summaryrefslogtreecommitdiffstats
path: root/ml/dlib/examples/dnn_semantic_segmentation_train_ex.cpp
blob: 0de8c9f439272b86bb9ab06d8915a5cef735aa73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
    This example shows how to train a semantic segmentation net using the PASCAL VOC2012
    dataset.  For an introduction to what segmentation is, see the accompanying header file
    dnn_semantic_segmentation_ex.h.

    Instructions how to run the example:
    1. Download the PASCAL VOC2012 data, and untar it somewhere.
       http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
    2. Build the dnn_semantic_segmentation_train_ex example program.
    3. Run:
       ./dnn_semantic_segmentation_train_ex /path/to/VOC2012
    4. Wait while the network is being trained.
    5. Build the dnn_semantic_segmentation_ex example program.
    6. Run:
       ./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images

    It would be a good idea to become familiar with dlib's DNN tooling before reading this
    example.  So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
    before reading this example program.
*/

#include "dnn_semantic_segmentation_ex.h"

#include <iostream>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/dir_nav.h>
#include <iterator>
#include <thread>

using namespace std;
using namespace dlib;

// A single training sample. A mini-batch comprises many of these.
struct training_sample
{
    matrix<rgb_pixel> input_image;
    matrix<uint16_t> label_image; // The ground-truth label of each pixel.
};

// ----------------------------------------------------------------------------------------

rectangle make_random_cropping_rect_resnet(
    const matrix<rgb_pixel>& img,
    dlib::rand& rnd
)
{
    // figure out what rectangle we want to crop from the image
    double mins = 0.466666666, maxs = 0.875;
    auto scale = mins + rnd.get_random_double()*(maxs-mins);
    auto size = scale*std::min(img.nr(), img.nc());
    rectangle rect(size, size);
    // randomly shift the box around
    point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
                 rnd.get_random_32bit_number()%(img.nr()-rect.height()));
    return move_rect(rect, offset);
}

// ----------------------------------------------------------------------------------------

void randomly_crop_image (
    const matrix<rgb_pixel>& input_image,
    const matrix<uint16_t>& label_image,
    training_sample& crop,
    dlib::rand& rnd
)
{
    const auto rect = make_random_cropping_rect_resnet(input_image, rnd);

    const chip_details chip_details(rect, chip_dims(227, 227));

    // Crop the input image.
    extract_image_chip(input_image, chip_details, crop.input_image, interpolate_bilinear());

    // Crop the labels correspondingly. However, note that here bilinear
    // interpolation would make absolutely no sense - you wouldn't say that
    // a bicycle is half-way between an aeroplane and a bird, would you?
    extract_image_chip(label_image, chip_details, crop.label_image, interpolate_nearest_neighbor());

    // Also randomly flip the input image and the labels.
    if (rnd.get_random_double() > 0.5)
    {
        crop.input_image = fliplr(crop.input_image);
        crop.label_image = fliplr(crop.label_image);
    }

    // And then randomly adjust the colors.
    apply_random_color_offset(crop.input_image, rnd);
}

// ----------------------------------------------------------------------------------------

// The names of the input image and the associated RGB label image in the PASCAL VOC 2012
// data set.
struct image_info
{
    string image_filename;
    string label_filename;
};

// Read the list of image files belonging to either the "train", "trainval", or "val" set
// of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_listing(
    const std::string& voc2012_folder,
    const std::string& file = "train" // "train", "trainval", or "val"
)
{
    std::ifstream in(voc2012_folder + "/ImageSets/Segmentation/" + file + ".txt");

    std::vector<image_info> results;

    while (in)
    {
        std::string basename;
        in >> basename;

        if (!basename.empty())
        {
            image_info image_info;
            image_info.image_filename = voc2012_folder + "/JPEGImages/" + basename + ".jpg";
            image_info.label_filename = voc2012_folder + "/SegmentationClass/" + basename + ".png";
            results.push_back(image_info);
        }
    }

    return results;
}

// Read the list of image files belong to the "train" set of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_train_listing(
    const std::string& voc2012_folder
)
{
    return get_pascal_voc2012_listing(voc2012_folder, "train");
}

// Read the list of image files belong to the "val" set of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_val_listing(
    const std::string& voc2012_folder
)
{
    return get_pascal_voc2012_listing(voc2012_folder, "val");
}

// ----------------------------------------------------------------------------------------

// The PASCAL VOC2012 dataset contains 20 ground-truth classes + background.  Each class
// is represented using an RGB color value.  We associate each class also to an index in the
// range [0, 20], used internally by the network.  To convert the ground-truth data to
// something that the network can efficiently digest, we need to be able to map the RGB
// values to the corresponding indexes.

// Given an RGB representation, find the corresponding PASCAL VOC2012 class
// (e.g., 'dog').
const Voc2012class& find_voc2012_class(const dlib::rgb_pixel& rgb_label)
{
    return find_voc2012_class(
        [&rgb_label](const Voc2012class& voc2012class)
        {
            return rgb_label == voc2012class.rgb_label;
        }
    );
}

// Convert an RGB class label to an index in the range [0, 20].
inline uint16_t rgb_label_to_index_label(const dlib::rgb_pixel& rgb_label)
{
    return find_voc2012_class(rgb_label).index;
}

// Convert an image containing RGB class labels to a corresponding
// image containing indexes in the range [0, 20].
void rgb_label_image_to_index_label_image(
    const dlib::matrix<dlib::rgb_pixel>& rgb_label_image,
    dlib::matrix<uint16_t>& index_label_image
)
{
    const long nr = rgb_label_image.nr();
    const long nc = rgb_label_image.nc();

    index_label_image.set_size(nr, nc);

    for (long r = 0; r < nr; ++r)
    {
        for (long c = 0; c < nc; ++c)
        {
            index_label_image(r, c) = rgb_label_to_index_label(rgb_label_image(r, c));
        }
    }
}

// ----------------------------------------------------------------------------------------

// Calculate the per-pixel accuracy on a dataset whose file names are supplied as a parameter.
double calculate_accuracy(anet_type& anet, const std::vector<image_info>& dataset)
{
    int num_right = 0;
    int num_wrong = 0;

    matrix<rgb_pixel> input_image;
    matrix<rgb_pixel> rgb_label_image;
    matrix<uint16_t> index_label_image;
    matrix<uint16_t> net_output;

    for (const auto& image_info : dataset)
    {
        // Load the input image.
        load_image(input_image, image_info.image_filename);

        // Load the ground-truth (RGB) labels.
        load_image(rgb_label_image, image_info.label_filename);

        // Create predictions for each pixel. At this point, the type of each prediction
        // is an index (a value between 0 and 20). Note that the net may return an image
        // that is not exactly the same size as the input.
        const matrix<uint16_t> temp = anet(input_image);

        // Convert the indexes to RGB values.
        rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);

        // Crop the net output to be exactly the same size as the input.
        const chip_details chip_details(
            centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()),
            chip_dims(input_image.nr(), input_image.nc())
        );
        extract_image_chip(temp, chip_details, net_output, interpolate_nearest_neighbor());

        const long nr = index_label_image.nr();
        const long nc = index_label_image.nc();

        // Compare the predicted values to the ground-truth values.
        for (long r = 0; r < nr; ++r)
        {
            for (long c = 0; c < nc; ++c)
            {
                const uint16_t truth = index_label_image(r, c);
                if (truth != dlib::loss_multiclass_log_per_pixel_::label_to_ignore)
                {
                    const uint16_t prediction = net_output(r, c);
                    if (prediction == truth)
                    {
                        ++num_right;
                    }
                    else
                    {
                        ++num_wrong;
                    }
                }
            }
        }
    }

    // Return the accuracy estimate.
    return num_right / static_cast<double>(num_right + num_wrong);
}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
    if (argc != 2)
    {
        cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
        cout << endl;
        cout << "You call this program like this: " << endl;
        cout << "./dnn_semantic_segmentation_train_ex /path/to/VOC2012" << endl;
        return 1;
    }

    cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;

    const auto listing = get_pascal_voc2012_train_listing(argv[1]);
    cout << "images in dataset: " << listing.size() << endl;
    if (listing.size() == 0)
    {
        cout << "Didn't find the VOC2012 dataset. " << endl;
        return 1;
    }
        

    const double initial_learning_rate = 0.1;
    const double weight_decay = 0.0001;
    const double momentum = 0.9;

    net_type net;
    dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum));
    trainer.be_verbose();
    trainer.set_learning_rate(initial_learning_rate);
    trainer.set_synchronization_file("pascal_voc2012_trainer_state_file.dat", std::chrono::minutes(10));
    // This threshold is probably excessively large.
    trainer.set_iterations_without_progress_threshold(5000);
    // Since the progress threshold is so large might as well set the batch normalization
    // stats window to something big too.
    set_all_bn_running_stats_window_sizes(net, 1000);

    // Output training parameters.
    cout << endl << trainer << endl;

    std::vector<matrix<rgb_pixel>> samples;
    std::vector<matrix<uint16_t>> labels;

    // Start a bunch of threads that read images from disk and pull out random crops.  It's
    // important to be sure to feed the GPU fast enough to keep it busy.  Using multiple
    // thread for this kind of data preparation helps us do that.  Each thread puts the
    // crops into the data queue.
    dlib::pipe<training_sample> data(200);
    auto f = [&data, &listing](time_t seed)
    {
        dlib::rand rnd(time(0)+seed);
        matrix<rgb_pixel> input_image;
        matrix<rgb_pixel> rgb_label_image;
        matrix<uint16_t> index_label_image;
        training_sample temp;
        while(data.is_enabled())
        {
            // Pick a random input image.
            const image_info& image_info = listing[rnd.get_random_32bit_number()%listing.size()];

            // Load the input image.
            load_image(input_image, image_info.image_filename);

            // Load the ground-truth (RGB) labels.
            load_image(rgb_label_image, image_info.label_filename);

            // Convert the indexes to RGB values.
            rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);

            // Randomly pick a part of the image.
            randomly_crop_image(input_image, index_label_image, temp, rnd);

            // Push the result to be used by the trainer.
            data.enqueue(temp);
        }
    };
    std::thread data_loader1([f](){ f(1); });
    std::thread data_loader2([f](){ f(2); });
    std::thread data_loader3([f](){ f(3); });
    std::thread data_loader4([f](){ f(4); });

    // The main training loop.  Keep making mini-batches and giving them to the trainer.
    // We will run until the learning rate has dropped by a factor of 1e-4.
    while(trainer.get_learning_rate() >= 1e-4)
    {
        samples.clear();
        labels.clear();

        // make a 30-image mini-batch
        training_sample temp;
        while(samples.size() < 30)
        {
            data.dequeue(temp);

            samples.push_back(std::move(temp.input_image));
            labels.push_back(std::move(temp.label_image));
        }

        trainer.train_one_step(samples, labels);
    }

    // Training done, tell threads to stop and make sure to wait for them to finish before
    // moving on.
    data.disable();
    data_loader1.join();
    data_loader2.join();
    data_loader3.join();
    data_loader4.join();

    // also wait for threaded processing to stop in the trainer.
    trainer.get_net();

    net.clean();
    cout << "saving network" << endl;
    serialize("semantic_segmentation_voc2012net.dnn") << net;


    // Make a copy of the network to use it for inference.
    anet_type anet = net;

    cout << "Testing the network..." << endl;

    // Find the accuracy of the newly trained network on both the training and the validation sets.
    cout << "train accuracy  :  " << calculate_accuracy(anet, get_pascal_voc2012_train_listing(argv[1])) << endl;
    cout << "val accuracy    :  " << calculate_accuracy(anet, get_pascal_voc2012_val_listing(argv[1])) << endl;
}
catch(std::exception& e)
{
    cout << e.what() << endl;
}