summaryrefslogtreecommitdiffstats
path: root/sqlglot/optimizer/normalize.py
blob: 6bf877be3316321a1909b92cf3c780d1d75be345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import annotations

import logging

from sqlglot import exp
from sqlglot.errors import OptimizeError
from sqlglot.helper import while_changing
from sqlglot.optimizer.scope import find_all_in_scope
from sqlglot.optimizer.simplify import flatten, rewrite_between, uniq_sort

logger = logging.getLogger("sqlglot")


def normalize(expression: exp.Expression, dnf: bool = False, max_distance: int = 128):
    """
    Rewrite sqlglot AST into conjunctive normal form or disjunctive normal form.

    Example:
        >>> import sqlglot
        >>> expression = sqlglot.parse_one("(x AND y) OR z")
        >>> normalize(expression, dnf=False).sql()
        '(x OR z) AND (y OR z)'

    Args:
        expression: expression to normalize
        dnf: rewrite in disjunctive normal form instead.
        max_distance (int): the maximal estimated distance from cnf/dnf to attempt conversion
    Returns:
        sqlglot.Expression: normalized expression
    """
    for node, *_ in tuple(expression.walk(prune=lambda e, *_: isinstance(e, exp.Connector))):
        if isinstance(node, exp.Connector):
            if normalized(node, dnf=dnf):
                continue
            root = node is expression
            original = node.copy()

            node.transform(rewrite_between, copy=False)
            distance = normalization_distance(node, dnf=dnf)

            if distance > max_distance:
                logger.info(
                    f"Skipping normalization because distance {distance} exceeds max {max_distance}"
                )
                return expression

            try:
                node = node.replace(
                    while_changing(node, lambda e: distributive_law(e, dnf, max_distance))
                )
            except OptimizeError as e:
                logger.info(e)
                node.replace(original)
                if root:
                    return original
                return expression

            if root:
                expression = node

    return expression


def normalized(expression: exp.Expression, dnf: bool = False) -> bool:
    """
    Checks whether a given expression is in a normal form of interest.

    Example:
        >>> from sqlglot import parse_one
        >>> normalized(parse_one("(a AND b) OR c OR (d AND e)"), dnf=True)
        True
        >>> normalized(parse_one("(a OR b) AND c"))  # Checks CNF by default
        True
        >>> normalized(parse_one("a AND (b OR c)"), dnf=True)
        False

    Args:
        expression: The expression to check if it's normalized.
        dnf: Whether to check if the expression is in Disjunctive Normal Form (DNF).
            Default: False, i.e. we check if it's in Conjunctive Normal Form (CNF).
    """
    ancestor, root = (exp.And, exp.Or) if dnf else (exp.Or, exp.And)
    return not any(
        connector.find_ancestor(ancestor) for connector in find_all_in_scope(expression, root)
    )


def normalization_distance(expression: exp.Expression, dnf: bool = False) -> int:
    """
    The difference in the number of predicates between a given expression and its normalized form.

    This is used as an estimate of the cost of the conversion which is exponential in complexity.

    Example:
        >>> import sqlglot
        >>> expression = sqlglot.parse_one("(a AND b) OR (c AND d)")
        >>> normalization_distance(expression)
        4

    Args:
        expression: The expression to compute the normalization distance for.
        dnf: Whether to check if the expression is in Disjunctive Normal Form (DNF).
            Default: False, i.e. we check if it's in Conjunctive Normal Form (CNF).

    Returns:
        The normalization distance.
    """
    return sum(_predicate_lengths(expression, dnf)) - (
        sum(1 for _ in expression.find_all(exp.Connector)) + 1
    )


def _predicate_lengths(expression, dnf):
    """
    Returns a list of predicate lengths when expanded to normalized form.

    (A AND B) OR C -> [2, 2] because len(A OR C), len(B OR C).
    """
    expression = expression.unnest()

    if not isinstance(expression, exp.Connector):
        return (1,)

    left, right = expression.args.values()

    if isinstance(expression, exp.And if dnf else exp.Or):
        return tuple(
            a + b for a in _predicate_lengths(left, dnf) for b in _predicate_lengths(right, dnf)
        )
    return _predicate_lengths(left, dnf) + _predicate_lengths(right, dnf)


def distributive_law(expression, dnf, max_distance):
    """
    x OR (y AND z) -> (x OR y) AND (x OR z)
    (x AND y) OR (y AND z) -> (x OR y) AND (x OR z) AND (y OR y) AND (y OR z)
    """
    if normalized(expression, dnf=dnf):
        return expression

    distance = normalization_distance(expression, dnf=dnf)

    if distance > max_distance:
        raise OptimizeError(f"Normalization distance {distance} exceeds max {max_distance}")

    exp.replace_children(expression, lambda e: distributive_law(e, dnf, max_distance))
    to_exp, from_exp = (exp.Or, exp.And) if dnf else (exp.And, exp.Or)

    if isinstance(expression, from_exp):
        a, b = expression.unnest_operands()

        from_func = exp.and_ if from_exp == exp.And else exp.or_
        to_func = exp.and_ if to_exp == exp.And else exp.or_

        if isinstance(a, to_exp) and isinstance(b, to_exp):
            if len(tuple(a.find_all(exp.Connector))) > len(tuple(b.find_all(exp.Connector))):
                return _distribute(a, b, from_func, to_func)
            return _distribute(b, a, from_func, to_func)
        if isinstance(a, to_exp):
            return _distribute(b, a, from_func, to_func)
        if isinstance(b, to_exp):
            return _distribute(a, b, from_func, to_func)

    return expression


def _distribute(a, b, from_func, to_func):
    if isinstance(a, exp.Connector):
        exp.replace_children(
            a,
            lambda c: to_func(
                uniq_sort(flatten(from_func(c, b.left))),
                uniq_sort(flatten(from_func(c, b.right))),
                copy=False,
            ),
        )
    else:
        a = to_func(
            uniq_sort(flatten(from_func(a, b.left))),
            uniq_sort(flatten(from_func(a, b.right))),
            copy=False,
        )

    return a