1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
|
// SPDX-License-Identifier: GPL-3.0
/********************************************************************
*
* File: KolmogorovSmirnovDist.c
* Environment: ISO C99 or ANSI C89
* Author: Richard Simard
* Organization: DIRO, Université de Montréal
* Date: 1 February 2012
* Version 1.1
* Copyright 1 march 2010 by Université de Montréal,
Richard Simard and Pierre L'Ecuyer
=====================================================================
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
=====================================================================*/
#include "KolmogorovSmirnovDist.h"
#include <math.h>
#include <stdlib.h>
#define num_Pi 3.14159265358979323846 /* PI */
#define num_Ln2 0.69314718055994530941 /* log(2) */
/* For x close to 0 or 1, we use the exact formulae of Ruben-Gambino in all
cases. For n <= NEXACT, we use exact algorithms: the Durbin matrix and
the Pomeranz algorithms. For n > NEXACT, we use asymptotic methods
except for x close to 0 where we still use the method of Durbin
for n <= NKOLMO. For n > NKOLMO, we use asymptotic methods only and
so the precision is less for x close to 0.
We could increase the limit NKOLMO to 10^6 to get better precision
for x close to 0, but at the price of a slower speed. */
#define NEXACT 500
#define NKOLMO 100000
/* The Durbin matrix algorithm for the Kolmogorov-Smirnov distribution */
static double DurbinMatrix (int n, double d);
/*========================================================================*/
#if 0
/* For ANSI C89 only, not for ISO C99 */
#define MAXI 50
#define EPSILON 1.0e-15
double log1p (double x)
{
/* returns a value equivalent to log(1 + x) accurate also for small x. */
if (fabs (x) > 0.1) {
return log (1.0 + x);
} else {
double term = x;
double sum = x;
int s = 2;
while ((fabs (term) > EPSILON * fabs (sum)) && (s < MAXI)) {
term *= -x;
sum += term / s;
s++;
}
return sum;
}
}
#undef MAXI
#undef EPSILON
#endif
/*========================================================================*/
#define MFACT 30
/* The natural logarithm of factorial n! for 0 <= n <= MFACT */
static double LnFactorial[MFACT + 1] = {
0.,
0.,
0.6931471805599453,
1.791759469228055,
3.178053830347946,
4.787491742782046,
6.579251212010101,
8.525161361065415,
10.60460290274525,
12.80182748008147,
15.10441257307552,
17.50230784587389,
19.98721449566188,
22.55216385312342,
25.19122118273868,
27.89927138384088,
30.67186010608066,
33.50507345013688,
36.39544520803305,
39.33988418719949,
42.33561646075348,
45.3801388984769,
48.47118135183522,
51.60667556776437,
54.7847293981123,
58.00360522298051,
61.26170176100199,
64.55753862700632,
67.88974313718154,
71.257038967168,
74.65823634883016
};
/*------------------------------------------------------------------------*/
static double getLogFactorial (int n)
{
/* Returns the natural logarithm of factorial n! */
if (n <= MFACT) {
return LnFactorial[n];
} else {
double x = (double) (n + 1);
double y = 1.0 / (x * x);
double z = ((-(5.95238095238E-4 * y) + 7.936500793651E-4) * y -
2.7777777777778E-3) * y + 8.3333333333333E-2;
z = ((x - 0.5) * log (x) - x) + 9.1893853320467E-1 + z / x;
return z;
}
}
/*------------------------------------------------------------------------*/
static double rapfac (int n)
{
/* Computes n! / n^n */
int i;
double res = 1.0 / n;
for (i = 2; i <= n; i++) {
res *= (double) i / n;
}
return res;
}
/*========================================================================*/
static double **CreateMatrixD (int N, int M)
{
int i;
double **T2;
T2 = (double **) malloc (N * sizeof (double *));
T2[0] = (double *) malloc ((size_t) N * M * sizeof (double));
for (i = 1; i < N; i++)
T2[i] = T2[0] + i * M;
return T2;
}
static void DeleteMatrixD (double **T)
{
free (T[0]);
free (T);
}
/*========================================================================*/
static double KSPlusbarAsymp (int n, double x)
{
/* Compute the probability of the KS+ distribution using an asymptotic
formula */
double t = (6.0 * n * x + 1);
double z = t * t / (18.0 * n);
double v = 1.0 - (2.0 * z * z - 4.0 * z - 1.0) / (18.0 * n);
if (v <= 0.0)
return 0.0;
v = v * exp (-z);
if (v >= 1.0)
return 1.0;
return v;
}
/*-------------------------------------------------------------------------*/
static double KSPlusbarUpper (int n, double x)
{
/* Compute the probability of the KS+ distribution in the upper tail using
Smirnov's stable formula */
const double EPSILON = 1.0E-12;
double q;
double Sum = 0.0;
double term;
double t;
double LogCom;
double LOGJMAX;
int j;
int jdiv;
int jmax = (int) (n * (1.0 - x));
if (n > 200000)
return KSPlusbarAsymp (n, x);
/* Avoid log(0) for j = jmax and q ~ 1.0 */
if ((1.0 - x - (double) jmax / n) <= 0.0)
jmax--;
if (n > 3000)
jdiv = 2;
else
jdiv = 3;
j = jmax / jdiv + 1;
LogCom = getLogFactorial (n) - getLogFactorial (j) -
getLogFactorial (n - j);
LOGJMAX = LogCom;
while (j <= jmax) {
q = (double) j / n + x;
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
t = exp (term);
Sum += t;
LogCom += log ((double) (n - j) / (j + 1));
if (t <= Sum * EPSILON)
break;
j++;
}
j = jmax / jdiv;
LogCom = LOGJMAX + log ((double) (j + 1) / (n - j));
while (j > 0) {
q = (double) j / n + x;
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
t = exp (term);
Sum += t;
LogCom += log ((double) j / (n - j + 1));
if (t <= Sum * EPSILON)
break;
j--;
}
Sum *= x;
/* add the term j = 0 */
Sum += exp (n * log1p (-x));
return Sum;
}
/*========================================================================*/
static double Pelz (int n, double x)
{
/* Approximating the Lower Tail-Areas of the Kolmogorov-Smirnov One-Sample
Statistic,
Wolfgang Pelz and I. J. Good,
Journal of the Royal Statistical Society, Series B.
Vol. 38, No. 2 (1976), pp. 152-156
*/
const int JMAX = 20;
const double EPS = 1.0e-10;
const double C = 2.506628274631001; /* sqrt(2*Pi) */
const double C2 = 1.2533141373155001; /* sqrt(Pi/2) */
const double PI2 = num_Pi * num_Pi;
const double PI4 = PI2 * PI2;
const double RACN = sqrt ((double) n);
const double z = RACN * x;
const double z2 = z * z;
const double z4 = z2 * z2;
const double z6 = z4 * z2;
const double w = PI2 / (2.0 * z * z);
double ti, term, tom;
double sum;
int j;
term = 1;
j = 0;
sum = 0;
while (j <= JMAX && term > EPS * sum) {
ti = j + 0.5;
term = exp (-ti * ti * w);
sum += term;
j++;
}
sum *= C / z;
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
term = (PI2 * ti * ti - z2) * exp (-ti * ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * 3.0 * z4);
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
term = 6 * z6 + 2 * z4 + PI2 * (2 * z4 - 5 * z2) * ti * ti +
PI4 * (1 - 2 * z2) * ti * ti * ti * ti;
term *= exp (-ti * ti * w);
tom += term;
j++;
}
sum += tom * C2 / (n * 36.0 * z * z6);
term = 1;
tom = 0;
j = 1;
while (j <= JMAX && term > EPS * tom) {
ti = j;
term = PI2 * ti * ti * exp (-ti * ti * w);
tom += term;
j++;
}
sum -= tom * C2 / (n * 18.0 * z * z2);
term = 1;
tom = 0;
j = 0;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j + 0.5;
ti = ti * ti;
term = -30 * z6 - 90 * z6 * z2 + PI2 * (135 * z4 - 96 * z6) * ti +
PI4 * (212 * z4 - 60 * z2) * ti * ti + PI2 * PI4 * ti * ti * ti * (5 -
30 * z2);
term *= exp (-ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * n * 3240.0 * z4 * z6);
term = 1;
tom = 0;
j = 1;
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
ti = j * j;
term = (3 * PI2 * ti * z2 - PI4 * ti * ti) * exp (-ti * w);
tom += term;
j++;
}
sum += tom * C2 / (RACN * n * 108.0 * z6);
return sum;
}
/*=========================================================================*/
static void CalcFloorCeil (
int n, /* sample size */
double t, /* = nx */
double *A, /* A_i */
double *Atflo, /* floor (A_i - t) */
double *Atcei /* ceiling (A_i + t) */
)
{
/* Precompute A_i, floors, and ceilings for limits of sums in the Pomeranz
algorithm */
int i;
int ell = (int) t; /* floor (t) */
double z = t - ell; /* t - floor (t) */
double w = ceil (t) - t;
if (z > 0.5) {
for (i = 2; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 2 - ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 1 - ell;
for (i = 2; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + 1 + ell;
} else if (z > 0.0) {
for (i = 1; i <= 2 * n + 2; i++)
Atflo[i] = i / 2 - 1 - ell;
for (i = 2; i <= 2 * n + 2; i++)
Atcei[i] = i / 2 + ell;
Atcei[1] = 1 + ell;
} else { /* z == 0 */
for (i = 2; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - 1 - ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atflo[i] = i / 2 - ell;
for (i = 2; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 - 1 + ell;
for (i = 1; i <= 2 * n + 2; i += 2)
Atcei[i] = i / 2 + ell;
}
if (w < z)
z = w;
A[0] = A[1] = 0;
A[2] = z;
A[3] = 1 - A[2];
for (i = 4; i <= 2 * n + 1; i++)
A[i] = A[i - 2] + 1;
A[2 * n + 2] = n;
}
/*========================================================================*/
static double Pomeranz (int n, double x)
{
/* The Pomeranz algorithm to compute the KS distribution */
const double EPS = 1.0e-15;
const int ENO = 350;
const double RENO = ldexp (1.0, ENO); /* for renormalization of V */
int coreno; /* counter: how many renormalizations */
const double t = n * x;
double w, sum, minsum;
int i, j, k, s;
int r1, r2; /* Indices i and i-1 for V[i][] */
int jlow, jup, klow, kup, kup0;
double *A;
double *Atflo;
double *Atcei;
double **V;
double **H; /* = pow(w, j) / Factorial(j) */
A = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
Atflo = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
Atcei = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
V = (double **) CreateMatrixD (2, n + 2);
H = (double **) CreateMatrixD (4, n + 2);
CalcFloorCeil (n, t, A, Atflo, Atcei);
for (j = 1; j <= n + 1; j++)
V[0][j] = 0;
for (j = 2; j <= n + 1; j++)
V[1][j] = 0;
V[1][1] = RENO;
coreno = 1;
/* Precompute H[][] = (A[j] - A[j-1]^k / k! for speed */
H[0][0] = 1;
w = 2.0 * A[2] / n;
for (j = 1; j <= n + 1; j++)
H[0][j] = w * H[0][j - 1] / j;
H[1][0] = 1;
w = (1.0 - 2.0 * A[2]) / n;
for (j = 1; j <= n + 1; j++)
H[1][j] = w * H[1][j - 1] / j;
H[2][0] = 1;
w = A[2] / n;
for (j = 1; j <= n + 1; j++)
H[2][j] = w * H[2][j - 1] / j;
H[3][0] = 1;
for (j = 1; j <= n + 1; j++)
H[3][j] = 0;
r1 = 0;
r2 = 1;
for (i = 2; i <= 2 * n + 2; i++) {
jlow = 2 + (int) Atflo[i];
if (jlow < 1)
jlow = 1;
jup = (int) Atcei[i];
if (jup > n + 1)
jup = n + 1;
klow = 2 + (int) Atflo[i - 1];
if (klow < 1)
klow = 1;
kup0 = (int) Atcei[i - 1];
/* Find to which case it corresponds */
w = (A[i] - A[i - 1]) / n;
s = -1;
for (j = 0; j < 4; j++) {
if (fabs (w - H[j][1]) <= EPS) {
s = j;
break;
}
}
/* assert (s >= 0, "Pomeranz: s < 0"); */
minsum = RENO;
r1 = (r1 + 1) & 1; /* i - 1 */
r2 = (r2 + 1) & 1; /* i */
for (j = jlow; j <= jup; j++) {
kup = kup0;
if (kup > j)
kup = j;
sum = 0;
for (k = kup; k >= klow; k--)
sum += V[r1][k] * H[s][j - k];
V[r2][j] = sum;
if (sum < minsum)
minsum = sum;
}
if (minsum < 1.0e-280) {
/* V is too small: renormalize to avoid underflow of probabilities */
for (j = jlow; j <= jup; j++)
V[r2][j] *= RENO;
coreno++; /* keep track of log of RENO */
}
}
sum = V[r2][n + 1];
free (A);
free (Atflo);
free (Atcei);
DeleteMatrixD (H);
DeleteMatrixD (V);
w = getLogFactorial (n) - coreno * ENO * num_Ln2 + log (sum);
if (w >= 0.)
return 1.;
return exp (w);
}
/*========================================================================*/
static double cdfSpecial (int n, double x)
{
/* The KS distribution is known exactly for these cases */
/* For nx^2 > 18, KSfbar(n, x) is smaller than 5e-16 */
if ((n * x * x >= 18.0) || (x >= 1.0))
return 1.0;
if (x <= 0.5 / n)
return 0.0;
if (n == 1)
return 2.0 * x - 1.0;
if (x <= 1.0 / n) {
double t = 2.0 * x * n - 1.0;
double w;
if (n <= NEXACT) {
w = rapfac (n);
return w * pow (t, (double) n);
}
w = getLogFactorial (n) + n * log (t / n);
return exp (w);
}
if (x >= 1.0 - 1.0 / n) {
return 1.0 - 2.0 * pow (1.0 - x, (double) n);
}
return -1.0;
}
/*========================================================================*/
double KScdf (int n, double x)
{
const double w = n * x * x;
double u = cdfSpecial (n, x);
if (u >= 0.0)
return u;
if (n <= NEXACT) {
if (w < 0.754693)
return DurbinMatrix (n, x);
if (w < 4.0)
return Pomeranz (n, x);
return 1.0 - KSfbar (n, x);
}
if ((w * x * n <= 7.0) && (n <= NKOLMO))
return DurbinMatrix (n, x);
return Pelz (n, x);
}
/*=========================================================================*/
static double fbarSpecial (int n, double x)
{
const double w = n * x * x;
if ((w >= 370.0) || (x >= 1.0))
return 0.0;
if ((w <= 0.0274) || (x <= 0.5 / n))
return 1.0;
if (n == 1)
return 2.0 - 2.0 * x;
if (x <= 1.0 / n) {
double z;
double t = 2.0 * x * n - 1.0;
if (n <= NEXACT) {
z = rapfac (n);
return 1.0 - z * pow (t, (double) n);
}
z = getLogFactorial (n) + n * log (t / n);
return 1.0 - exp (z);
}
if (x >= 1.0 - 1.0 / n) {
return 2.0 * pow (1.0 - x, (double) n);
}
return -1.0;
}
/*========================================================================*/
double KSfbar (int n, double x)
{
const double w = n * x * x;
double v = fbarSpecial (n, x);
if (v >= 0.0)
return v;
if (n <= NEXACT) {
if (w < 4.0)
return 1.0 - KScdf (n, x);
else
return 2.0 * KSPlusbarUpper (n, x);
}
if (w >= 2.65)
return 2.0 * KSPlusbarUpper (n, x);
return 1.0 - KScdf (n, x);
}
/*=========================================================================
The following implements the Durbin matrix algorithm and was programmed by
G. Marsaglia, Wai Wan Tsang and Jingbo Wong.
I have made small modifications in their program. (Richard Simard)
=========================================================================*/
/*
The C program to compute Kolmogorov's distribution
K(n,d) = Prob(D_n < d), where
D_n = max(x_1-0/n,x_2-1/n...,x_n-(n-1)/n,1/n-x_1,2/n-x_2,...,n/n-x_n)
with x_1<x_2,...<x_n a purported set of n independent uniform [0,1)
random variables sorted into increasing order.
See G. Marsaglia, Wai Wan Tsang and Jingbo Wong,
J.Stat.Software, 8, 18, pp 1--4, (2003).
*/
#define NORM 1.0e140
#define INORM 1.0e-140
#define LOGNORM 140
/* Matrix product */
static void mMultiply (double *A, double *B, double *C, int m);
/* Matrix power */
static void mPower (double *A, int eA, double *V, int *eV, int m, int n);
static double DurbinMatrix (int n, double d)
{
int k, m, i, j, g, eH, eQ;
double h, s, *H, *Q;
/* OMIT NEXT TWO LINES IF YOU REQUIRE >7 DIGIT ACCURACY IN THE RIGHT TAIL */
#if 0
s = d * d * n;
if (s > 7.24 || (s > 3.76 && n > 99))
return 1 - 2 * exp (-(2.000071 + .331 / sqrt (n) + 1.409 / n) * s);
#endif
k = (int) (n * d) + 1;
m = 2 * k - 1;
h = k - n * d;
H = (double *) calloc ((m * m), sizeof (double));
Q = (double *) calloc ((m * m), sizeof (double));
for (i = 0; i < m; i++)
for (j = 0; j < m; j++)
if (i - j + 1 < 0)
H[i * m + j] = 0;
else
H[i * m + j] = 1;
for (i = 0; i < m; i++) {
H[i * m] -= pow (h, (double) (i + 1));
H[(m - 1) * m + i] -= pow (h, (double) (m - i));
}
H[(m - 1) * m] += (2 * h - 1 > 0 ? pow (2 * h - 1, (double) m) : 0);
for (i = 0; i < m; i++)
for (j = 0; j < m; j++)
if (i - j + 1 > 0)
for (g = 1; g <= i - j + 1; g++)
H[i * m + j] /= g;
eH = 0;
mPower (H, eH, Q, &eQ, m, n);
s = Q[(k - 1) * m + k - 1];
for (i = 1; i <= n; i++) {
s = s * (double) i / n;
if (s < INORM) {
s *= NORM;
eQ -= LOGNORM;
}
}
s *= pow (10., (double) eQ);
free (H);
free (Q);
return s;
}
static void mMultiply (double *A, double *B, double *C, int m)
{
int i, j, k;
double s;
for (i = 0; i < m; i++)
for (j = 0; j < m; j++) {
s = 0.;
for (k = 0; k < m; k++)
s += A[i * m + k] * B[k * m + j];
C[i * m + j] = s;
}
}
static void renormalize (double *V, int m, int *p)
{
int i;
for (i = 0; i < m * m; i++)
V[i] *= INORM;
*p += LOGNORM;
}
static void mPower (double *A, int eA, double *V, int *eV, int m, int n)
{
double *B;
int eB, i;
if (n == 1) {
for (i = 0; i < m * m; i++)
V[i] = A[i];
*eV = eA;
return;
}
mPower (A, eA, V, eV, m, n / 2);
B = (double *) malloc ((m * m) * sizeof (double));
mMultiply (V, V, B, m);
eB = 2 * (*eV);
if (B[(m / 2) * m + (m / 2)] > NORM)
renormalize (B, m, &eB);
if (n % 2 == 0) {
for (i = 0; i < m * m; i++)
V[i] = B[i];
*eV = eB;
} else {
mMultiply (A, B, V, m);
*eV = eA + eB;
}
if (V[(m / 2) * m + (m / 2)] > NORM)
renormalize (V, m, eV);
free (B);
}
|