classification_ex.cpp.html</example>
            <example>custom_trainer_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_regression_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_regression_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied regression trainer object such
            as the <a href="#svr_trainer">svr_trainer</a> and returns the mean squared error
            and R-squared value.
         </description>
         <examples>
            <example>svr_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_sequence_labeler</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_sequence_labeler_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied sequence labeling trainer object such
            as the <a href="#structural_sequence_labeling_trainer">structural_sequence_labeling_trainer</a>
            and returns a confusion matrix describing the results.
         </description>
         <examples>
            <example>sequence_labeler_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_sequence_segmenter</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_sequence_segmenter_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied sequence segmentation trainer object such
            as the <a href="#structural_sequence_segmentation_trainer">structural_sequence_segmentation_trainer</a>
            and returns the resulting precision, recall, and F1-score. 
         </description>
         <examples>
            <example>sequence_segmenter.py.html</example>
            <example>sequence_segmenter_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_assignment_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_assignment_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied assignment trainer object such
            as the <a href="#structural_assignment_trainer">structural_assignment_trainer</a>
            and returns the fraction of assignments predicted correctly.
         </description>
         <examples>
            <example>assignment_learning_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_track_association_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/cross_validate_track_association_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied track association trainer object such
            as the <a href="#structural_track_association_trainer">structural_track_association_trainer</a>
            and returns the fraction of detections which were correctly associated to their tracks.
         </description>
         <examples>
            <example>learning_to_track_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_graph_labeling_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/cross_validate_graph_labeling_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied graph labeling trainer object such
            as the <a href="#structural_graph_labeling_trainer">structural_graph_labeling_trainer</a>
            and returns the fraction of assignments predicted correctly.
         </description>
         <examples>
            <example>graph_labeling_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_ranking_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied ranking trainer object such
            as the <a href="#svm_rank_trainer">svm_rank_trainer</a>
            and returns the fraction of ranking pairs ordered correctly as well as the mean
            average precision. 
         </description>
         <examples>
            <example>svm_rank_ex.cpp.html</example>
            <example>svm_rank.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_sequence_labeler</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_sequence_labeler_abstract.h</spec_file>
         <description>
            Tests a <a href="#sequence_labeler">sequence_labeler</a> on a set of data 
            and returns a confusion matrix describing the results.
         </description>
         <examples>
            <example>sequence_labeler_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_sequence_segmenter</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_sequence_segmenter_abstract.h</spec_file>
         <description>
            Tests a <a href="#sequence_segmenter">sequence_segmenter</a> on a set of data 
            and returns the resulting precision, recall, and F1-score.
         </description>
         <examples>
            <example>sequence_segmenter.py.html</example>
            <example>sequence_segmenter_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_assignment_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_assignment_trainer_abstract.h</spec_file>
         <description>
            Tests an <a href="#assignment_function">assignment_function</a> on a set of data 
            and returns the fraction of assignments predicted correctly.
         </description>
         <examples>
            <example>assignment_learning_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_track_association_function</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/cross_validate_track_association_trainer_abstract.h</spec_file>
         <description>
            Tests a <a href="#track_association_function">track_association_function</a> on a set of data 
            and returns the fraction of detections which were correctly associated to their tracks.
         </description>
         <examples>
            <example>learning_to_track_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_graph_labeling_function</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/cross_validate_graph_labeling_trainer_abstract.h</spec_file>
         <description>
            Tests a <a href="#graph_labeler">graph_labeler</a> on a set of data 
            and returns the fraction of labels predicted correctly.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>average_precision</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/average_precision_abstract.h</spec_file>
         <description>
            This function computes the average precision of a ranking.
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>equal_error_rate</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/lda_abstract.h</spec_file>
         <description>
              This function finds a threshold that best separates the elements of two
              vectors by selecting the threshold with equal error rate.  It also reports
              the value of the equal error rate.
         </description>
      </component>
      
   <!-- ************************************************************************* -->

      <component>
         <name>compute_roc_curve</name>
         <file>dlib/statistics.h</file>
         <spec_file link="true">dlib/statistics/lda_abstract.h</spec_file>
         <description>
            This function computes a ROC curve (receiver operating characteristic curve). 
         </description>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_ranking_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/ranking_tools_abstract.h</spec_file>
         <description>
            Tests a <a href="#decision_function">decision_function</a>'s ability to correctly 
            rank a dataset and returns the resulting ranking accuracy and mean average precision metrics.
         </description>
         <examples>
            <example>svm_rank_ex.cpp.html</example>
            <example>svm_rank.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_shape_predictor</name>
         <file>dlib/image_processing.h</file>
         <spec_file link="true">dlib/image_processing/shape_predictor_abstract.h</spec_file>
         <description>
            Tests a <a href="imaging.html#shape_predictor">shape_predictor</a>'s ability to correctly 
            predict the part locations of objects.  The output is the average distance (measured in pixels) between
            each part and its true location.  You can optionally normalize each distance using a 
            user supplied scale.  For example, when performing face landmarking, you might want to
            normalize the distances by the interocular distance.
         </description>
         <examples>
            <example>train_shape_predictor_ex.cpp.html</example>
            <example>train_shape_predictor.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>cross_validate_object_detection_trainer</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_object_detection_trainer_abstract.h</spec_file>
         <description>
            Performs k-fold cross validation on a user supplied object detection trainer such
            as the <a href="#structural_object_detection_trainer">structural_object_detection_trainer</a> 
            and returns the precision and recall. 
         </description>
         <examples>
            <example>object_detector_ex.cpp.html</example>
            <example>object_detector_advanced_ex.cpp.html</example>
            <example>train_object_detector.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_object_detection_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_object_detection_trainer_abstract.h</spec_file>
         <description>
            Tests an object detector such
            as the <a href="imaging.html#object_detector">object_detector</a> 
            and returns the precision and recall. 
         </description>
         <examples>
            <example>fhog_object_detector_ex.cpp.html</example>
            <example>object_detector_ex.cpp.html</example>
            <example>object_detector_advanced_ex.cpp.html</example>
            <example>train_object_detector.cpp.html</example>
            <example>dnn_mmod_ex.cpp.html</example>
            <example>dnn_mmod_train_find_cars_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>test_regression_function</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/cross_validate_regression_trainer_abstract.h</spec_file>
         <description>
            Tests a regression function (e.g. <a href="#decision_function">decision_function</a>)
            and returns the mean squared error and R-squared value.
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_problem</name>
         <file>dlib/svm.h</file>
         <spec_file link="true">dlib/svm/structural_svm_problem_abstract.h</spec_file>
         <description>
                This object, when used with the <a href="optimization.html#oca">oca</a> optimizer, is a tool 
                for solving the optimization problem associated 
                with a structural support vector machine.  A structural SVM is a supervised 
                machine learning method for learning to predict complex outputs.  This is
                contrasted with a binary classifier which makes only simple yes/no
                predictions.  A structural SVM, on the other hand, can learn to predict
                complex outputs such as entire parse trees or DNA sequence alignments.  To
                do this, it learns a function F(x,y) which measures how well a particular
                data sample x matches a label y.  When used for prediction, the best label
                for a new x is given by the y which maximizes F(x,y).   

                <br/>
                <br/>

                For an introduction to structured support vector machines you should consult 
                the following paper: 
                <blockquote>
                    Predicting Structured Objects with Support Vector Machines by 
                    Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-nam Yu
                </blockquote>

                For a more detailed discussion of the particular algorithm implemented by this
                object see the following paper:  
                <blockquote>
                    T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs, 
                    Machine Learning, 77(1):27-59, 2009.
                </blockquote>
                Note that this object is essentially a tool for solving the 1-Slack structural
                SVM with margin-rescaling.  Specifically, see Algorithm 3 in the above referenced 
                paper.

               <br/><br/>
                Finally, for a very detailed introduction to this subject, you should consider the book:
                <blockquote>
                <i><a href="http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf">Structured 
                     Prediction and Learning in Computer Vision</a></i> by Sebastian Nowozin and 
                     Christoph H. Lampert
                </blockquote>

         </description>
         <examples>
            <example>svm_struct.py.html</example>
            <example>svm_struct_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_problem_threaded</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_problem_threaded_abstract.h</spec_file>
         <description>
            This is just a version of the <a href="#structural_svm_problem">structural_svm_problem</a> 
            which is capable of using multiple cores/threads at a time.  You should use it if
            you have a multi-core CPU and the separation oracle takes a long time to compute.  Or even better, if you
            have multiple computers then you can use the <a href="#svm_struct_controller_node">svm_struct_controller_node</a>
            to distribute the work across many computers.
         </description>
         <examples>
            <example>svm_struct_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_object_detection_problem</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_object_detection_problem_abstract.h</spec_file>
         <description>
               This object is a tool for learning the parameter vector needed to use
               a <a href="imaging.html#scan_fhog_pyramid">scan_fhog_pyramid</a>,
               <a href="imaging.html#scan_image_pyramid">scan_image_pyramid</a>,
               <a href="imaging.html#scan_image_boxes">scan_image_boxes</a>, or
               <a href="imaging.html#scan_image_custom">scan_image_custom</a> object.  

            <p>
               It learns the parameter vector by formulating the problem as a <a
               href="#structural_svm_problem">structural SVM problem</a>.  
               The exact details of the method are described in the paper 
               <a href="http://arxiv.org/abs/1502.00046">Max-Margin Object Detection</a> by Davis E. King.
            </p>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_sequence_labeling_problem</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_sequence_labeling_problem_abstract.h</spec_file>
         <description>
                This object is a tool for learning the weight vector needed to use
                a <a href="#sequence_labeler">sequence_labeler</a> object.  

                It learns the parameter vector by formulating the problem as a 
                <a href="#structural_svm_problem">structural SVM problem</a>.  
                The general approach is discussed in the paper:
                <blockquote>
                    Hidden Markov Support Vector Machines by 
                    Y. Altun, I. Tsochantaridis, T. Hofmann
                </blockquote>
                While the particular optimization strategy used is the method from: 
                <blockquote>
                    T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of 
                    Structural SVMs, Machine Learning, 77(1):27-59, 2009.
                </blockquote>
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_assignment_problem</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_assignment_problem_abstract.h</spec_file>
         <description>
                This object is a tool for learning the parameters needed to use
                an <a href="#assignment_function">assignment_function</a> object.  
                It learns the parameters by formulating the problem as a 
                <a href="#structural_svm_problem">structural SVM problem</a>.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_svm_graph_labeling_problem</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_graph_labeling_problem_abstract.h</spec_file>
         <description>
                This object is a tool for learning the weight vectors needed to use
                a <a href="#graph_labeler">graph_labeler</a> object.  
                It learns the parameter vectors by 
                formulating the problem as a <a href="#structural_svm_problem">structural SVM problem</a>.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_object_detection_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_object_detection_trainer_abstract.h</spec_file>
         <description>
               This object is a tool for learning to detect objects in images based on a set of labeled images.  
               The training procedure produces an <a href="imaging.html#object_detector">object_detector</a> which
               can be used to predict the locations of objects in new images. 
               It learns the parameter vector by formulating the problem as a <a
               href="#structural_svm_problem">structural SVM problem</a>.  
               The exact details of the method are described in the paper 
               <a href="http://arxiv.org/abs/1502.00046">Max-Margin Object Detection</a> by Davis E. King.
               <p>
               Note that this is just a convenience wrapper around the 
               <a href="#structural_svm_object_detection_problem">structural_svm_object_detection_problem</a>
               to make it look similar to all the other trainers in dlib.  
               </p>
         </description>
         <examples>
            <example>fhog_object_detector_ex.cpp.html</example>
            <example>object_detector_ex.cpp.html</example>
            <example>object_detector_advanced_ex.cpp.html</example>
            <example>train_object_detector.cpp.html</example>

            <example>train_object_detector.py.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_sequence_labeling_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_sequence_labeling_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for learning to do sequence labeling based
                on a set of training data.  The training procedure produces a
                <a href="#sequence_labeler">sequence_labeler</a> object which can 
                be use to predict the labels of new data sequences.
               <p>
               Note that this is just a convenience wrapper around the 
               <a href="#structural_svm_sequence_labeling_problem">structural_svm_sequence_labeling_problem</a>
               to make it look similar to all the other trainers in dlib.  
               </p>
         </description>
         <examples>
            <example>sequence_labeler_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_sequence_segmentation_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_sequence_segmentation_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for learning to do sequence segmentation based on a
                set of training data.  The training procedure produces a <a href="#sequence_segmenter">sequence_segmenter</a>
                object which can be used to identify the sub-segments of new data sequences.
               <p>
                  This object internally uses the <a href="#structural_sequence_labeling_trainer">structural_sequence_labeling_trainer</a> 
                  to solve the learning problem.  
               </p>
         </description>
         <examples>
            <example>sequence_segmenter.py.html</example>
            <example>sequence_segmenter_ex.cpp.html</example>
         </examples>

      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_graph_labeling_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_graph_labeling_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for learning to solve a graph labeling problem based
                on a training dataset of example labeled <a href="containers.html#graph">graphs</a>. 
                The training procedure produces a <a href="#graph_labeler">graph_labeler</a> object 
                which can be used to predict the labelings of new graphs.

               <p>
               To elaborate, a graph labeling problem is a task to learn a binary classifier which 
               predicts the label of each node in a graph.  Additionally, we have information in 
               the form of edges between nodes where edges are present when we believe the 
               linked nodes are likely to have the same label.  Therefore, part of a graph labeling 
               problem is to learn to score each edge in terms of how strongly the edge should enforce 
               labeling consistency between its two nodes.  
               </p>

               <p>
                Note that this is just a convenience wrapper around the 
                <a href="#structural_svm_graph_labeling_problem">structural_svm_graph_labeling_problem</a> 
                to make it look similar to all the other trainers in dlib.   You might also
                consider reading the book
                <i><a href="http://www.nowozin.net/sebastian/papers/nowozin2011structured-tutorial.pdf">Structured 
                Prediction and Learning in Computer Vision</a></i> by Sebastian 
                Nowozin and Christoph H. Lampert since it contains a good introduction to machine learning
                methods such as the algorithm implemented by the structural_graph_labeling_trainer.
            </p>
         </description>
         <examples>
            <example>graph_labeling_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_assignment_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_assignment_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for learning to solve an assignment problem based
                on a training dataset of example assignments.  The training procedure produces an 
                <a href="#assignment_function">assignment_function</a> object which can be used 
                to predict the assignments of new data.


                Note that this is just a convenience wrapper around the 
                <a href="#structural_svm_assignment_problem">structural_svm_assignment_problem</a> 
                to make it look similar to all the other trainers in dlib.  
         </description>
         <examples>
            <example>assignment_learning_ex.cpp.html</example>
         </examples>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>structural_track_association_trainer</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_track_association_trainer_abstract.h</spec_file>
         <description>
                This object is a tool for learning to solve a track association problem.  That
                is, it takes in a set of training data and outputs a 
                <a href="#track_association_function">track_association_function</a>
                you can use to do detection to track association.  
         </description>
         <examples>
            <example>learning_to_track_ex.cpp.html</example>
         </examples>
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_struct_controller_node</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_distributed_abstract.h</spec_file>
         <description>
            This object is a tool for distributing the work involved in solving a 
            <a href="#structural_svm_problem">structural_svm_problem</a> across many computers.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
      <component>
         <name>svm_struct_processing_node</name>
         <file>dlib/svm_threaded.h</file>
         <spec_file link="true">dlib/svm/structural_svm_distributed_abstract.h</spec_file>
         <description>
            This object is a tool for distributing the work involved in solving a 
            <a href="#structural_svm_problem">structural_svm_problem</a> across many computers.  
         </description>
                                 
      </component>
      
   <!-- ************************************************************************* -->
      
   </components>

   <!-- ************************************************************************* -->


</doc>