1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "windows_plugin.h"
#include "windows-internals.h"
#define _COMMON_PLUGIN_NAME "windows.plugin"
#define _COMMON_PLUGIN_MODULE_NAME "PerflibProcesses"
#include "../common-contexts/common-contexts.h"
struct processor {
bool collected_metadata;
RRDSET *st;
RRDDIM *rd_user;
RRDDIM *rd_system;
RRDDIM *rd_irq;
RRDDIM *rd_dpc;
RRDDIM *rd_idle;
// RRDSET *st2;
// RRDDIM *rd2_busy;
COUNTER_DATA percentProcessorTime;
COUNTER_DATA percentUserTime;
COUNTER_DATA percentPrivilegedTime;
COUNTER_DATA percentDPCTime;
COUNTER_DATA percentInterruptTime;
COUNTER_DATA percentIdleTime;
COUNTER_DATA interruptsPerSec;
};
struct processor total = { 0 };
void initialize_processor_keys(struct processor *p) {
p->percentProcessorTime.key = "% Processor Time";
p->percentUserTime.key = "% User Time";
p->percentPrivilegedTime.key = "% Privileged Time";
p->percentDPCTime.key = "% DPC Time";
p->percentInterruptTime.key = "% Interrupt Time";
p->percentIdleTime.key = "% Idle Time";
p->interruptsPerSec.key = "Interrupts/sec";
}
void dict_processor_insert_cb(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data __maybe_unused) {
struct processor *p = value;
initialize_processor_keys(p);
}
static DICTIONARY *processors = NULL;
static void initialize(void) {
initialize_processor_keys(&total);
processors = dictionary_create_advanced(DICT_OPTION_DONT_OVERWRITE_VALUE |
DICT_OPTION_FIXED_SIZE, NULL, sizeof(struct processor));
dictionary_register_insert_callback(processors, dict_processor_insert_cb, NULL);
}
static bool do_processors(PERF_DATA_BLOCK *pDataBlock, int update_every) {
PERF_OBJECT_TYPE *pObjectType = perflibFindObjectTypeByName(pDataBlock, "Processor");
if(!pObjectType) return false;
static const RRDVAR_ACQUIRED *cpus_var = NULL;
int cores_found = 0;
uint64_t totalIPC = 0;
PERF_INSTANCE_DEFINITION *pi = NULL;
for(LONG i = 0; i < pObjectType->NumInstances ; i++) {
pi = perflibForEachInstance(pDataBlock, pObjectType, pi);
if(!pi) break;
if(!getInstanceName(pDataBlock, pObjectType, pi, windows_shared_buffer, sizeof(windows_shared_buffer)))
strncpyz(windows_shared_buffer, "[unknown]", sizeof(windows_shared_buffer) - 1);
bool is_total = false;
struct processor *p;
int cpu = -1;
if(strcasecmp(windows_shared_buffer, "_Total") == 0) {
p = &total;
is_total = true;
cpu = -1;
}
else {
p = dictionary_set(processors, windows_shared_buffer, NULL, sizeof(*p));
is_total = false;
cpu = str2i(windows_shared_buffer);
snprintfz(windows_shared_buffer, sizeof(windows_shared_buffer), "cpu%d", cpu);
if(cpu + 1 > cores_found)
cores_found = cpu + 1;
}
if(!is_total && !p->collected_metadata) {
// TODO collect processor metadata
p->collected_metadata = true;
}
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentProcessorTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentUserTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentPrivilegedTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentDPCTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentInterruptTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->percentIdleTime);
perflibGetInstanceCounter(pDataBlock, pObjectType, pi, &p->interruptsPerSec);
if(!p->st) {
p->st = rrdset_create_localhost(
is_total ? "system" : "cpu"
, is_total ? "cpu" : windows_shared_buffer, NULL
, is_total ? "cpu" : "utilization"
, is_total ? "system.cpu" : "cpu.cpu"
, is_total ? "Total CPU Utilization" : "Core Utilization"
, "percentage"
, PLUGIN_WINDOWS_NAME
, "PerflibProcessor"
, is_total ? NETDATA_CHART_PRIO_SYSTEM_CPU : NETDATA_CHART_PRIO_CPU_PER_CORE
, update_every
, RRDSET_TYPE_STACKED
);
p->rd_irq = rrddim_add(p->st, "interrupts", "irq", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
p->rd_user = rrddim_add(p->st, "user", NULL, 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
p->rd_system = rrddim_add(p->st, "privileged", "system", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
p->rd_dpc = rrddim_add(p->st, "dpc", NULL, 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
p->rd_idle = rrddim_add(p->st, "idle", NULL, 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
rrddim_hide(p->st, "idle");
if(!is_total)
rrdlabels_add(p->st->rrdlabels, "cpu", windows_shared_buffer, RRDLABEL_SRC_AUTO);
else
cpus_var = rrdvar_host_variable_add_and_acquire(localhost, "active_processors");
}
uint64_t user = p->percentUserTime.current.Data;
uint64_t system = p->percentPrivilegedTime.current.Data;
uint64_t dpc = p->percentDPCTime.current.Data;
uint64_t irq = p->percentInterruptTime.current.Data;
uint64_t idle = p->percentIdleTime.current.Data;
totalIPC += p->interruptsPerSec.current.Data;
rrddim_set_by_pointer(p->st, p->rd_user, (collected_number)user);
rrddim_set_by_pointer(p->st, p->rd_system, (collected_number)system);
rrddim_set_by_pointer(p->st, p->rd_irq, (collected_number)irq);
rrddim_set_by_pointer(p->st, p->rd_dpc, (collected_number)dpc);
rrddim_set_by_pointer(p->st, p->rd_idle, (collected_number)idle);
rrdset_done(p->st);
// if(!p->st2) {
// p->st2 = rrdset_create_localhost(
// is_total ? "system" : "cpu2"
// , is_total ? "cpu3" : buffer
// , NULL
// , is_total ? "utilization" : buffer
// , is_total ? "system.cpu3" : "cpu2.cpu"
// , is_total ? "Total CPU Utilization" : "Core Utilization"
// , "percentage"
// , PLUGIN_WINDOWS_NAME
// , "PerflibProcessor"
// , is_total ? NETDATA_CHART_PRIO_SYSTEM_CPU : NETDATA_CHART_PRIO_CPU_PER_CORE
// , update_every
// , RRDSET_TYPE_STACKED
// );
//
// p->rd2_busy = perflib_rrddim_add(p->st2, "busy", NULL, 1, 1, &p->percentProcessorTime);
// rrddim_hide(p->st2, "idle");
//
// if(!is_total)
// rrdlabels_add(p->st->rrdlabels, "cpu", buffer, RRDLABEL_SRC_AUTO);
// }
//
// perflib_rrddim_set_by_pointer(p->st2, p->rd2_busy, &p->percentProcessorTime);
// rrdset_done(p->st2);
}
if(cpus_var)
rrdvar_host_variable_set(localhost, cpus_var, cores_found);
common_interrupts(totalIPC, update_every, NULL);
return true;
}
int do_PerflibProcessor(int update_every, usec_t dt __maybe_unused) {
static bool initialized = false;
if(unlikely(!initialized)) {
initialize();
initialized = true;
}
DWORD id = RegistryFindIDByName("Processor");
if(id == PERFLIB_REGISTRY_NAME_NOT_FOUND)
return -1;
PERF_DATA_BLOCK *pDataBlock = perflibGetPerformanceData(id);
if(!pDataBlock) return -1;
do_processors(pDataBlock, update_every);
return 0;
}
|