summaryrefslogtreecommitdiffstats
path: root/src/sh_checksum.c
blob: 0587edc89e08ca692b70bb45c88f2a0e5e8f70a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/* SAMHAIN file system integrity testing                                   */
/* Copyright (C) 2013 Rainer Wichmann                                      */
/*                                                                         */
/*  This program is free software; you can redistribute it                 */
/*  and/or modify                                                          */
/*  it under the terms of the GNU General Public License as                */
/*  published by                                                           */
/*  the Free Software Foundation; either version 2 of the License, or      */
/*  (at your option) any later version.                                    */
/*                                                                         */
/*  This program is distributed in the hope that it will be useful,        */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of         */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the          */
/*  GNU General Public License for more details.                           */
/*                                                                         */
/*  You should have received a copy of the GNU General Public License      */
/*  along with this program; if not, write to the Free Software            */
/*  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.              */

#include "config_xor.h"
#include "samhain.h"
#include "sh_checksum.h"
#include <string.h>

#undef  FIL__
#define FIL__  _("sh_checksum.c")

/*
 * sha2.c
 *
 * Version 1.0.0beta1
 *
 * Written by Aaron D. Gifford <me@aarongifford.com>
 *
 * Copyright 2000 Aaron D. Gifford.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holder nor the names of contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

/* Modified for use in samhain by R. Wichmann */

#if WORDS_BIGENDIAN
#define SHA2_BIG_ENDIAN    4321
#define SHA2_BYTE_ORDER SHA2_BIG_ENDIAN
#else
#define SHA2_LITTLE_ENDIAN 1234
#define SHA2_BYTE_ORDER SHA2_LITTLE_ENDIAN
#endif

#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
#define REVERSE32(w,x)  { \
        sha2_word32 tmp = (w); \
        tmp = (tmp >> 16) | (tmp << 16); \
        (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x)  { \
        sha2_word64 tmp = (w); \
        tmp = (tmp >> 32) | (tmp << 32); \
        tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
              ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
        (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
              ((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif

/*
 * Macro for incrementally adding the unsigned 64-bit integer n to the
 * unsigned 128-bit integer (represented using a two-element array of
 * 64-bit words):
 */
#define ADDINC128(w,n)  { \
        (w)[0] += (sha2_word64)(n); \
        if ((w)[0] < (n)) { \
                (w)[1]++; \
        } \
}

/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
 *
 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
 *   S is a ROTATION) because the SHA-256/384/512 description document
 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
 *   same "backwards" definition.
 */
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x)          ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))

/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))

/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
 * library -- they are intended for private internal visibility/use
 * only.
 */
void SHA256_Transform(SHA256_CTX*, const sha2_word32*);

/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
        0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
        0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
        0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
        0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
        0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
        0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
        0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
        0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
        0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
        0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
        0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
        0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
        0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
        0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
        0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
        0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};

/* Initial hash value H for SHA-256: */
static const sha2_word32 sha256_initial_hash_value[8] = {
        0x6a09e667UL,
        0xbb67ae85UL,
        0x3c6ef372UL,
        0xa54ff53aUL,
        0x510e527fUL,
        0x9b05688cUL,
        0x1f83d9abUL,
        0x5be0cd19UL
};

/*
 * Constant used by SHA256/384/512_End() functions for converting the
 * digest to a readable hexadecimal character string:
 */
static const char *sha2_hex_digits = "0123456789abcdef";

/*** SHA-256: *********************************************************/
void SHA256_Init(SHA256_CTX* context) {
  if (context == (SHA256_CTX*)0) {
    return;
  }
  memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  /* bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH); */
  memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
  /* bzero(context->buffer, SHA256_BLOCK_LENGTH); */
  
  context->bitcount = 0;
}

#ifdef SHA2_UNROLL_TRANSFORM

/* Unrolled SHA-256 round macros: */

#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
        REVERSE32(*data++, W256[j]); \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
             K256[j] + W256[j]; \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++

#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */

#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
             K256[j] + (W256[j] = *data++); \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++

#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */

#define ROUND256(a,b,c,d,e,f,g,h)       \
        s0 = W256[(j+1)&0x0f]; \
        s0 = sigma0_256(s0); \
        s1 = W256[(j+14)&0x0f]; \
        s1 = sigma1_256(s1); \
        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
             (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
        (d) += T1; \
        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
        j++

void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  sha2_word32     T1, *W256;
  int             j;
  
  W256 = (sha2_word32*)context->buffer;
  
  /* Initialize registers with the prev. intermediate value */
  a = context->state[0];
  b = context->state[1];
  c = context->state[2];
  d = context->state[3];
  e = context->state[4];
  f = context->state[5];
  g = context->state[6];
  h = context->state[7];
  
  j = 0;
  do {
    /* Rounds 0 to 15 (unrolled): */
    ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
    ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
    ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
    ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
    ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
    ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
    ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
    ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  } while (j < 16);
  
  /* Now for the remaining rounds to 64: */
  do {
    ROUND256(a,b,c,d,e,f,g,h);
    ROUND256(h,a,b,c,d,e,f,g);
    ROUND256(g,h,a,b,c,d,e,f);
    ROUND256(f,g,h,a,b,c,d,e);
    ROUND256(e,f,g,h,a,b,c,d);
    ROUND256(d,e,f,g,h,a,b,c);
    ROUND256(c,d,e,f,g,h,a,b);
    ROUND256(b,c,d,e,f,g,h,a);
  } while (j < 64);
  
  /* Compute the current intermediate hash value */
  context->state[0] += a;
  context->state[1] += b;
  context->state[2] += c;
  context->state[3] += d;
  context->state[4] += e;
  context->state[5] += f;
  context->state[6] += g;
  context->state[7] += h;
  
  /* Clean up */
  a = b = c = d = e = f = g = h = T1 = 0;
}

#else /* SHA2_UNROLL_TRANSFORM */

void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
  sha2_word32     T1, T2, *W256;
  int             j;
  
  W256 = (sha2_word32*)context->buffer;
  
  /* Initialize registers with the prev. intermediate value */
  a = context->state[0];
  b = context->state[1];
  c = context->state[2];
  d = context->state[3];
  e = context->state[4];
  f = context->state[5];
  g = context->state[6];
  h = context->state[7];
  
  j = 0;
  do {
#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
    /* Copy data while converting to host byte order */
    REVERSE32(*data++,W256[j]);
    /* Apply the SHA-256 compression function to update a..h */
    T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
    /* Apply the SHA-256 compression function to update a..h with copy */
    T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
    T2 = Sigma0_256(a) + Maj(a, b, c);
    h = g;
    g = f;
    f = e;
    e = d + T1;
    d = c;
    c = b;
    b = a;
    a = T1 + T2;
    
    j++;
  } while (j < 16);
  
  do {
    /* Part of the message block expansion: */
    s0 = W256[(j+1)&0x0f];
    s0 = sigma0_256(s0);
    s1 = W256[(j+14)&0x0f]; 
    s1 = sigma1_256(s1);
    
    /* Apply the SHA-256 compression function to update a..h */
    T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
    T2 = Sigma0_256(a) + Maj(a, b, c);
    h = g;
    g = f;
    f = e;
    e = d + T1;
    d = c;
    c = b;
    b = a;
    a = T1 + T2;
    
    j++;
  } while (j < 64);
  
  /* Compute the current intermediate hash value */
  context->state[0] += a;
  context->state[1] += b;
  context->state[2] += c;
  context->state[3] += d;
  context->state[4] += e;
  context->state[5] += f;
  context->state[6] += g;
  context->state[7] += h;
  
  /* Clean up */
  a = b = c = d = e = f = g = h = T1 = T2 = 0;
}

#endif /* SHA2_UNROLL_TRANSFORM */

void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  unsigned int    freespace, usedspace;
  
  if (len == 0) {
    /* Calling with no data is valid - we do nothing */
    return;
  }
  
  usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  
  if (usedspace > 0) {
    /* Calculate how much free space is available in the buffer */
    freespace = SHA256_BLOCK_LENGTH - usedspace;
    
    if (len >= freespace) {
      /* Fill the buffer completely and process it */
      memcpy(&context->buffer[usedspace], data, freespace);
      /* bcopy(data, &context->buffer[usedspace], freespace); */
      context->bitcount += freespace << 3;
      len -= freespace;
      data += freespace;
      SHA256_Transform(context, (sha2_word32*)context->buffer);
    } else {
      /* The buffer is not yet full */
      memcpy(&context->buffer[usedspace], data, len);
      /* bcopy(data, &context->buffer[usedspace], len); */
      context->bitcount += len << 3;
      
      /* Clean up: */
      usedspace = freespace = 0;
      return;
    }
  }
  while (len >= SHA256_BLOCK_LENGTH) {
    /* Process as many complete blocks as we can */
    SHA256_Transform(context, (const sha2_word32*)data);
    context->bitcount += SHA256_BLOCK_LENGTH << 3;
    len -= SHA256_BLOCK_LENGTH;
    data += SHA256_BLOCK_LENGTH;
  }
  if (len > 0) {
    /* There's left-overs, so save 'em */
    memcpy(context->buffer, data, len);
    /* bcopy(data, context->buffer, len); */
    context->bitcount += len << 3;
  }
  /* Clean up: */
  usedspace = freespace = 0;
}

void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) 
{
  sha2_word32     *d = (sha2_word32*)digest;
  unsigned int    usedspace;
  union {
    sha2_word64     bitcount;
    sha2_byte       buffer[sizeof(sha2_word64)];
  } sha2_union;
  
  /* If no digest buffer is passed, we don't bother doing this: */
  if (digest != (sha2_byte*)0) {
    
    usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
    
#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
    /* Convert FROM host byte order */
    REVERSE64(context->bitcount,context->bitcount);
#endif
    if (usedspace > 0) {
      /* Begin padding with a 1 bit: */
      context->buffer[usedspace++] = 0x80;
      
      if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
	/* Set-up for the last transform: */
	memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
      } else {
	if (usedspace < SHA256_BLOCK_LENGTH) {
	  memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
	}
	/* Do second-to-last transform: */
	SHA256_Transform(context, (sha2_word32*)context->buffer);
	
	/* And set-up for the last transform: */
	memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
      }
    } else {
      /* Set-up for the last transform: */
      memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
      
      /* Begin padding with a 1 bit: */
      *context->buffer = 0x80;
    }

    /* Set the bit count (with fix for gcc type-punning warning): */
    sha2_union.bitcount = context->bitcount;
    memcpy (&context->buffer[SHA256_SHORT_BLOCK_LENGTH], sha2_union.buffer, sizeof(sha2_word64));
    /* *(sha2_word64*) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; */
    
    /* Final transform: */
    SHA256_Transform(context, (sha2_word32*)context->buffer);
    
#if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
    {
      /* Convert TO host byte order */
      int     j;
      for (j = 0; j < 8; j++) {
	REVERSE32(context->state[j],context->state[j]);
	*d++ = context->state[j];
      }
    }
#else
    memset(d, context->state, SHA256_DIGEST_LENGTH);
    /* bcopy(context->state, d, SHA256_DIGEST_LENGTH); */
#endif
  }
  
  /* Clean up state data: */
  memset(context, 0, sizeof(SHA256_CTX));
  usedspace = 0;
}

#include "sh_utils.h"

/* If buffer is of length KEYBUF_SIZE, the digest will fit */
char *SHA256_End(SHA256_CTX* context, char buffer[]) 
{
  sha2_byte       digest[SHA256_DIGEST_LENGTH];
  
  if (buffer != (char*)0) {
    SHA256_Final(digest, context);
    sh_util_base64_enc ((unsigned char *)buffer, digest,  SHA256_DIGEST_LENGTH);
  } else {
    memset(context, 0, sizeof(SHA256_CTX));
  }
  memset(digest, 0, SHA256_DIGEST_LENGTH);
  return buffer;
}

char* SHA256_Data(const sha2_byte* data, size_t len, char digest[KEYBUF_SIZE]) 
{
  SHA256_CTX      context;
  
  SHA256_Init(&context);
  SHA256_Update(&context, data, len);
  return SHA256_End(&context, digest);
}

char* SHA256_Base2Hex(char * b64digest, char * hexdigest) 
{
  int        i;
  sha2_byte data[512];
  sha2_byte *d;
  size_t     len;
  char * buffer;

  len = strlen(b64digest);
  sh_util_base64_dec ((unsigned char*) data, (unsigned char *)b64digest, len);
  d = data;

  buffer = hexdigest;
  for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
    *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
    *buffer++ = sha2_hex_digits[*d & 0x0f];
    d++;
  }
  *buffer = (char)0;

  return hexdigest;
}

char * SHA256_ReplaceBaseByHex(const char * str, char * before, char after)
{
  char   keybuf[KEYBUF_SIZE];
  char * s   = strstr(str, before);

  if (s)
    {
      char * p;

      s += strlen(before);
      memcpy(keybuf, s, sizeof(keybuf));
      keybuf[sizeof(keybuf)-1] = '\0';
      p = strchr(keybuf, after);

      if (p)
	{
	  char   hexbuf[SHA256_DIGEST_STRING_LENGTH];
	  char * ret = SH_ALLOC(strlen(str) + 1 + sizeof(keybuf)); 
	  char * r   = ret;

	  *p = '\0';
	  SHA256_Base2Hex(keybuf, hexbuf);

	  memcpy(ret, str, (s - str));
	  r += (int)(s - str); *r = '\0';
	  strcpy(r, hexbuf); /* flawfinder: ignore */
	  r += strlen(hexbuf);
	  p = strchr(s, after);
	  strcpy(r, p);      /* flawfinder: ignore */

	  return ret;
	}
    }
  return NULL;
}


#ifdef SH_CUTEST
#include <stdlib.h>
#include "CuTest.h"

void Test_sha256 (CuTest *tc) {

  char hexdigest[SHA256_DIGEST_STRING_LENGTH];
  char b64digest[KEYBUF_SIZE];
  char * b64;
  char * buffer;
  size_t len;
  sha2_byte data[512];
  sha2_byte *d;
  int        i;

  data[0] = '\0'; len = 0;
  b64 = SHA256_Data(data, len, b64digest);
  CuAssertPtrNotNull(tc, b64);

  len = strlen((char*)b64);
  sh_util_base64_dec (data, (unsigned char*)b64, len);
  d = data;
  buffer = hexdigest;
  for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
    *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
    *buffer++ = sha2_hex_digits[*d & 0x0f];
    d++;
  }
  *buffer = (char)0;
  CuAssertStrEquals(tc, hexdigest, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");

  memset(hexdigest, 0, sizeof(hexdigest));
  buffer = SHA256_Base2Hex(b64digest, hexdigest);
  CuAssertPtrNotNull(tc, buffer);
  CuAssertStrEquals(tc, hexdigest, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
  CuAssertStrEquals(tc,    buffer, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");

  strcpy((char*)data, "The quick brown fox jumps over the lazy dog"); len = strlen((char*)data);
  b64 = SHA256_Data(data, len, b64digest);
  CuAssertPtrNotNull(tc, b64);

  len = strlen((char*)b64);
  sh_util_base64_dec (data, (unsigned char*)b64, len);
  d = data;
  buffer = hexdigest;
  for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
    *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
    *buffer++ = sha2_hex_digits[*d & 0x0f];
    d++;
  }
  *buffer = (char)0;
  CuAssertStrEquals(tc, hexdigest, "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592");

  strcpy((char*)data, "The quick brown fox jumps over the lazy dog."); len = strlen((char*)data);
  b64 = SHA256_Data(data, len, b64digest);
  CuAssertPtrNotNull(tc, b64);

  len = strlen((char*)b64);
  sh_util_base64_dec (data, (unsigned char*)b64, len);
  d = data;
  buffer = hexdigest;
  for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
    *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
    *buffer++ = sha2_hex_digits[*d & 0x0f];
    d++;
  }
  *buffer = (char)0;
  CuAssertStrEquals(tc, hexdigest, "ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c");

}

#endif