diff options
Diffstat (limited to 'src/VBox/VMM/VMMR3/PGMPool.cpp')
-rw-r--r-- | src/VBox/VMM/VMMR3/PGMPool.cpp | 982 |
1 files changed, 982 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/PGMPool.cpp b/src/VBox/VMM/VMMR3/PGMPool.cpp new file mode 100644 index 00000000..8a759dee --- /dev/null +++ b/src/VBox/VMM/VMMR3/PGMPool.cpp @@ -0,0 +1,982 @@ +/* $Id: PGMPool.cpp $ */ +/** @file + * PGM Shadow Page Pool. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + +/** @page pg_pgm_pool PGM Shadow Page Pool + * + * Motivations: + * -# Relationship between shadow page tables and physical guest pages. This + * should allow us to skip most of the global flushes now following access + * handler changes. The main expense is flushing shadow pages. + * -# Limit the pool size if necessary (default is kind of limitless). + * -# Allocate shadow pages from RC. We use to only do this in SyncCR3. + * -# Required for 64-bit guests. + * -# Combining the PD cache and page pool in order to simplify caching. + * + * + * @section sec_pgm_pool_outline Design Outline + * + * The shadow page pool tracks pages used for shadowing paging structures (i.e. + * page tables, page directory, page directory pointer table and page map + * level-4). Each page in the pool has an unique identifier. This identifier is + * used to link a guest physical page to a shadow PT. The identifier is a + * non-zero value and has a relativly low max value - say 14 bits. This makes it + * possible to fit it into the upper bits of the of the aHCPhys entries in the + * ram range. + * + * By restricting host physical memory to the first 48 bits (which is the + * announced physical memory range of the K8L chip (scheduled for 2008)), we + * can safely use the upper 16 bits for shadow page ID and reference counting. + * + * Update: The 48 bit assumption will be lifted with the new physical memory + * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB + * into a box in some years. + * + * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT + * or PD. This is solved by creating a list of physical cross reference extents + * when ever this happens. Each node in the list (extent) is can contain 3 page + * pool indexes. The list it self is chained using indexes into the paPhysExt + * array. + * + * + * @section sec_pgm_pool_life Life Cycle of a Shadow Page + * + * -# The SyncPT function requests a page from the pool. + * The request includes the kind of page it is (PT/PD, PAE/legacy), the + * address of the page it's shadowing, and more. + * -# The pool responds to the request by allocating a new page. + * When the cache is enabled, it will first check if it's in the cache. + * Should the pool be exhausted, one of two things can be done: + * -# Flush the whole pool and current CR3. + * -# Use the cache to find a page which can be flushed (~age). + * -# The SyncPT function will sync one or more pages and insert it into the + * shadow PD. + * -# The SyncPage function may sync more pages on a later \#PFs. + * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases. + * When caching is enabled, the page isn't flush but remains in the cache. + * + * + * @section sec_pgm_pool_monitoring Monitoring + * + * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow + * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages + * sharing the monitor get linked using the iMonitoredNext/Prev. The head page + * is the pvUser to the access handlers. + * + * + * @section sec_pgm_pool_impl Implementation + * + * The pool will take pages from the MM page pool. The tracking data + * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The + * pool content can be accessed both by using the page id and the physical + * address (HC). The former is managed by means of an array, the latter by an + * offset based AVL tree. + * + * Flushing of a pool page means that we iterate the content (we know what kind + * it is) and updates the link information in the ram range. + * + * ... + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_PGM_POOL +#include <VBox/vmm/pgm.h> +#include <VBox/vmm/mm.h> +#include "PGMInternal.h" +#include <VBox/vmm/vm.h> +#include <VBox/vmm/uvm.h> +#include "PGMInline.h" + +#include <VBox/log.h> +#include <VBox/err.h> +#include <iprt/asm.h> +#include <iprt/string.h> +#include <VBox/dbg.h> + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +#ifdef VBOX_WITH_DEBUGGER +static FNDBGCCMD pgmR3PoolCmdCheck; +#endif + +#ifdef VBOX_WITH_DEBUGGER +/** Command descriptors. */ +static const DBGCCMD g_aCmds[] = +{ + /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ + { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." }, +}; +#endif + +/** + * Initializes the pool + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +int pgmR3PoolInit(PVM pVM) +{ + int rc; + + AssertCompile(NIL_PGMPOOL_IDX == 0); + /* pPage->cLocked is an unsigned byte. */ + AssertCompile(VMM_MAX_CPU_COUNT <= 255); + + /* + * Query Pool config. + */ + PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool"); + + /* Default pgm pool size is 1024 pages (4MB). */ + uint16_t cMaxPages = 1024; + + /* Adjust it up relative to the RAM size, using the nested paging formula. */ + uint64_t cbRam; + rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc); + uint64_t u64MaxPages = (cbRam >> 9) + + (cbRam >> 18) + + (cbRam >> 27) + + 32 * PAGE_SIZE; + u64MaxPages >>= PAGE_SHIFT; + if (u64MaxPages > PGMPOOL_IDX_LAST) + cMaxPages = PGMPOOL_IDX_LAST; + else + cMaxPages = (uint16_t)u64MaxPages; + + /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)} + * The max size of the shadow page pool in pages. The pool will grow dynamically + * up to this limit. + */ + rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages); + AssertLogRelRCReturn(rc, rc); + AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16), + ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER); + cMaxPages = RT_ALIGN(cMaxPages, 16); + if (cMaxPages > PGMPOOL_IDX_LAST) + cMaxPages = PGMPOOL_IDX_LAST; + LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages)); + + /** @todo + * We need to be much more careful with our allocation strategy here. + * For nested paging we don't need pool user info nor extents at all, but + * we can't check for nested paging here (too early during init to get a + * confirmation it can be used). The default for large memory configs is a + * bit large for shadow paging, so I've restricted the extent maximum to 8k + * (8k * 16 = 128k of hyper heap). + * + * Also when large page support is enabled, we typically don't need so much, + * although that depends on the availability of 2 MB chunks on the host. + */ + + /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2} + * The max number of shadow page user tracking records. Each shadow page has + * zero of other shadow pages (or CR3s) that references it, or uses it if you + * like. The structures describing these relationships are allocated from a + * fixed sized pool. This configuration variable defines the pool size. + */ + uint16_t cMaxUsers; + rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2); + AssertLogRelRCReturn(rc, rc); + AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K, + ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER); + + /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)} + * The max number of extents for tracking aliased guest pages. + */ + uint16_t cMaxPhysExts; + rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, + RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */)); + AssertLogRelRCReturn(rc, rc); + AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST, + ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER); + + /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true} + * Enables or disabling caching of shadow pages. Caching means that we will try + * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or + * SyncPage requests one. When reusing a shadow page, we can save time + * reconstructing it and it's children. + */ + bool fCacheEnabled; + rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true); + AssertLogRelRCReturn(rc, rc); + + LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n", + cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled)); + + /* + * Allocate the data structures. + */ + uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]); + cb += cMaxUsers * sizeof(PGMPOOLUSER); + cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT); + PPGMPOOL pPool; + rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool); + if (RT_FAILURE(rc)) + return rc; + pVM->pgm.s.pPoolR3 = pPool; + pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool); + pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool); + + /* + * Initialize it. + */ + pPool->pVMR3 = pVM; + pPool->pVMR0 = pVM->pVMR0; + pPool->pVMRC = pVM->pVMRC; + pPool->cMaxPages = cMaxPages; + pPool->cCurPages = PGMPOOL_IDX_FIRST; + pPool->iUserFreeHead = 0; + pPool->cMaxUsers = cMaxUsers; + PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages]; + pPool->paUsersR3 = paUsers; + pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers); + pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers); + for (unsigned i = 0; i < cMaxUsers; i++) + { + paUsers[i].iNext = i + 1; + paUsers[i].iUser = NIL_PGMPOOL_IDX; + paUsers[i].iUserTable = 0xfffffffe; + } + paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; + pPool->iPhysExtFreeHead = 0; + pPool->cMaxPhysExts = cMaxPhysExts; + PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers]; + pPool->paPhysExtsR3 = paPhysExts; + pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts); + pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts); + for (unsigned i = 0; i < cMaxPhysExts; i++) + { + paPhysExts[i].iNext = i + 1; + paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) + pPool->aiHash[i] = NIL_PGMPOOL_IDX; + pPool->iAgeHead = NIL_PGMPOOL_IDX; + pPool->iAgeTail = NIL_PGMPOOL_IDX; + pPool->fCacheEnabled = fCacheEnabled; + + pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE; + rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, + pgmPoolAccessHandler, + NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler", + NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler", + "Guest Paging Access Handler", + &pPool->hAccessHandlerType); + AssertLogRelRCReturn(rc, rc); + + pPool->HCPhysTree = 0; + + /* + * The NIL entry. + */ + Assert(NIL_PGMPOOL_IDX == 0); + pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID; + pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS; + pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS; + pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX; + /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */ + pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0; + pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX; + pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX; + pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX; + + Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX); + Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS); + Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal); + Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored); + Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached); + Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed); + Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending); + +#ifdef VBOX_WITH_STATISTICS + /* + * Register statistics. + */ + STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size."); + STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size."); + STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use."); + STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages."); + STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc."); + STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll."); + STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset."); + STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage."); + STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree."); + STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage()."); + STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage()."); + STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages."); + STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc."); + STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records."); + STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries."); + STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref."); + STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT."); + STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs."); + STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow."); + STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries."); + STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries."); + STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records."); + STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages."); + STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches."); + STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls."); + + STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler."); + STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); + STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler."); + STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit."); + STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often."); + STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); + STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD)."); + STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction."); + STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing."); + STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); + STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); + + STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler."); + STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6."); + STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7."); + + STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); + STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); + STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); + STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); + + STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler."); + STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3)."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3."); + STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3."); + + STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); + STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); + STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); + STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); + + STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value."); + STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages."); + STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page)."); + STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage."); + STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management."); + STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow."); + STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache."); + STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache."); + STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)"); + STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page."); + STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations."); + STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations."); +#endif /* VBOX_WITH_STATISTICS */ + +#ifdef VBOX_WITH_DEBUGGER + /* + * Debugger commands. + */ + static bool s_fRegisteredCmds = false; + if (!s_fRegisteredCmds) + { + rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds)); + if (RT_SUCCESS(rc)) + s_fRegisteredCmds = true; + } +#endif + + return VINF_SUCCESS; +} + + +/** + * Relocate the page pool data. + * + * @param pVM The cross context VM structure. + */ +void pgmR3PoolRelocate(PVM pVM) +{ + pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3); + pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC; + pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3); + pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3); +} + + +/** + * Grows the shadow page pool. + * + * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet. + * + * @returns VBox status code. + * @param pVM The cross context VM structure. + */ +VMMR3DECL(int) PGMR3PoolGrow(PVM pVM) +{ + PPGMPOOL pPool = pVM->pgm.s.pPoolR3; + AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY); + + /* With 32-bit guests and no EPT, the CR3 limits the root pages to low + (below 4 GB) memory. */ + /** @todo change the pool to handle ROOT page allocations specially when + * required. */ + bool fCanUseHighMemory = HMIsNestedPagingActive(pVM) + && HMIsVmxActive(pVM); + + pgmLock(pVM); + + /* + * How much to grow it by? + */ + uint32_t cPages = pPool->cMaxPages - pPool->cCurPages; + cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages); + LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory)); + + for (unsigned i = pPool->cCurPages; cPages-- > 0; i++) + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + + if (fCanUseHighMemory) + pPage->pvPageR3 = MMR3PageAlloc(pVM); + else + pPage->pvPageR3 = MMR3PageAllocLow(pVM); + if (!pPage->pvPageR3) + { + Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory)); + pgmUnlock(pVM); + return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY; + } + pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3); + AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory); + pPage->GCPhys = NIL_RTGCPHYS; + pPage->enmKind = PGMPOOLKIND_FREE; + pPage->idx = pPage - &pPool->aPages[0]; + LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key)); + pPage->iNext = pPool->iFreeHead; + pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->iMonitoredNext = NIL_PGMPOOL_IDX; + pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; + pPage->iAgeNext = NIL_PGMPOOL_IDX; + pPage->iAgePrev = NIL_PGMPOOL_IDX; + /* commit it */ + bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc); + pPool->iFreeHead = i; + pPool->cCurPages = i + 1; + } + + pgmUnlock(pVM); + Assert(pPool->cCurPages <= pPool->cMaxPages); + return VINF_SUCCESS; +} + + +/** + * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages + * and all modification counters. + * + * This is only called on one of the EMTs while the other ones are waiting for + * it to complete this function. + * + * @returns VINF_SUCCESS (VBox strict status code). + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. + * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well. + * (This is the pvUser, so it has to be void *.) + * + */ +DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + STAM_PROFILE_START(&pPool->StatClearAll, c); + NOREF(pVCpu); + + pgmLock(pVM); + Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb)); + + /* + * Iterate all the pages until we've encountered all that are in use. + * This is a simple but not quite optimal solution. + */ + unsigned cModifiedPages = 0; NOREF(cModifiedPages); + unsigned cLeft = pPool->cUsedPages; + uint32_t iPage = pPool->cCurPages; + while (--iPage >= PGMPOOL_IDX_FIRST) + { + PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; + if (pPage->GCPhys != NIL_RTGCPHYS) + { + switch (pPage->enmKind) + { + /* + * We only care about shadow page tables that reference physical memory + */ +#ifdef PGM_WITH_LARGE_PAGES + case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ + if (pPage->cPresent) + { + PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); + for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) + { + if ( pShwPD->a[i].n.u1Present + && pShwPD->a[i].b.u1Size) + { + Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)); + pShwPD->a[i].u = 0; + Assert(pPage->cPresent); + pPage->cPresent--; + } + } + if (pPage->cPresent == 0) + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + } + goto default_case; + + case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ + if (pPage->cPresent) + { + PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); + for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) + { + Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); + if ( pShwPD->a[i].n.u1Present + && pShwPD->a[i].b.u1Size) + { + Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)); + pShwPD->a[i].u = 0; + Assert(pPage->cPresent); + pPage->cPresent--; + } + } + if (pPage->cPresent == 0) + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + } + goto default_case; +#endif /* PGM_WITH_LARGE_PAGES */ + + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + { + if (pPage->cPresent) + { + void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); + STAM_PROFILE_START(&pPool->StatZeroPage, z); +#if 0 + /* Useful check for leaking references; *very* expensive though. */ + switch (pPage->enmKind) + { + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + { + bool fFoundFirst = false; + PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw; + for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++) + { + if (pPT->a[ptIndex].u) + { + if (!fFoundFirst) + { + AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); + if (pPage->iFirstPresent != ptIndex) + Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); + fFoundFirst = true; + } + if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex])) + { + pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS); + if (pPage->iFirstPresent == ptIndex) + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + } + } + } + AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys)); + break; + } + default: + break; + } +#endif + ASMMemZeroPage(pvShw); + STAM_PROFILE_STOP(&pPool->StatZeroPage, z); + pPage->cPresent = 0; + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + } + } + RT_FALL_THRU(); +#ifdef PGM_WITH_LARGE_PAGES + default_case: +#endif + default: + Assert(!pPage->cModifications || ++cModifiedPages); + Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications); + Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications); + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->cModifications = 0; + break; + + } + if (!--cLeft) + break; + } + } + +#ifndef DEBUG_michael + AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages)); +#endif + pPool->iModifiedHead = NIL_PGMPOOL_IDX; + pPool->cModifiedPages = 0; + + /* + * Clear all the GCPhys links and rebuild the phys ext free list. + */ + for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX); + pRam; + pRam = pRam->CTX_SUFF(pNext)) + { + iPage = pRam->cb >> PAGE_SHIFT; + while (iPage-- > 0) + PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0); + } + + pPool->iPhysExtFreeHead = 0; + PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); + const unsigned cMaxPhysExts = pPool->cMaxPhysExts; + for (unsigned i = 0; i < cMaxPhysExts; i++) + { + paPhysExts[i].iNext = i + 1; + paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; + + +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + /* Reset all dirty pages to reactivate the page monitoring. */ + /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to + * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint + */ + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + PPGMPOOLPAGE pPage; + unsigned idxPage; + + if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX) + continue; + + idxPage = pPool->aDirtyPages[i].uIdx; + AssertRelease(idxPage != NIL_PGMPOOL_IDX); + pPage = &pPool->aPages[idxPage]; + Assert(pPage->idx == idxPage); + Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); + + AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i)); + + Log(("Reactivate dirty page %RGp\n", pPage->GCPhys)); + + /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ + int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK); + AssertRCSuccess(rc); + pPage->fDirty = false; + + pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX; + } + + /* Clear all dirty pages. */ + pPool->idxFreeDirtyPage = 0; + pPool->cDirtyPages = 0; +#endif + + /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */ + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL; + + /* Flush job finished. */ + VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING); + pPool->cPresent = 0; + pgmUnlock(pVM); + + PGM_INVL_ALL_VCPU_TLBS(pVM); + + if (fpvFlushRemTlb) + for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) + CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); + + STAM_PROFILE_STOP(&pPool->StatClearAll, c); + return VINF_SUCCESS; +} + + +/** + * Clears the shadow page pool. + * + * @param pVM The cross context VM structure. + * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as + * well. + */ +void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb) +{ + int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb); + AssertRC(rc); +} + + +/** + * Protect all pgm pool page table entries to monitor writes + * + * @param pVM The cross context VM structure. + * + * @remarks ASSUMES the caller will flush all TLBs!! + */ +void pgmR3PoolWriteProtectPages(PVM pVM) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + unsigned cLeft = pPool->cUsedPages; + unsigned iPage = pPool->cCurPages; + while (--iPage >= PGMPOOL_IDX_FIRST) + { + PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; + if ( pPage->GCPhys != NIL_RTGCPHYS + && pPage->cPresent) + { + union + { + void *pv; + PX86PT pPT; + PPGMSHWPTPAE pPTPae; + PEPTPT pPTEpt; + } uShw; + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + + switch (pPage->enmKind) + { + /* + * We only care about shadow page tables. + */ + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++) + { + if (uShw.pPT->a[iShw].n.u1Present) + uShw.pPT->a[iShw].n.u1Write = 0; + } + break; + + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++) + { + if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) + PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]); + } + break; + + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++) + { + if (uShw.pPTEpt->a[iShw].n.u1Present) + uShw.pPTEpt->a[iShw].n.u1Write = 0; + } + break; + + default: + break; + } + if (!--cLeft) + break; + } + } +} + +#ifdef VBOX_WITH_DEBUGGER +/** + * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.} + */ +static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) +{ + DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); + PVM pVM = pUVM->pVM; + VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); + DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0); + uint32_t cErrors = 0; + NOREF(paArgs); + + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + for (unsigned i = 0; i < pPool->cCurPages; i++) + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + bool fFirstMsg = true; + + /** @todo cover other paging modes too. */ + if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + { + PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage); + { + PX86PTPAE pGstPT; + PGMPAGEMAPLOCK LockPage; + int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc); + + /* Check if any PTEs are out of sync. */ + for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) + { + if (PGMSHWPTEPAE_IS_P(pShwPT->a[j])) + { + RTHCPHYS HCPhys = NIL_RTHCPHYS; + rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys); + if ( rc != VINF_SUCCESS + || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys) + { + if (fFirstMsg) + { + DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); + fFirstMsg = false; + } + DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); + cErrors++; + } + else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j]) + && !pGstPT->a[j].n.u1Write) + { + if (fFirstMsg) + { + DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); + fFirstMsg = false; + } + DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); + cErrors++; + } + } + } + PGMPhysReleasePageMappingLock(pVM, &LockPage); + } + + /* Make sure this page table can't be written to from any shadow mapping. */ + RTHCPHYS HCPhysPT = NIL_RTHCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT); + AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys)); + if (rc == VINF_SUCCESS) + { + for (unsigned j = 0; j < pPool->cCurPages; j++) + { + PPGMPOOLPAGE pTempPage = &pPool->aPages[j]; + + if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + { + PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage); + + for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++) + { + if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k]) +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + && !pPage->fDirty +# endif + && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT) + { + if (fFirstMsg) + { + DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); + fFirstMsg = false; + } + DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k])); + cErrors++; + } + } + } + } + } + } + } + if (cErrors > 0) + return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors); + return VINF_SUCCESS; +} +#endif /* VBOX_WITH_DEBUGGER */ |