summaryrefslogtreecommitdiffstats
path: root/src/collectors/python.d.plugin/anomalies/anomalies.chart.py
blob: 24e84cc15c088d5bb0aedee0def4b79add6c41b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# -*- coding: utf-8 -*-
# Description: anomalies netdata python.d module
# Author: andrewm4894
# SPDX-License-Identifier: GPL-3.0-or-later

import sys
import time
from datetime import datetime
import re
import warnings

import requests
import numpy as np
import pandas as pd
from netdata_pandas.data import get_data, get_allmetrics_async
from pyod.models.hbos import HBOS
from pyod.models.pca import PCA
from pyod.models.loda import LODA
from pyod.models.iforest import IForest
from pyod.models.cblof import CBLOF
from pyod.models.feature_bagging import FeatureBagging
from pyod.models.copod import COPOD
from sklearn.preprocessing import MinMaxScaler

from bases.FrameworkServices.SimpleService import SimpleService

# ignore some sklearn/numpy warnings that are ok
warnings.filterwarnings('ignore', r'All-NaN slice encountered')
warnings.filterwarnings('ignore', r'invalid value encountered in true_divide')
warnings.filterwarnings('ignore', r'divide by zero encountered in true_divide')
warnings.filterwarnings('ignore', r'invalid value encountered in subtract')

disabled_by_default = True

ORDER = ['probability', 'anomaly']

CHARTS = {
    'probability': {
        'options': ['probability', 'Anomaly Probability', 'probability', 'anomalies', 'anomalies.probability', 'line'],
        'lines': []
    },
    'anomaly': {
        'options': ['anomaly', 'Anomaly', 'count', 'anomalies', 'anomalies.anomaly', 'stacked'],
        'lines': []
    },
}


class Service(SimpleService):
    def __init__(self, configuration=None, name=None):
        SimpleService.__init__(self, configuration=configuration, name=name)
        self.basic_init()
        self.charts_init()
        self.custom_models_init()
        self.data_init()
        self.model_params_init()
        self.models_init()
        self.collected_dims = {'probability': set(), 'anomaly': set()}

    def check(self):
        if not (sys.version_info[0] >= 3 and sys.version_info[1] >= 6):
            self.error("anomalies collector only works with Python>=3.6")
        if len(self.host_charts_dict[self.host]) > 0:
            _ = get_allmetrics_async(host_charts_dict=self.host_charts_dict, protocol=self.protocol, user=self.username, pwd=self.password)
        return True

    def basic_init(self):
        """Perform some basic initialization.
        """
        self.order = ORDER
        self.definitions = CHARTS
        self.protocol = self.configuration.get('protocol', 'http')
        self.host = self.configuration.get('host', '127.0.0.1:19999')
        self.username = self.configuration.get('username', None)
        self.password = self.configuration.get('password', None)
        self.tls_verify = self.configuration.get('tls_verify', True)
        self.fitted_at = {}
        self.df_allmetrics = pd.DataFrame()
        self.last_train_at = 0
        self.include_average_prob = bool(self.configuration.get('include_average_prob', True))
        self.reinitialize_at_every_step = bool(self.configuration.get('reinitialize_at_every_step', False))

    def charts_init(self):
        """Do some initialisation of charts in scope related variables.
        """
        self.charts_regex = re.compile(self.configuration.get('charts_regex','None'))
        self.charts_available = [c for c in list(requests.get(f'{self.protocol}://{self.host}/api/v1/charts', verify=self.tls_verify).json().get('charts', {}).keys())]
        self.charts_in_scope = list(filter(self.charts_regex.match, self.charts_available))
        self.charts_to_exclude = self.configuration.get('charts_to_exclude', '').split(',')
        if len(self.charts_to_exclude) > 0:
            self.charts_in_scope = [c for c in self.charts_in_scope if c not in self.charts_to_exclude]

    def custom_models_init(self):
        """Perform initialization steps related to custom models.
        """
        self.custom_models = self.configuration.get('custom_models', None)
        self.custom_models_normalize = bool(self.configuration.get('custom_models_normalize', False))
        if self.custom_models:
            self.custom_models_names = [model['name'] for model in self.custom_models]
            self.custom_models_dims = [i for s in [model['dimensions'].split(',') for model in self.custom_models] for i in s]
            self.custom_models_dims = [dim if '::' in dim else f'{self.host}::{dim}' for dim in self.custom_models_dims]
            self.custom_models_charts = list(set([dim.split('|')[0].split('::')[1] for dim in self.custom_models_dims]))
            self.custom_models_hosts = list(set([dim.split('::')[0] for dim in self.custom_models_dims]))
            self.custom_models_host_charts_dict = {}
            for host in self.custom_models_hosts:
                self.custom_models_host_charts_dict[host] = list(set([dim.split('::')[1].split('|')[0] for dim in self.custom_models_dims if dim.startswith(host)]))
            self.custom_models_dims_renamed = [f"{model['name']}|{dim}" for model in self.custom_models for dim in model['dimensions'].split(',')]
            self.models_in_scope = list(set([f'{self.host}::{c}' for c in self.charts_in_scope] + self.custom_models_names))
            self.charts_in_scope = list(set(self.charts_in_scope + self.custom_models_charts))
            self.host_charts_dict = {self.host: self.charts_in_scope}
            for host in self.custom_models_host_charts_dict:
                if host not in self.host_charts_dict:
                    self.host_charts_dict[host] = self.custom_models_host_charts_dict[host]
                else:
                    for chart in self.custom_models_host_charts_dict[host]:
                        if chart not in self.host_charts_dict[host]:
                            self.host_charts_dict[host].extend(chart)
        else:
            self.models_in_scope = [f'{self.host}::{c}' for c in self.charts_in_scope]
            self.host_charts_dict = {self.host: self.charts_in_scope}
        self.model_display_names = {model: model.split('::')[1] if '::' in model else model for model in self.models_in_scope}
        #self.info(f'self.host_charts_dict (len={len(self.host_charts_dict[self.host])}): {self.host_charts_dict}')

    def data_init(self):
        """Initialize some empty data objects.
        """
        self.data_probability_latest = {f'{m}_prob': 0 for m in self.charts_in_scope}
        self.data_anomaly_latest = {f'{m}_anomaly': 0 for m in self.charts_in_scope}
        self.data_latest = {**self.data_probability_latest, **self.data_anomaly_latest}

    def model_params_init(self):
        """Model parameters initialisation.
        """
        self.train_max_n = self.configuration.get('train_max_n', 100000)
        self.train_n_secs = self.configuration.get('train_n_secs', 14400)
        self.offset_n_secs = self.configuration.get('offset_n_secs', 0)
        self.train_every_n = self.configuration.get('train_every_n', 1800)
        self.train_no_prediction_n = self.configuration.get('train_no_prediction_n', 10)
        self.initial_train_data_after = self.configuration.get('initial_train_data_after', 0)
        self.initial_train_data_before = self.configuration.get('initial_train_data_before', 0)
        self.contamination = self.configuration.get('contamination', 0.001)
        self.lags_n = {model: self.configuration.get('lags_n', 5) for model in self.models_in_scope}
        self.smooth_n = {model: self.configuration.get('smooth_n', 5) for model in self.models_in_scope}
        self.diffs_n = {model: self.configuration.get('diffs_n', 5) for model in self.models_in_scope}

    def models_init(self):
        """Models initialisation.
        """
        self.model = self.configuration.get('model', 'pca')
        if self.model == 'pca':
            self.models = {model: PCA(contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'loda':
            self.models = {model: LODA(contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'iforest':
            self.models = {model: IForest(n_estimators=50, bootstrap=True, behaviour='new', contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'cblof':
            self.models = {model: CBLOF(n_clusters=3, contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'feature_bagging':
            self.models = {model: FeatureBagging(base_estimator=PCA(contamination=self.contamination), contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'copod':
            self.models = {model: COPOD(contamination=self.contamination) for model in self.models_in_scope}
        elif self.model == 'hbos':
            self.models = {model: HBOS(contamination=self.contamination) for model in self.models_in_scope}
        else:
            self.models = {model: HBOS(contamination=self.contamination) for model in self.models_in_scope}
        self.custom_model_scalers = {model: MinMaxScaler() for model in self.models_in_scope}

    def model_init(self, model):
        """Model initialisation of a single model.
        """
        if self.model == 'pca':
            self.models[model] = PCA(contamination=self.contamination)
        elif self.model == 'loda':
            self.models[model] = LODA(contamination=self.contamination)
        elif self.model == 'iforest':
            self.models[model] = IForest(n_estimators=50, bootstrap=True, behaviour='new', contamination=self.contamination)
        elif self.model == 'cblof':
            self.models[model] = CBLOF(n_clusters=3, contamination=self.contamination)
        elif self.model == 'feature_bagging':
            self.models[model] = FeatureBagging(base_estimator=PCA(contamination=self.contamination), contamination=self.contamination)
        elif self.model == 'copod':
            self.models[model] = COPOD(contamination=self.contamination)
        elif self.model == 'hbos':
            self.models[model] = HBOS(contamination=self.contamination)
        else:
            self.models[model] = HBOS(contamination=self.contamination)
        self.custom_model_scalers[model] = MinMaxScaler()

    def reinitialize(self):
        """Reinitialize charts, models and data to a beginning state.
        """
        self.charts_init()
        self.custom_models_init()
        self.data_init()
        self.model_params_init()
        self.models_init()

    def save_data_latest(self, data, data_probability, data_anomaly):
        """Save the most recent data objects to be used if needed in the future.
        """
        self.data_latest = data
        self.data_probability_latest = data_probability
        self.data_anomaly_latest = data_anomaly

    def validate_charts(self, chart, data, algorithm='absolute', multiplier=1, divisor=1):
        """If dimension not in chart then add it.
        """
        for dim in data:
            if dim not in self.collected_dims[chart]:
                self.collected_dims[chart].add(dim)
                self.charts[chart].add_dimension([dim, dim, algorithm, multiplier, divisor])

        for dim in list(self.collected_dims[chart]):
            if dim not in data:
                self.collected_dims[chart].remove(dim)
                self.charts[chart].del_dimension(dim, hide=False)

    def add_custom_models_dims(self, df):
        """Given a df, select columns used by custom models, add custom model name as prefix, and append to df.

        :param df <pd.DataFrame>: dataframe to append new renamed columns to.
        :return: <pd.DataFrame> dataframe with additional columns added relating to the specified custom models.
        """
        df_custom = df[self.custom_models_dims].copy()
        df_custom.columns = self.custom_models_dims_renamed
        df = df.join(df_custom)

        return df

    def make_features(self, arr, train=False, model=None):
        """Take in numpy array and preprocess accordingly by taking diffs, smoothing and adding lags.

        :param arr <np.ndarray>: numpy array we want to make features from.
        :param train <bool>: True if making features for training, in which case need to fit_transform scaler and maybe sample train_max_n.
        :param model <str>: model to make features for.
        :return: <np.ndarray> transformed numpy array.
        """

        def lag(arr, n):
            res = np.empty_like(arr)
            res[:n] = np.nan
            res[n:] = arr[:-n]

            return res

        arr = np.nan_to_num(arr)

        diffs_n = self.diffs_n[model]
        smooth_n = self.smooth_n[model]
        lags_n = self.lags_n[model]

        if self.custom_models_normalize and model in self.custom_models_names:
            if train:
                arr = self.custom_model_scalers[model].fit_transform(arr)
            else:
                arr = self.custom_model_scalers[model].transform(arr)

        if diffs_n > 0:
            arr = np.diff(arr, diffs_n, axis=0)
            arr = arr[~np.isnan(arr).any(axis=1)]

        if smooth_n > 1:
            arr = np.cumsum(arr, axis=0, dtype=float)
            arr[smooth_n:] = arr[smooth_n:] - arr[:-smooth_n]
            arr = arr[smooth_n - 1:] / smooth_n
            arr = arr[~np.isnan(arr).any(axis=1)]

        if lags_n > 0:
            arr_orig = np.copy(arr)
            for lag_n in range(1, lags_n + 1):
                arr = np.concatenate((arr, lag(arr_orig, lag_n)), axis=1)
            arr = arr[~np.isnan(arr).any(axis=1)]

        if train:
            if len(arr) > self.train_max_n:
                arr = arr[np.random.randint(arr.shape[0], size=self.train_max_n), :]

        arr = np.nan_to_num(arr)

        return arr

    def train(self, models_to_train=None, train_data_after=0, train_data_before=0):
        """Pull required training data and train a model for each specified model.

        :param models_to_train <list>: list of models to train on.
        :param train_data_after <int>: integer timestamp for start of train data.
        :param train_data_before <int>: integer timestamp for end of train data.
        """
        now = datetime.now().timestamp()
        if train_data_after > 0 and train_data_before > 0:
            before = train_data_before
            after = train_data_after
        else:
            before = int(now) - self.offset_n_secs
            after =  before - self.train_n_secs

        # get training data
        df_train = get_data(
            host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', after=after, before=before,
            sort_cols=True, numeric_only=True, protocol=self.protocol, float_size='float32', user=self.username, pwd=self.password,
            verify=self.tls_verify
        ).ffill()
        if self.custom_models:
            df_train = self.add_custom_models_dims(df_train)

        # train model
        self.try_fit(df_train, models_to_train=models_to_train)
        self.info(f'training complete in {round(time.time() - now, 2)} seconds (runs_counter={self.runs_counter}, model={self.model}, train_n_secs={self.train_n_secs}, models={len(self.fitted_at)}, n_fit_success={self.n_fit_success}, n_fit_fails={self.n_fit_fail}, after={after}, before={before}).')
        self.last_train_at = self.runs_counter

    def try_fit(self, df_train, models_to_train=None):
        """Try fit each model and try to fallback to a default model if fit fails for any reason.

        :param df_train <pd.DataFrame>: data to train on.
        :param models_to_train <list>: list of models to train.
        """
        if models_to_train is None:
            models_to_train = list(self.models.keys())
        self.n_fit_fail, self.n_fit_success = 0, 0
        for model in models_to_train:
            if model not in self.models:
                self.model_init(model)
            X_train = self.make_features(
                df_train[df_train.columns[df_train.columns.str.startswith(f'{model}|')]].values,
                train=True, model=model)
            try:
                self.models[model].fit(X_train)
                self.n_fit_success += 1
            except Exception as e:
                self.n_fit_fail += 1
                self.info(e)
                self.info(f'training failed for {model} at run_counter {self.runs_counter}, defaulting to hbos model.')
                self.models[model] = HBOS(contamination=self.contamination)
                self.models[model].fit(X_train)
            self.fitted_at[model] = self.runs_counter

    def predict(self):
        """Get latest data, make it into a feature vector, and get predictions for each available model.

        :return: (<dict>,<dict>) tuple of dictionaries, one for probability scores and the other for anomaly predictions.
        """
        # get recent data to predict on
        df_allmetrics = get_allmetrics_async(
            host_charts_dict=self.host_charts_dict, host_prefix=True, host_sep='::', wide=True, sort_cols=True,
            protocol=self.protocol, numeric_only=True, float_size='float32', user=self.username, pwd=self.password
            )
        if self.custom_models:
            df_allmetrics = self.add_custom_models_dims(df_allmetrics)
        self.df_allmetrics = self.df_allmetrics.append(df_allmetrics).ffill().tail((max(self.lags_n.values()) + max(self.smooth_n.values()) + max(self.diffs_n.values())) * 2)

        # get predictions
        data_probability, data_anomaly = self.try_predict()

        return data_probability, data_anomaly

    def try_predict(self):
        """Try make prediction and fall back to last known prediction if fails.

        :return: (<dict>,<dict>) tuple of dictionaries, one for probability scores and the other for anomaly predictions.
        """
        data_probability, data_anomaly = {}, {}
        for model in self.fitted_at.keys():
            model_display_name = self.model_display_names[model]
            try:
                X_model = np.nan_to_num(
                    self.make_features(
                        self.df_allmetrics[self.df_allmetrics.columns[self.df_allmetrics.columns.str.startswith(f'{model}|')]].values,
                        model=model
                    )[-1,:].reshape(1, -1)
                )
                data_probability[model_display_name + '_prob'] = np.nan_to_num(self.models[model].predict_proba(X_model)[-1][1]) * 10000
                data_anomaly[model_display_name + '_anomaly'] = self.models[model].predict(X_model)[-1]
            except Exception as _:
                #self.info(e)
                if model_display_name + '_prob' in self.data_latest:
                    #self.info(f'prediction failed for {model} at run_counter {self.runs_counter}, using last prediction instead.')
                    data_probability[model_display_name + '_prob'] = self.data_latest[model_display_name + '_prob']
                    data_anomaly[model_display_name + '_anomaly'] = self.data_latest[model_display_name + '_anomaly']
                else:
                    #self.info(f'prediction failed for {model} at run_counter {self.runs_counter}, skipping as no previous prediction.')
                    continue

        return data_probability, data_anomaly

    def get_data(self):

        # initialize to what's available right now
        if self.reinitialize_at_every_step or len(self.host_charts_dict[self.host]) == 0:
            self.charts_init()
            self.custom_models_init()
            self.model_params_init()

        # if not all models have been trained then train those we need to
        if len(self.fitted_at) < len(self.models_in_scope):
            self.train(
                models_to_train=[m for m in self.models_in_scope if m not in self.fitted_at],
                train_data_after=self.initial_train_data_after,
                train_data_before=self.initial_train_data_before
            )
        # retrain all models as per schedule from config
        elif self.train_every_n > 0 and self.runs_counter % self.train_every_n == 0:
            self.reinitialize()
            self.train()

        # roll forward previous predictions around a training step to avoid the possibility of having the training itself trigger an anomaly
        if (self.runs_counter - self.last_train_at) <= self.train_no_prediction_n:
            data_probability = self.data_probability_latest
            data_anomaly = self.data_anomaly_latest
        else:
            data_probability, data_anomaly = self.predict()
            if self.include_average_prob:
                average_prob = np.mean(list(data_probability.values()))
                data_probability['average_prob'] = 0 if np.isnan(average_prob) else average_prob
        
        data = {**data_probability, **data_anomaly}

        self.validate_charts('probability', data_probability, divisor=100)
        self.validate_charts('anomaly', data_anomaly)

        self.save_data_latest(data, data_probability, data_anomaly)

        #self.info(f'len(data)={len(data)}')
        #self.info(f'data')

        return data