summaryrefslogtreecommitdiffstats
path: root/tests/dataframe/integration/test_dataframe.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-23 07:22:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-23 07:22:20 +0000
commit41e67f6ce6b4b732d02e421d6825c18b8d15a59d (patch)
tree30fb0000d3e6ff11b366567bc35564842e7dbb50 /tests/dataframe/integration/test_dataframe.py
parentAdding upstream version 23.16.0. (diff)
downloadsqlglot-41e67f6ce6b4b732d02e421d6825c18b8d15a59d.tar.xz
sqlglot-41e67f6ce6b4b732d02e421d6825c18b8d15a59d.zip
Adding upstream version 24.0.0.upstream/24.0.0
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tests/dataframe/integration/test_dataframe.py')
-rw-r--r--tests/dataframe/integration/test_dataframe.py1281
1 files changed, 0 insertions, 1281 deletions
diff --git a/tests/dataframe/integration/test_dataframe.py b/tests/dataframe/integration/test_dataframe.py
deleted file mode 100644
index 702c6ee..0000000
--- a/tests/dataframe/integration/test_dataframe.py
+++ /dev/null
@@ -1,1281 +0,0 @@
-from pyspark.sql import functions as F
-
-from sqlglot.dataframe.sql import functions as SF
-from tests.dataframe.integration.dataframe_validator import DataFrameValidator
-
-
-class TestDataframeFunc(DataFrameValidator):
- def test_simple_select(self):
- df_employee = self.df_spark_employee.select(F.col("employee_id"))
- dfs_employee = self.df_sqlglot_employee.select(SF.col("employee_id"))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_simple_select_from_table(self):
- df = self.df_spark_employee
- dfs = self.sqlglot.read.table("employee")
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_simple_select_df_attribute(self):
- df_employee = self.df_spark_employee.select(self.df_spark_employee.employee_id)
- dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee.employee_id)
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_simple_select_df_dict(self):
- df_employee = self.df_spark_employee.select(self.df_spark_employee["employee_id"])
- dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee["employee_id"])
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_multiple_selects(self):
- df_employee = self.df_spark_employee.select(
- self.df_spark_employee["employee_id"], F.col("fname"), self.df_spark_employee.lname
- )
- dfs_employee = self.df_sqlglot_employee.select(
- self.df_sqlglot_employee["employee_id"], SF.col("fname"), self.df_sqlglot_employee.lname
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_alias_no_op(self):
- df_employee = self.df_spark_employee.alias("df_employee")
- dfs_employee = self.df_sqlglot_employee.alias("dfs_employee")
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_alias_with_select(self):
- df_employee = self.df_spark_employee.alias("df_employee").select(
- self.df_spark_employee["employee_id"],
- F.col("df_employee.fname"),
- self.df_spark_employee.lname,
- )
- dfs_employee = self.df_sqlglot_employee.alias("dfs_employee").select(
- self.df_sqlglot_employee["employee_id"],
- SF.col("dfs_employee.fname"),
- self.df_sqlglot_employee.lname,
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_case_when_otherwise(self):
- df = self.df_spark_employee.select(
- F.when(
- (F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)),
- F.lit("between 40 and 60"),
- )
- .when(F.col("age") < F.lit(40), "less than 40")
- .otherwise("greater than 60")
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(
- (SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)),
- SF.lit("between 40 and 60"),
- )
- .when(SF.col("age") < SF.lit(40), "less than 40")
- .otherwise("greater than 60")
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_case_when_no_otherwise(self):
- df = self.df_spark_employee.select(
- F.when(
- (F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)),
- F.lit("between 40 and 60"),
- ).when(F.col("age") < F.lit(40), "less than 40")
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(
- (SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)),
- SF.lit("between 40 and 60"),
- ).when(SF.col("age") < SF.lit(40), "less than 40")
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_where_clause_single(self):
- df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37))
- dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_clause_multiple_and(self):
- df_employee = self.df_spark_employee.where(
- (F.col("age") == F.lit(37)) & (F.col("fname") == F.lit("Jack"))
- )
- dfs_employee = self.df_sqlglot_employee.where(
- (SF.col("age") == SF.lit(37)) & (SF.col("fname") == SF.lit("Jack"))
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_many_and(self):
- df_employee = self.df_spark_employee.where(
- (F.col("age") == F.lit(37))
- & (F.col("fname") == F.lit("Jack"))
- & (F.col("lname") == F.lit("Shephard"))
- & (F.col("employee_id") == F.lit(1))
- )
- dfs_employee = self.df_sqlglot_employee.where(
- (SF.col("age") == SF.lit(37))
- & (SF.col("fname") == SF.lit("Jack"))
- & (SF.col("lname") == SF.lit("Shephard"))
- & (SF.col("employee_id") == SF.lit(1))
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_clause_multiple_or(self):
- df_employee = self.df_spark_employee.where(
- (F.col("age") == F.lit(37)) | (F.col("fname") == F.lit("Kate"))
- )
- dfs_employee = self.df_sqlglot_employee.where(
- (SF.col("age") == SF.lit(37)) | (SF.col("fname") == SF.lit("Kate"))
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_many_or(self):
- df_employee = self.df_spark_employee.where(
- (F.col("age") == F.lit(37))
- | (F.col("fname") == F.lit("Kate"))
- | (F.col("lname") == F.lit("Littleton"))
- | (F.col("employee_id") == F.lit(2))
- )
- dfs_employee = self.df_sqlglot_employee.where(
- (SF.col("age") == SF.lit(37))
- | (SF.col("fname") == SF.lit("Kate"))
- | (SF.col("lname") == SF.lit("Littleton"))
- | (SF.col("employee_id") == SF.lit(2))
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_mixed_and_or(self):
- df_employee = self.df_spark_employee.where(
- ((F.col("age") == F.lit(65)) & (F.col("fname") == F.lit("John")))
- | ((F.col("lname") == F.lit("Shephard")) & (F.col("age") == F.lit(37)))
- )
- dfs_employee = self.df_sqlglot_employee.where(
- ((SF.col("age") == SF.lit(65)) & (SF.col("fname") == SF.lit("John")))
- | ((SF.col("lname") == SF.lit("Shephard")) & (SF.col("age") == SF.lit(37)))
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_where_multiple_chained(self):
- df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37)).where(
- self.df_spark_employee.fname == F.lit("Jack")
- )
- dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37)).where(
- self.df_sqlglot_employee.fname == SF.lit("Jack")
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_operators(self):
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] < F.lit(50))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] < SF.lit(50))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] <= F.lit(37))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] <= SF.lit(37))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] > F.lit(50))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] > SF.lit(50))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] >= F.lit(37))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] >= SF.lit(37))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] != F.lit(50))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] != SF.lit(50))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] == F.lit(37))
- dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] == SF.lit(37))
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(
- self.df_spark_employee["age"] % F.lit(5) == F.lit(0)
- )
- dfs_employee = self.df_sqlglot_employee.where(
- self.df_sqlglot_employee["age"] % SF.lit(5) == SF.lit(0)
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(
- self.df_spark_employee["age"] + F.lit(5) > F.lit(28)
- )
- dfs_employee = self.df_sqlglot_employee.where(
- self.df_sqlglot_employee["age"] + SF.lit(5) > SF.lit(28)
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(
- self.df_spark_employee["age"] - F.lit(5) > F.lit(28)
- )
- dfs_employee = self.df_sqlglot_employee.where(
- self.df_sqlglot_employee["age"] - SF.lit(5) > SF.lit(28)
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- df_employee = self.df_spark_employee.where(
- self.df_spark_employee["age"] * F.lit(0.5) == self.df_spark_employee["age"] / F.lit(2)
- )
- dfs_employee = self.df_sqlglot_employee.where(
- self.df_sqlglot_employee["age"] * SF.lit(0.5)
- == self.df_sqlglot_employee["age"] / SF.lit(2)
- )
- self.compare_spark_with_sqlglot(df_employee, dfs_employee)
-
- def test_join_inner(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store, on=["store_id"], how="inner"
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- F.col("store_id"),
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store, on=["store_id"], how="inner"
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- SF.col("store_id"),
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_inner_no_select(self):
- df_joined = self.df_spark_employee.select(
- F.col("store_id"), F.col("fname"), F.col("lname")
- ).join(
- self.df_spark_store.select(F.col("store_id"), F.col("store_name")),
- on=["store_id"],
- how="inner",
- )
- dfs_joined = self.df_sqlglot_employee.select(
- SF.col("store_id"), SF.col("fname"), SF.col("lname")
- ).join(
- self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")),
- on=["store_id"],
- how="inner",
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_inner_equality_single(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store,
- on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- F.lit("literal_value"),
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store,
- on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- SF.lit("literal_value"),
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_inner_equality_multiple(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store,
- on=[
- self.df_spark_employee.store_id == self.df_spark_store.store_id,
- self.df_spark_employee.age == self.df_spark_store.num_sales,
- ],
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store,
- on=[
- self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
- self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales,
- ],
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_inner_equality_multiple_bitwise_and(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store,
- on=(self.df_spark_store.store_id == self.df_spark_employee.store_id)
- & (self.df_spark_store.num_sales == self.df_spark_employee.age),
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store,
- on=(self.df_sqlglot_store.store_id == self.df_sqlglot_employee.store_id)
- & (self.df_sqlglot_store.num_sales == self.df_sqlglot_employee.age),
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_left_outer(self):
- df_joined = (
- self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="left_outer")
- .select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- F.col("store_id"),
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- .orderBy(F.col("employee_id"))
- )
- dfs_joined = (
- self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="left_outer")
- .select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- SF.col("store_id"),
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- .orderBy(SF.col("employee_id"))
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_join_full_outer(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store, on=["store_id"], how="full_outer"
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- F.col("store_id"),
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store, on=["store_id"], how="full_outer"
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- SF.col("store_id"),
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_triple_join(self):
- df = (
- self.df_employee.join(
- self.df_store, on=self.df_employee.employee_id == self.df_store.store_id
- )
- .join(self.df_district, on=self.df_store.store_id == self.df_district.district_id)
- .select(
- self.df_employee.employee_id,
- self.df_store.store_id,
- self.df_district.district_id,
- self.df_employee.fname,
- self.df_store.store_name,
- self.df_district.district_name,
- )
- )
- dfs = (
- self.dfs_employee.join(
- self.dfs_store, on=self.dfs_employee.employee_id == self.dfs_store.store_id
- )
- .join(self.dfs_district, on=self.dfs_store.store_id == self.dfs_district.district_id)
- .select(
- self.dfs_employee.employee_id,
- self.dfs_store.store_id,
- self.dfs_district.district_id,
- self.dfs_employee.fname,
- self.dfs_store.store_name,
- self.dfs_district.district_name,
- )
- )
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_triple_join_no_select(self):
- df = (
- self.df_employee.join(
- self.df_store,
- on=self.df_employee["employee_id"] == self.df_store["store_id"],
- how="left",
- )
- .join(
- self.df_district,
- on=self.df_store["store_id"] == self.df_district["district_id"],
- how="left",
- )
- .orderBy(F.col("employee_id"))
- )
- dfs = (
- self.dfs_employee.join(
- self.dfs_store,
- on=self.dfs_employee["employee_id"] == self.dfs_store["store_id"],
- how="left",
- )
- .join(
- self.dfs_district,
- on=self.dfs_store["store_id"] == self.dfs_district["district_id"],
- how="left",
- )
- .orderBy(SF.col("employee_id"))
- )
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_triple_joins_filter(self):
- df = (
- self.df_employee.join(
- self.df_store,
- on=self.df_employee["employee_id"] == self.df_store["store_id"],
- how="left",
- ).join(
- self.df_district,
- on=self.df_store["store_id"] == self.df_district["district_id"],
- how="left",
- )
- ).filter(F.coalesce(self.df_store["num_sales"], F.lit(0)) > 100)
- dfs = (
- self.dfs_employee.join(
- self.dfs_store,
- on=self.dfs_employee["employee_id"] == self.dfs_store["store_id"],
- how="left",
- ).join(
- self.dfs_district,
- on=self.dfs_store["store_id"] == self.dfs_district["district_id"],
- how="left",
- )
- ).filter(SF.coalesce(self.dfs_store["num_sales"], SF.lit(0)) > 100)
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_triple_join_column_name_only(self):
- df = (
- self.df_employee.join(
- self.df_store,
- on=self.df_employee["employee_id"] == self.df_store["store_id"],
- how="left",
- )
- .join(self.df_district, on="district_id", how="left")
- .orderBy(F.col("employee_id"))
- )
- dfs = (
- self.dfs_employee.join(
- self.dfs_store,
- on=self.dfs_employee["employee_id"] == self.dfs_store["store_id"],
- how="left",
- )
- .join(self.dfs_district, on="district_id", how="left")
- .orderBy(SF.col("employee_id"))
- )
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_join_select_and_select_start(self):
- df = self.df_spark_employee.select(
- F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")
- ).join(self.df_spark_store, "store_id", "inner")
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")
- ).join(self.df_sqlglot_store, "store_id", "inner")
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_branching_root_dataframes(self):
- """
- Test a pattern that has non-intuitive behavior in spark
-
- Scenario: You do a self-join in a dataframe using an original dataframe and then a modified version
- of it. You then reference the columns by the dataframe name instead of the column function.
- Spark will use the root dataframe's column in the result.
- """
- df_hydra_employees_only = self.df_spark_employee.where(F.col("store_id") == F.lit(1))
- df_joined = (
- self.df_spark_employee.where(F.col("store_id") == F.lit(2))
- .alias("df_arrow_employees_only")
- .join(
- df_hydra_employees_only.alias("df_hydra_employees_only"),
- on=["store_id"],
- how="full_outer",
- )
- .select(
- self.df_spark_employee.fname,
- F.col("df_arrow_employees_only.fname"),
- df_hydra_employees_only.fname,
- F.col("df_hydra_employees_only.fname"),
- )
- )
-
- dfs_hydra_employees_only = self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(1))
- dfs_joined = (
- self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(2))
- .alias("dfs_arrow_employees_only")
- .join(
- dfs_hydra_employees_only.alias("dfs_hydra_employees_only"),
- on=["store_id"],
- how="full_outer",
- )
- .select(
- self.df_sqlglot_employee.fname,
- SF.col("dfs_arrow_employees_only.fname"),
- dfs_hydra_employees_only.fname,
- SF.col("dfs_hydra_employees_only.fname"),
- )
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_basic_union(self):
- df_unioned = self.df_spark_employee.select(F.col("employee_id"), F.col("age")).union(
- self.df_spark_store.select(F.col("store_id"), F.col("num_sales"))
- )
-
- dfs_unioned = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")).union(
- self.df_sqlglot_store.select(SF.col("store_id"), SF.col("num_sales"))
- )
- self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
-
- def test_union_with_join(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store,
- on="store_id",
- how="inner",
- )
- df_unioned = df_joined.select(F.col("store_id"), F.col("store_name")).union(
- self.df_spark_district.select(F.col("district_id"), F.col("district_name"))
- )
-
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store,
- on="store_id",
- how="inner",
- )
- dfs_unioned = dfs_joined.select(SF.col("store_id"), SF.col("store_name")).union(
- self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))
- )
-
- self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
-
- def test_double_union_all(self):
- df_unioned = (
- self.df_spark_employee.select(F.col("employee_id"), F.col("fname"))
- .unionAll(self.df_spark_store.select(F.col("store_id"), F.col("store_name")))
- .unionAll(self.df_spark_district.select(F.col("district_id"), F.col("district_name")))
- )
-
- dfs_unioned = (
- self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname"))
- .unionAll(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")))
- .unionAll(
- self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))
- )
- )
-
- self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
-
- def test_union_by_name(self):
- df = self.df_spark_employee.select(
- F.col("employee_id"), F.col("fname"), F.col("lname")
- ).unionByName(
- self.df_spark_store.select(
- F.col("store_name").alias("lname"),
- F.col("store_id").alias("employee_id"),
- F.col("store_name").alias("fname"),
- )
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("employee_id"), SF.col("fname"), SF.col("lname")
- ).unionByName(
- self.df_sqlglot_store.select(
- SF.col("store_name").alias("lname"),
- SF.col("store_id").alias("employee_id"),
- SF.col("store_name").alias("fname"),
- )
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_union_by_name_allow_missing(self):
- df = self.df_spark_employee.select(
- F.col("age"), F.col("employee_id"), F.col("fname"), F.col("lname")
- ).unionByName(
- self.df_spark_store.select(
- F.col("store_name").alias("lname"),
- F.col("store_id").alias("employee_id"),
- F.col("store_name").alias("fname"),
- F.col("num_sales"),
- ),
- allowMissingColumns=True,
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("age"), SF.col("employee_id"), SF.col("fname"), SF.col("lname")
- ).unionByName(
- self.df_sqlglot_store.select(
- SF.col("store_name").alias("lname"),
- SF.col("store_id").alias("employee_id"),
- SF.col("store_name").alias("fname"),
- SF.col("num_sales"),
- ),
- allowMissingColumns=True,
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_order_by_default(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales"))
- .orderBy(F.col("district_id"))
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales"))
- .orderBy(SF.col("district_id"))
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_order_by_array_bool(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales").alias("total_sales"))
- .orderBy(F.col("total_sales"), F.col("district_id"), ascending=[1, 0])
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales").alias("total_sales"))
- .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=[1, 0])
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_order_by_single_bool(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales").alias("total_sales"))
- .orderBy(F.col("total_sales"), F.col("district_id"), ascending=False)
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales").alias("total_sales"))
- .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=False)
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_order_by_column_sort_method(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales").alias("total_sales"))
- .orderBy(F.col("total_sales").asc(), F.col("district_id").desc())
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales").alias("total_sales"))
- .orderBy(SF.col("total_sales").asc(), SF.col("district_id").desc())
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_order_by_column_sort_method_nulls_last(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales").alias("total_sales"))
- .orderBy(
- F.when(F.col("district_id") == F.lit(2), F.col("district_id")).asc_nulls_last()
- )
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales").alias("total_sales"))
- .orderBy(
- SF.when(SF.col("district_id") == SF.lit(2), SF.col("district_id")).asc_nulls_last()
- )
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_order_by_column_sort_method_nulls_first(self):
- df = (
- self.df_spark_store.groupBy(F.col("district_id"))
- .agg(F.min("num_sales").alias("total_sales"))
- .orderBy(
- F.when(F.col("district_id") == F.lit(1), F.col("district_id")).desc_nulls_first()
- )
- )
-
- dfs = (
- self.df_sqlglot_store.groupBy(SF.col("district_id"))
- .agg(SF.min("num_sales").alias("total_sales"))
- .orderBy(
- SF.when(
- SF.col("district_id") == SF.lit(1), SF.col("district_id")
- ).desc_nulls_first()
- )
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_intersect(self):
- df_employee_duplicate = self.df_spark_employee.select(
- F.col("employee_id"), F.col("store_id")
- ).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
-
- df_store_duplicate = self.df_spark_store.select(
- F.col("store_id"), F.col("district_id")
- ).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
-
- df = df_employee_duplicate.intersect(df_store_duplicate)
-
- dfs_employee_duplicate = self.df_sqlglot_employee.select(
- SF.col("employee_id"), SF.col("store_id")
- ).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
-
- dfs_store_duplicate = self.df_sqlglot_store.select(
- SF.col("store_id"), SF.col("district_id")
- ).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
-
- dfs = dfs_employee_duplicate.intersect(dfs_store_duplicate)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_intersect_all(self):
- df_employee_duplicate = self.df_spark_employee.select(
- F.col("employee_id"), F.col("store_id")
- ).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
-
- df_store_duplicate = self.df_spark_store.select(
- F.col("store_id"), F.col("district_id")
- ).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
-
- df = df_employee_duplicate.intersectAll(df_store_duplicate)
-
- dfs_employee_duplicate = self.df_sqlglot_employee.select(
- SF.col("employee_id"), SF.col("store_id")
- ).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
-
- dfs_store_duplicate = self.df_sqlglot_store.select(
- SF.col("store_id"), SF.col("district_id")
- ).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
-
- dfs = dfs_employee_duplicate.intersectAll(dfs_store_duplicate)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_except_all(self):
- df_employee_duplicate = self.df_spark_employee.select(
- F.col("employee_id"), F.col("store_id")
- ).union(self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")))
-
- df_store_duplicate = self.df_spark_store.select(
- F.col("store_id"), F.col("district_id")
- ).union(self.df_spark_store.select(F.col("store_id"), F.col("district_id")))
-
- df = df_employee_duplicate.exceptAll(df_store_duplicate)
-
- dfs_employee_duplicate = self.df_sqlglot_employee.select(
- SF.col("employee_id"), SF.col("store_id")
- ).union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")))
-
- dfs_store_duplicate = self.df_sqlglot_store.select(
- SF.col("store_id"), SF.col("district_id")
- ).union(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")))
-
- dfs = dfs_employee_duplicate.exceptAll(dfs_store_duplicate)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_distinct(self):
- df = self.df_spark_employee.select(F.col("age")).distinct()
-
- dfs = self.df_sqlglot_employee.select(SF.col("age")).distinct()
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_union_distinct(self):
- df_unioned = (
- self.df_spark_employee.select(F.col("employee_id"), F.col("age"))
- .union(self.df_spark_employee.select(F.col("employee_id"), F.col("age")))
- .distinct()
- )
-
- dfs_unioned = (
- self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age"))
- .union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")))
- .distinct()
- )
- self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
-
- def test_drop_duplicates_no_subset(self):
- df = self.df_spark_employee.select("age").dropDuplicates()
- dfs = self.df_sqlglot_employee.select("age").dropDuplicates()
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_drop_duplicates_subset(self):
- df = self.df_spark_employee.dropDuplicates(["age"])
- dfs = self.df_sqlglot_employee.dropDuplicates(["age"])
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_drop_na_default(self):
- df = self.df_spark_employee.select(
- F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).dropna()
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
- ).dropna()
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_dropna_how(self):
- df = self.df_spark_employee.select(
- F.lit(None), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).dropna(how="all")
-
- dfs = self.df_sqlglot_employee.select(
- SF.lit(None), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
- ).dropna(how="all")
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_dropna_thresh(self):
- df = self.df_spark_employee.select(
- F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).dropna(how="any", thresh=2)
-
- dfs = self.df_sqlglot_employee.select(
- SF.lit(None),
- SF.lit(1),
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
- ).dropna(how="any", thresh=2)
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_dropna_subset(self):
- df = self.df_spark_employee.select(
- F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).dropna(thresh=1, subset="the_age")
-
- dfs = self.df_sqlglot_employee.select(
- SF.lit(None),
- SF.lit(1),
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
- ).dropna(thresh=1, subset="the_age")
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_dropna_na_function(self):
- df = self.df_spark_employee.select(
- F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).na.drop()
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
- ).na.drop()
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_fillna_default(self):
- df = self.df_spark_employee.select(
- F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).fillna(100)
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
- ).fillna(100)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_fillna_dict_replacement(self):
- df = self.df_spark_employee.select(
- F.col("fname"),
- F.when(F.col("lname").startswith("L"), F.col("lname")).alias("l_lname"),
- F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age"),
- ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("fname"),
- SF.when(SF.col("lname").startswith("L"), SF.col("lname")).alias("l_lname"),
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
- ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
-
- # For some reason the sqlglot results sets a column as nullable when it doesn't need to
- # This seems to be a nuance in how spark dataframe from sql works so we can ignore
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_fillna_na_func(self):
- df = self.df_spark_employee.select(
- F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
- ).na.fill(100)
-
- dfs = self.df_sqlglot_employee.select(
- SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
- ).na.fill(100)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_replace_basic(self):
- df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
- to_replace=37, value=100
- )
-
- dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
- to_replace=37, value=100
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_replace_basic_subset(self):
- df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
- to_replace=37, value=100, subset="age"
- )
-
- dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
- to_replace=37, value=100, subset="age"
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_replace_mapping(self):
- df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
- {37: 100}
- )
-
- dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
- {37: 100}
- )
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_replace_mapping_subset(self):
- df = self.df_spark_employee.select(
- F.col("age"), F.lit(37).alias("test_col"), F.lit(50).alias("test_col_2")
- ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("age"), SF.lit(37).alias("test_col"), SF.lit(50).alias("test_col_2")
- ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_replace_na_func_basic(self):
- df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).na.replace(
- to_replace=37, value=100
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("age"), SF.lit(37).alias("test_col")
- ).na.replace(to_replace=37, value=100)
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_with_column(self):
- df = self.df_spark_employee.withColumn("test", F.col("age"))
-
- dfs = self.df_sqlglot_employee.withColumn("test", SF.col("age"))
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_with_column_existing_name(self):
- df = self.df_spark_employee.withColumn("fname", F.lit("blah"))
-
- dfs = self.df_sqlglot_employee.withColumn("fname", SF.lit("blah"))
-
- self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
-
- def test_with_column_renamed(self):
- df = self.df_spark_employee.withColumnRenamed("fname", "first_name")
-
- dfs = self.df_sqlglot_employee.withColumnRenamed("fname", "first_name")
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_with_column_renamed_double(self):
- df = self.df_spark_employee.select(F.col("fname").alias("first_name")).withColumnRenamed(
- "first_name", "first_name_again"
- )
-
- dfs = self.df_sqlglot_employee.select(
- SF.col("fname").alias("first_name")
- ).withColumnRenamed("first_name", "first_name_again")
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_drop_column_single(self):
- df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age")).drop("age")
-
- dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age")).drop(
- "age"
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_drop_column_reference_join(self):
- df_spark_employee_cols = self.df_spark_employee.select(
- F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")
- )
- df_spark_store_cols = self.df_spark_store.select(F.col("store_id"), F.col("store_name"))
- df = df_spark_employee_cols.join(df_spark_store_cols, on="store_id", how="inner").drop(
- df_spark_employee_cols.age,
- )
-
- df_sqlglot_employee_cols = self.df_sqlglot_employee.select(
- SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")
- )
- df_sqlglot_store_cols = self.df_sqlglot_store.select(
- SF.col("store_id"), SF.col("store_name")
- )
- dfs = df_sqlglot_employee_cols.join(df_sqlglot_store_cols, on="store_id", how="inner").drop(
- df_sqlglot_employee_cols.age,
- )
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_limit(self):
- df = self.df_spark_employee.limit(1)
-
- dfs = self.df_sqlglot_employee.limit(1)
-
- self.compare_spark_with_sqlglot(df, dfs)
-
- def test_hint_broadcast_alias(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store.alias("store").hint("broadcast", "store"),
- on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store.alias("store").hint("broadcast", "store"),
- on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
-
- def test_hint_broadcast_no_alias(self):
- df_joined = self.df_spark_employee.join(
- self.df_spark_store.hint("broadcast"),
- on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- self.df_sqlglot_store.hint("broadcast"),
- on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
- self.assertEqual(
- "'UnresolvedHint BROADCAST, ['a2]", self.get_explain_plan(dfs).split("\n")[1]
- )
-
- def test_broadcast_func(self):
- df_joined = self.df_spark_employee.join(
- F.broadcast(self.df_spark_store),
- on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
- how="inner",
- ).select(
- self.df_spark_employee.employee_id,
- self.df_spark_employee["fname"],
- F.col("lname"),
- F.col("age"),
- self.df_spark_employee.store_id,
- self.df_spark_store.store_name,
- self.df_spark_store["num_sales"],
- )
- dfs_joined = self.df_sqlglot_employee.join(
- SF.broadcast(self.df_sqlglot_store),
- on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
- how="inner",
- ).select(
- self.df_sqlglot_employee.employee_id,
- self.df_sqlglot_employee["fname"],
- SF.col("lname"),
- SF.col("age"),
- self.df_sqlglot_employee.store_id,
- self.df_sqlglot_store.store_name,
- self.df_sqlglot_store["num_sales"],
- )
- df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
- self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
- self.assertEqual(
- "'UnresolvedHint BROADCAST, ['a2]", self.get_explain_plan(dfs).split("\n")[1]
- )
-
- def test_repartition_by_num(self):
- """
- The results are different when doing the repartition on a table created using VALUES in SQL.
- So I just use the views instead for these tests
- """
- df = self.df_spark_employee.repartition(63)
-
- dfs = self.sqlglot.read.table("employee").repartition(63)
- df, dfs = self.compare_spark_with_sqlglot(df, dfs)
- spark_num_partitions = df.rdd.getNumPartitions()
- sqlglot_num_partitions = dfs.rdd.getNumPartitions()
- self.assertEqual(spark_num_partitions, 63)
- self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
-
- def test_repartition_name_only(self):
- """
- We use the view here to help ensure the explain plans are similar enough to compare
- """
- df = self.df_spark_employee.repartition("age")
-
- dfs = self.sqlglot.read.table("employee").repartition("age")
- df, dfs = self.compare_spark_with_sqlglot(df, dfs)
- self.assertIn("RepartitionByExpression [age", self.get_explain_plan(df))
- self.assertIn("RepartitionByExpression [age", self.get_explain_plan(dfs))
-
- def test_repartition_num_and_multiple_names(self):
- """
- We use the view here to help ensure the explain plans are similar enough to compare
- """
- df = self.df_spark_employee.repartition(53, "age", "fname")
-
- dfs = self.sqlglot.read.table("employee").repartition(53, "age", "fname")
- df, dfs = self.compare_spark_with_sqlglot(df, dfs)
- spark_num_partitions = df.rdd.getNumPartitions()
- sqlglot_num_partitions = dfs.rdd.getNumPartitions()
- self.assertEqual(spark_num_partitions, 53)
- self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
- self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(df))
- self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(dfs))
-
- def test_coalesce(self):
- df = self.df_spark_employee.coalesce(1)
- dfs = self.df_sqlglot_employee.coalesce(1)
- df, dfs = self.compare_spark_with_sqlglot(df, dfs)
- spark_num_partitions = df.rdd.getNumPartitions()
- sqlglot_num_partitions = dfs.rdd.getNumPartitions()
- self.assertEqual(spark_num_partitions, 1)
- self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
-
- def test_cache_select(self):
- df_employee = (
- self.df_spark_employee.groupBy("store_id")
- .agg(F.countDistinct("employee_id").alias("num_employees"))
- .cache()
- )
- df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
- self.df_spark_store.store_id, df_employee.num_employees
- )
- dfs_employee = (
- self.df_sqlglot_employee.groupBy("store_id")
- .agg(SF.countDistinct("employee_id").alias("num_employees"))
- .cache()
- )
- dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
- self.df_sqlglot_store.store_id, dfs_employee.num_employees
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)
-
- def test_persist_select(self):
- df_employee = (
- self.df_spark_employee.groupBy("store_id")
- .agg(F.countDistinct("employee_id").alias("num_employees"))
- .persist()
- )
- df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
- self.df_spark_store.store_id, df_employee.num_employees
- )
- dfs_employee = (
- self.df_sqlglot_employee.groupBy("store_id")
- .agg(SF.countDistinct("employee_id").alias("num_employees"))
- .persist()
- )
- dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
- self.df_sqlglot_store.store_id, dfs_employee.num_employees
- )
- self.compare_spark_with_sqlglot(df_joined, dfs_joined)