summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/dnn_inception_ex.cpp
blob: 6b2c1727a0a26af48d734152dab43101609aa999 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
    This is an example illustrating the use of the deep learning tools from the
    dlib C++ Library.  I'm assuming you have already read the introductory
    dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp examples.  In this
    example we are going to show how to create inception networks. 

    An inception network is composed of inception blocks of the form:

               input from SUBNET
              /        |        \
             /         |         \
          block1    block2  ... blockN 
             \         |         /
              \        |        /
          concatenate tensors from blocks
                       |
                    output
                 
    That is, an inception block runs a number of smaller networks (e.g. block1,
    block2) and then concatenates their results.  For further reading refer to:
    Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of
    the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
*/

#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>

using namespace std;
using namespace dlib;

// Inception layer has some different convolutions inside.  Here we define
// blocks as convolutions with different kernel size that we will use in
// inception layer block.
template <typename SUBNET> using block_a1 = relu<con<10,1,1,1,1,SUBNET>>;
template <typename SUBNET> using block_a2 = relu<con<10,3,3,1,1,relu<con<16,1,1,1,1,SUBNET>>>>;
template <typename SUBNET> using block_a3 = relu<con<10,5,5,1,1,relu<con<16,1,1,1,1,SUBNET>>>>;
template <typename SUBNET> using block_a4 = relu<con<10,1,1,1,1,max_pool<3,3,1,1,SUBNET>>>;

// Here is inception layer definition. It uses different blocks to process input
// and returns combined output.  Dlib includes a number of these inceptionN
// layer types which are themselves created using concat layers.  
template <typename SUBNET> using incept_a = inception4<block_a1,block_a2,block_a3,block_a4, SUBNET>;

// Network can have inception layers of different structure.  It will work
// properly so long as all the sub-blocks inside a particular inception block
// output tensors with the same number of rows and columns.
template <typename SUBNET> using block_b1 = relu<con<4,1,1,1,1,SUBNET>>;
template <typename SUBNET> using block_b2 = relu<con<4,3,3,1,1,SUBNET>>;
template <typename SUBNET> using block_b3 = relu<con<4,1,1,1,1,max_pool<3,3,1,1,SUBNET>>>;
template <typename SUBNET> using incept_b = inception3<block_b1,block_b2,block_b3,SUBNET>;

// Now we can define a simple network for classifying MNIST digits.  We will
// train and test this network in the code below.
using net_type = loss_multiclass_log<
        fc<10,
        relu<fc<32,
        max_pool<2,2,2,2,incept_b<
        max_pool<2,2,2,2,incept_a<
        input<matrix<unsigned char>>
        >>>>>>>>;

int main(int argc, char** argv) try
{
    // This example is going to run on the MNIST dataset.
    if (argc != 2)
    {
        cout << "This example needs the MNIST dataset to run!" << endl;
        cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
        cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
        cout << "put them in a folder.  Then give that folder as input to this program." << endl;
        return 1;
    }


    std::vector<matrix<unsigned char>> training_images;
    std::vector<unsigned long>         training_labels;
    std::vector<matrix<unsigned char>> testing_images;
    std::vector<unsigned long>         testing_labels;
    load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);


    // Make an instance of our inception network.
    net_type net;
    cout << "The net has " << net.num_layers << " layers in it." << endl;
    cout << net << endl;


    cout << "Traning NN..." << endl;
    dnn_trainer<net_type> trainer(net);
    trainer.set_learning_rate(0.01);
    trainer.set_min_learning_rate(0.00001);
    trainer.set_mini_batch_size(128);
    trainer.be_verbose();
    trainer.set_synchronization_file("inception_sync", std::chrono::seconds(20));
    // Train the network.  This might take a few minutes...
    trainer.train(training_images, training_labels);

    // At this point our net object should have learned how to classify MNIST images.  But
    // before we try it out let's save it to disk.  Note that, since the trainer has been
    // running images through the network, net will have a bunch of state in it related to
    // the last batch of images it processed (e.g. outputs from each layer).  Since we
    // don't care about saving that kind of stuff to disk we can tell the network to forget
    // about that kind of transient data so that our file will be smaller.  We do this by
    // "cleaning" the network before saving it.
    net.clean();
    serialize("mnist_network_inception.dat") << net;
    // Now if we later wanted to recall the network from disk we can simply say:
    // deserialize("mnist_network_inception.dat") >> net;


    // Now let's run the training images through the network.  This statement runs all the
    // images through it and asks the loss layer to convert the network's raw output into
    // labels.  In our case, these labels are the numbers between 0 and 9.
    std::vector<unsigned long> predicted_labels = net(training_images);
    int num_right = 0;
    int num_wrong = 0;
    // And then let's see if it classified them correctly.
    for (size_t i = 0; i < training_images.size(); ++i)
    {
        if (predicted_labels[i] == training_labels[i])
            ++num_right;
        else
            ++num_wrong;
        
    }
    cout << "training num_right: " << num_right << endl;
    cout << "training num_wrong: " << num_wrong << endl;
    cout << "training accuracy:  " << num_right/(double)(num_right+num_wrong) << endl;

    // Let's also see if the network can correctly classify the testing images.
    // Since MNIST is an easy dataset, we should see 99% accuracy.
    predicted_labels = net(testing_images);
    num_right = 0;
    num_wrong = 0;
    for (size_t i = 0; i < testing_images.size(); ++i)
    {
        if (predicted_labels[i] == testing_labels[i])
            ++num_right;
        else
            ++num_wrong;
        
    }
    cout << "testing num_right: " << num_right << endl;
    cout << "testing num_wrong: " << num_wrong << endl;
    cout << "testing accuracy:  " << num_right/(double)(num_right+num_wrong) << endl;

}
catch(std::exception& e)
{
    cout << e.what() << endl;
}