1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "libnetdata/libnetdata.h"
#if !defined(HAVE_ARC4RANDOM_BUF) && !defined(HAVE_RAND_S)
static SPINLOCK random_lock = NETDATA_SPINLOCK_INITIALIZER;
static __attribute__((constructor)) void random_seed() {
// Use current time and process ID to create a high-entropy seed
struct timeval tv;
gettimeofday(&tv, NULL);
uint32_t seed = (uint32_t)(tv.tv_sec ^ tv.tv_usec ^ getpid());
// Seed the random number generator
srandom(seed);
}
static inline void random_bytes(void *buf, size_t bytes) {
spinlock_lock(&random_lock);
while (bytes > 0) {
if (bytes >= sizeof(uint32_t)) {
// Generate 4 bytes at a time
uint32_t temp = random();
memcpy(buf, &temp, sizeof(uint32_t));
buf = (uint8_t *)buf + sizeof(uint32_t);
bytes -= sizeof(uint32_t);
} else if (bytes >= sizeof(uint16_t)) {
// Generate 2 bytes at a time
uint16_t temp = random();
memcpy(buf, &temp, sizeof(uint16_t));
buf = (uint8_t *)buf + sizeof(uint16_t);
bytes -= sizeof(uint16_t);
} else {
// Generate remaining bytes
uint32_t temp = random();
for (size_t i = 0; i < bytes; i++) {
((uint8_t *)buf)[i] = temp & 0xFF;
temp >>= 8;
}
bytes = 0;
}
}
spinlock_unlock(&random_lock);
}
#if defined(HAVE_GETRANDOM)
#include <sys/random.h>
static inline void getrandom_bytes(void *buf, size_t bytes) {
ssize_t result;
while (bytes > 0) {
result = getrandom(buf, bytes, 0);
if (result == -1) {
if (errno == EINTR) {
// Interrupted, retry
continue;
} else if (errno == EAGAIN) {
// Insufficient entropy; wait and retry
tinysleep();
continue;
} else {
// fallback to RAND_bytes
random_bytes(buf, bytes);
return;
}
}
buf = (uint8_t *)buf + result;
bytes -= result;
}
}
#endif // HAVE_GETRANDOM
#endif // !HAVE_ARC4RANDOM_BUF && !HAVE_RAND_S
#if defined(HAVE_RAND_S)
static inline void rand_s_bytes(void *buf, size_t bytes) {
while (bytes > 0) {
if (bytes >= sizeof(unsigned int)) {
unsigned int temp;
rand_s(&temp);
memcpy(buf, &temp, sizeof(unsigned int));
buf = (uint8_t *)buf + sizeof(unsigned int);
bytes -= sizeof(unsigned int);
} else if (bytes >= sizeof(uint16_t)) {
// Generate 2 bytes at a time
unsigned int t;
rand_s(&t);
uint16_t temp = t;
memcpy(buf, &temp, sizeof(uint16_t));
buf = (uint8_t *)buf + sizeof(uint16_t);
bytes -= sizeof(uint16_t);
} else {
// Generate remaining bytes
unsigned int temp;
rand_s(&temp);
for (size_t i = 0; i < sizeof(temp) && i < bytes; i++) {
((uint8_t *)buf)[0] = temp & 0xFF;
temp >>= 8;
buf = (uint8_t *)buf + 1;
bytes--;
}
}
}
}
#endif
inline void os_random_bytes(void *buf, size_t bytes) {
#if defined(HAVE_ARC4RANDOM_BUF)
arc4random_buf(buf, bytes);
#else
if(RAND_bytes((unsigned char *)buf, bytes) == 1)
return;
#if defined(HAVE_GETRANDOM)
getrandom_bytes(buf, bytes);
#elif defined(HAVE_RAND_S)
rand_s_bytes(buf, bytes);
#else
random_bytes(buf, bytes);
#endif
#endif
}
// Generate an 8-bit random number
uint8_t os_random8(void) {
uint8_t value;
os_random_bytes(&value, sizeof(value));
return value;
}
// Generate a 16-bit random number
uint16_t os_random16(void) {
uint16_t value;
os_random_bytes(&value, sizeof(value));
return value;
}
// Generate a 32-bit random number
uint32_t os_random32(void) {
uint32_t value;
os_random_bytes(&value, sizeof(value));
return value;
}
// Generate a 64-bit random number
uint64_t os_random64(void) {
uint64_t value;
os_random_bytes(&value, sizeof(value));
return value;
}
/*
* Rejection Sampling
* To reduce bias, we can use rejection sampling without creating an infinite loop.
* This technique works by discarding values that would introduce bias, but limiting
* the number of retries to avoid infinite loops.
*/
// Calculate an upper limit so that the range evenly divides into max.
// Any values greater than this limit would introduce bias, so we discard them.
#define MAX_RETRIES 10
#define os_random_rejection_sampling_X(type, type_max, func, max) \
({ \
size_t retries = 0; \
type value, upper_limit = type_max - (type_max % (max)); \
while ((value = func()) >= upper_limit && retries++ < MAX_RETRIES); \
value % (max); \
})
uint64_t os_random(uint64_t max) {
if (max <= 1) return 0;
#if defined(HAVE_ARC4RANDOM_UNIFORM)
if(max <= UINT32_MAX)
// this is not biased
return arc4random_uniform(max);
#endif
if ((max & (max - 1)) == 0) {
// max is a power of 2
// use bitmasking to directly generate an unbiased random number
if (max <= UINT8_MAX)
return os_random8() & (max - 1);
else if (max <= UINT16_MAX)
return os_random16() & (max - 1);
else if (max <= UINT32_MAX)
return os_random32() & (max - 1);
else
return os_random64() & (max - 1);
}
if (max <= UINT8_MAX)
return os_random_rejection_sampling_X(uint8_t, UINT8_MAX, os_random8, max);
else if (max <= UINT16_MAX)
return os_random_rejection_sampling_X(uint16_t, UINT16_MAX, os_random16, max);
else if (max <= UINT32_MAX)
return os_random_rejection_sampling_X(uint32_t, UINT32_MAX, os_random32, max);
else
return os_random_rejection_sampling_X(uint64_t, UINT64_MAX, os_random64, max);
}
|