summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/PGMPool.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/PGMPool.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/PGMPool.cpp982
1 files changed, 982 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/PGMPool.cpp b/src/VBox/VMM/VMMR3/PGMPool.cpp
new file mode 100644
index 00000000..8a759dee
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/PGMPool.cpp
@@ -0,0 +1,982 @@
+/* $Id: PGMPool.cpp $ */
+/** @file
+ * PGM Shadow Page Pool.
+ */
+
+/*
+ * Copyright (C) 2006-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+/** @page pg_pgm_pool PGM Shadow Page Pool
+ *
+ * Motivations:
+ * -# Relationship between shadow page tables and physical guest pages. This
+ * should allow us to skip most of the global flushes now following access
+ * handler changes. The main expense is flushing shadow pages.
+ * -# Limit the pool size if necessary (default is kind of limitless).
+ * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
+ * -# Required for 64-bit guests.
+ * -# Combining the PD cache and page pool in order to simplify caching.
+ *
+ *
+ * @section sec_pgm_pool_outline Design Outline
+ *
+ * The shadow page pool tracks pages used for shadowing paging structures (i.e.
+ * page tables, page directory, page directory pointer table and page map
+ * level-4). Each page in the pool has an unique identifier. This identifier is
+ * used to link a guest physical page to a shadow PT. The identifier is a
+ * non-zero value and has a relativly low max value - say 14 bits. This makes it
+ * possible to fit it into the upper bits of the of the aHCPhys entries in the
+ * ram range.
+ *
+ * By restricting host physical memory to the first 48 bits (which is the
+ * announced physical memory range of the K8L chip (scheduled for 2008)), we
+ * can safely use the upper 16 bits for shadow page ID and reference counting.
+ *
+ * Update: The 48 bit assumption will be lifted with the new physical memory
+ * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
+ * into a box in some years.
+ *
+ * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
+ * or PD. This is solved by creating a list of physical cross reference extents
+ * when ever this happens. Each node in the list (extent) is can contain 3 page
+ * pool indexes. The list it self is chained using indexes into the paPhysExt
+ * array.
+ *
+ *
+ * @section sec_pgm_pool_life Life Cycle of a Shadow Page
+ *
+ * -# The SyncPT function requests a page from the pool.
+ * The request includes the kind of page it is (PT/PD, PAE/legacy), the
+ * address of the page it's shadowing, and more.
+ * -# The pool responds to the request by allocating a new page.
+ * When the cache is enabled, it will first check if it's in the cache.
+ * Should the pool be exhausted, one of two things can be done:
+ * -# Flush the whole pool and current CR3.
+ * -# Use the cache to find a page which can be flushed (~age).
+ * -# The SyncPT function will sync one or more pages and insert it into the
+ * shadow PD.
+ * -# The SyncPage function may sync more pages on a later \#PFs.
+ * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
+ * When caching is enabled, the page isn't flush but remains in the cache.
+ *
+ *
+ * @section sec_pgm_pool_monitoring Monitoring
+ *
+ * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
+ * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
+ * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
+ * is the pvUser to the access handlers.
+ *
+ *
+ * @section sec_pgm_pool_impl Implementation
+ *
+ * The pool will take pages from the MM page pool. The tracking data
+ * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
+ * pool content can be accessed both by using the page id and the physical
+ * address (HC). The former is managed by means of an array, the latter by an
+ * offset based AVL tree.
+ *
+ * Flushing of a pool page means that we iterate the content (we know what kind
+ * it is) and updates the link information in the ram range.
+ *
+ * ...
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_PGM_POOL
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/mm.h>
+#include "PGMInternal.h"
+#include <VBox/vmm/vm.h>
+#include <VBox/vmm/uvm.h>
+#include "PGMInline.h"
+
+#include <VBox/log.h>
+#include <VBox/err.h>
+#include <iprt/asm.h>
+#include <iprt/string.h>
+#include <VBox/dbg.h>
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+#ifdef VBOX_WITH_DEBUGGER
+static FNDBGCCMD pgmR3PoolCmdCheck;
+#endif
+
+#ifdef VBOX_WITH_DEBUGGER
+/** Command descriptors. */
+static const DBGCCMD g_aCmds[] =
+{
+ /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
+ { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
+};
+#endif
+
+/**
+ * Initializes the pool
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+int pgmR3PoolInit(PVM pVM)
+{
+ int rc;
+
+ AssertCompile(NIL_PGMPOOL_IDX == 0);
+ /* pPage->cLocked is an unsigned byte. */
+ AssertCompile(VMM_MAX_CPU_COUNT <= 255);
+
+ /*
+ * Query Pool config.
+ */
+ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
+
+ /* Default pgm pool size is 1024 pages (4MB). */
+ uint16_t cMaxPages = 1024;
+
+ /* Adjust it up relative to the RAM size, using the nested paging formula. */
+ uint64_t cbRam;
+ rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
+ uint64_t u64MaxPages = (cbRam >> 9)
+ + (cbRam >> 18)
+ + (cbRam >> 27)
+ + 32 * PAGE_SIZE;
+ u64MaxPages >>= PAGE_SHIFT;
+ if (u64MaxPages > PGMPOOL_IDX_LAST)
+ cMaxPages = PGMPOOL_IDX_LAST;
+ else
+ cMaxPages = (uint16_t)u64MaxPages;
+
+ /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
+ * The max size of the shadow page pool in pages. The pool will grow dynamically
+ * up to this limit.
+ */
+ rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
+ AssertLogRelRCReturn(rc, rc);
+ AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
+ ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
+ cMaxPages = RT_ALIGN(cMaxPages, 16);
+ if (cMaxPages > PGMPOOL_IDX_LAST)
+ cMaxPages = PGMPOOL_IDX_LAST;
+ LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
+
+ /** @todo
+ * We need to be much more careful with our allocation strategy here.
+ * For nested paging we don't need pool user info nor extents at all, but
+ * we can't check for nested paging here (too early during init to get a
+ * confirmation it can be used). The default for large memory configs is a
+ * bit large for shadow paging, so I've restricted the extent maximum to 8k
+ * (8k * 16 = 128k of hyper heap).
+ *
+ * Also when large page support is enabled, we typically don't need so much,
+ * although that depends on the availability of 2 MB chunks on the host.
+ */
+
+ /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
+ * The max number of shadow page user tracking records. Each shadow page has
+ * zero of other shadow pages (or CR3s) that references it, or uses it if you
+ * like. The structures describing these relationships are allocated from a
+ * fixed sized pool. This configuration variable defines the pool size.
+ */
+ uint16_t cMaxUsers;
+ rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
+ AssertLogRelRCReturn(rc, rc);
+ AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
+ ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
+
+ /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
+ * The max number of extents for tracking aliased guest pages.
+ */
+ uint16_t cMaxPhysExts;
+ rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
+ RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
+ AssertLogRelRCReturn(rc, rc);
+ AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
+ ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
+
+ /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
+ * Enables or disabling caching of shadow pages. Caching means that we will try
+ * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
+ * SyncPage requests one. When reusing a shadow page, we can save time
+ * reconstructing it and it's children.
+ */
+ bool fCacheEnabled;
+ rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
+ AssertLogRelRCReturn(rc, rc);
+
+ LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
+ cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
+
+ /*
+ * Allocate the data structures.
+ */
+ uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]);
+ cb += cMaxUsers * sizeof(PGMPOOLUSER);
+ cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
+ PPGMPOOL pPool;
+ rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
+ if (RT_FAILURE(rc))
+ return rc;
+ pVM->pgm.s.pPoolR3 = pPool;
+ pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
+ pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
+
+ /*
+ * Initialize it.
+ */
+ pPool->pVMR3 = pVM;
+ pPool->pVMR0 = pVM->pVMR0;
+ pPool->pVMRC = pVM->pVMRC;
+ pPool->cMaxPages = cMaxPages;
+ pPool->cCurPages = PGMPOOL_IDX_FIRST;
+ pPool->iUserFreeHead = 0;
+ pPool->cMaxUsers = cMaxUsers;
+ PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
+ pPool->paUsersR3 = paUsers;
+ pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
+ pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
+ for (unsigned i = 0; i < cMaxUsers; i++)
+ {
+ paUsers[i].iNext = i + 1;
+ paUsers[i].iUser = NIL_PGMPOOL_IDX;
+ paUsers[i].iUserTable = 0xfffffffe;
+ }
+ paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
+ pPool->iPhysExtFreeHead = 0;
+ pPool->cMaxPhysExts = cMaxPhysExts;
+ PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
+ pPool->paPhysExtsR3 = paPhysExts;
+ pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
+ pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
+ for (unsigned i = 0; i < cMaxPhysExts; i++)
+ {
+ paPhysExts[i].iNext = i + 1;
+ paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+ paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
+ pPool->aiHash[i] = NIL_PGMPOOL_IDX;
+ pPool->iAgeHead = NIL_PGMPOOL_IDX;
+ pPool->iAgeTail = NIL_PGMPOOL_IDX;
+ pPool->fCacheEnabled = fCacheEnabled;
+
+ pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
+ rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
+ pgmPoolAccessHandler,
+ NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
+ NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
+ "Guest Paging Access Handler",
+ &pPool->hAccessHandlerType);
+ AssertLogRelRCReturn(rc, rc);
+
+ pPool->HCPhysTree = 0;
+
+ /*
+ * The NIL entry.
+ */
+ Assert(NIL_PGMPOOL_IDX == 0);
+ pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
+ pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
+ pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
+ pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
+ /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
+ pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
+ pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
+ pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
+
+ Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
+ Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
+ Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
+ Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
+ Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
+ Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
+ Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Register statistics.
+ */
+ STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
+ STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
+ STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
+ STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
+ STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
+ STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
+ STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
+ STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
+ STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
+ STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
+ STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
+ STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
+ STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
+ STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
+ STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
+ STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
+ STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
+ STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
+ STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
+ STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
+ STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
+ STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
+ STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
+ STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
+ STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
+
+ STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
+ STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
+
+ STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
+ STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
+ STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
+
+ STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
+ STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
+ STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
+ STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
+
+ STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
+ STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
+ STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
+
+ STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
+ STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
+ STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
+ STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
+
+ STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
+ STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
+ STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
+ STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
+ STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
+ STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
+ STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
+ STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
+ STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
+ STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
+ STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
+ STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
+#endif /* VBOX_WITH_STATISTICS */
+
+#ifdef VBOX_WITH_DEBUGGER
+ /*
+ * Debugger commands.
+ */
+ static bool s_fRegisteredCmds = false;
+ if (!s_fRegisteredCmds)
+ {
+ rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
+ if (RT_SUCCESS(rc))
+ s_fRegisteredCmds = true;
+ }
+#endif
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Relocate the page pool data.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PoolRelocate(PVM pVM)
+{
+ pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
+ pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
+ pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
+ pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
+}
+
+
+/**
+ * Grows the shadow page pool.
+ *
+ * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
+{
+ PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
+ AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
+
+ /* With 32-bit guests and no EPT, the CR3 limits the root pages to low
+ (below 4 GB) memory. */
+ /** @todo change the pool to handle ROOT page allocations specially when
+ * required. */
+ bool fCanUseHighMemory = HMIsNestedPagingActive(pVM)
+ && HMIsVmxActive(pVM);
+
+ pgmLock(pVM);
+
+ /*
+ * How much to grow it by?
+ */
+ uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
+ cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
+ LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
+
+ for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+
+ if (fCanUseHighMemory)
+ pPage->pvPageR3 = MMR3PageAlloc(pVM);
+ else
+ pPage->pvPageR3 = MMR3PageAllocLow(pVM);
+ if (!pPage->pvPageR3)
+ {
+ Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
+ pgmUnlock(pVM);
+ return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
+ }
+ pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
+ AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
+ pPage->GCPhys = NIL_RTGCPHYS;
+ pPage->enmKind = PGMPOOLKIND_FREE;
+ pPage->idx = pPage - &pPool->aPages[0];
+ LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
+ pPage->iNext = pPool->iFreeHead;
+ pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
+ pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
+ pPage->iAgeNext = NIL_PGMPOOL_IDX;
+ pPage->iAgePrev = NIL_PGMPOOL_IDX;
+ /* commit it */
+ bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
+ pPool->iFreeHead = i;
+ pPool->cCurPages = i + 1;
+ }
+
+ pgmUnlock(pVM);
+ Assert(pPool->cCurPages <= pPool->cMaxPages);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
+ * and all modification counters.
+ *
+ * This is only called on one of the EMTs while the other ones are waiting for
+ * it to complete this function.
+ *
+ * @returns VINF_SUCCESS (VBox strict status code).
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
+ * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
+ * (This is the pvUser, so it has to be void *.)
+ *
+ */
+DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ STAM_PROFILE_START(&pPool->StatClearAll, c);
+ NOREF(pVCpu);
+
+ pgmLock(pVM);
+ Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
+
+ /*
+ * Iterate all the pages until we've encountered all that are in use.
+ * This is a simple but not quite optimal solution.
+ */
+ unsigned cModifiedPages = 0; NOREF(cModifiedPages);
+ unsigned cLeft = pPool->cUsedPages;
+ uint32_t iPage = pPool->cCurPages;
+ while (--iPage >= PGMPOOL_IDX_FIRST)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
+ if (pPage->GCPhys != NIL_RTGCPHYS)
+ {
+ switch (pPage->enmKind)
+ {
+ /*
+ * We only care about shadow page tables that reference physical memory
+ */
+#ifdef PGM_WITH_LARGE_PAGES
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
+ if (pPage->cPresent)
+ {
+ PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
+ {
+ if ( pShwPD->a[i].n.u1Present
+ && pShwPD->a[i].b.u1Size)
+ {
+ Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
+ pShwPD->a[i].u = 0;
+ Assert(pPage->cPresent);
+ pPage->cPresent--;
+ }
+ }
+ if (pPage->cPresent == 0)
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ }
+ goto default_case;
+
+ case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
+ if (pPage->cPresent)
+ {
+ PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
+ {
+ Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
+ if ( pShwPD->a[i].n.u1Present
+ && pShwPD->a[i].b.u1Size)
+ {
+ Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
+ pShwPD->a[i].u = 0;
+ Assert(pPage->cPresent);
+ pPage->cPresent--;
+ }
+ }
+ if (pPage->cPresent == 0)
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ }
+ goto default_case;
+#endif /* PGM_WITH_LARGE_PAGES */
+
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ {
+ if (pPage->cPresent)
+ {
+ void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
+ STAM_PROFILE_START(&pPool->StatZeroPage, z);
+#if 0
+ /* Useful check for leaking references; *very* expensive though. */
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ {
+ bool fFoundFirst = false;
+ PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
+ for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
+ {
+ if (pPT->a[ptIndex].u)
+ {
+ if (!fFoundFirst)
+ {
+ AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
+ if (pPage->iFirstPresent != ptIndex)
+ Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
+ fFoundFirst = true;
+ }
+ if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
+ {
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
+ if (pPage->iFirstPresent == ptIndex)
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ }
+ }
+ }
+ AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
+ break;
+ }
+ default:
+ break;
+ }
+#endif
+ ASMMemZeroPage(pvShw);
+ STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
+ pPage->cPresent = 0;
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ }
+ }
+ RT_FALL_THRU();
+#ifdef PGM_WITH_LARGE_PAGES
+ default_case:
+#endif
+ default:
+ Assert(!pPage->cModifications || ++cModifiedPages);
+ Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
+ Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->cModifications = 0;
+ break;
+
+ }
+ if (!--cLeft)
+ break;
+ }
+ }
+
+#ifndef DEBUG_michael
+ AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
+#endif
+ pPool->iModifiedHead = NIL_PGMPOOL_IDX;
+ pPool->cModifiedPages = 0;
+
+ /*
+ * Clear all the GCPhys links and rebuild the phys ext free list.
+ */
+ for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
+ pRam;
+ pRam = pRam->CTX_SUFF(pNext))
+ {
+ iPage = pRam->cb >> PAGE_SHIFT;
+ while (iPage-- > 0)
+ PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
+ }
+
+ pPool->iPhysExtFreeHead = 0;
+ PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
+ const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
+ for (unsigned i = 0; i < cMaxPhysExts; i++)
+ {
+ paPhysExts[i].iNext = i + 1;
+ paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+ paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
+
+
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ /* Reset all dirty pages to reactivate the page monitoring. */
+ /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
+ * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
+ */
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ PPGMPOOLPAGE pPage;
+ unsigned idxPage;
+
+ if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
+ continue;
+
+ idxPage = pPool->aDirtyPages[i].uIdx;
+ AssertRelease(idxPage != NIL_PGMPOOL_IDX);
+ pPage = &pPool->aPages[idxPage];
+ Assert(pPage->idx == idxPage);
+ Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
+
+ AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
+
+ Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
+
+ /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
+ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
+ AssertRCSuccess(rc);
+ pPage->fDirty = false;
+
+ pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
+ }
+
+ /* Clear all dirty pages. */
+ pPool->idxFreeDirtyPage = 0;
+ pPool->cDirtyPages = 0;
+#endif
+
+ /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
+
+ /* Flush job finished. */
+ VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
+ pPool->cPresent = 0;
+ pgmUnlock(pVM);
+
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+
+ if (fpvFlushRemTlb)
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+
+ STAM_PROFILE_STOP(&pPool->StatClearAll, c);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Clears the shadow page pool.
+ *
+ * @param pVM The cross context VM structure.
+ * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
+ * well.
+ */
+void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
+{
+ int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
+ AssertRC(rc);
+}
+
+
+/**
+ * Protect all pgm pool page table entries to monitor writes
+ *
+ * @param pVM The cross context VM structure.
+ *
+ * @remarks ASSUMES the caller will flush all TLBs!!
+ */
+void pgmR3PoolWriteProtectPages(PVM pVM)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ unsigned cLeft = pPool->cUsedPages;
+ unsigned iPage = pPool->cCurPages;
+ while (--iPage >= PGMPOOL_IDX_FIRST)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
+ if ( pPage->GCPhys != NIL_RTGCPHYS
+ && pPage->cPresent)
+ {
+ union
+ {
+ void *pv;
+ PX86PT pPT;
+ PPGMSHWPTPAE pPTPae;
+ PEPTPT pPTEpt;
+ } uShw;
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+
+ switch (pPage->enmKind)
+ {
+ /*
+ * We only care about shadow page tables.
+ */
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
+ {
+ if (uShw.pPT->a[iShw].n.u1Present)
+ uShw.pPT->a[iShw].n.u1Write = 0;
+ }
+ break;
+
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
+ {
+ if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
+ PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
+ }
+ break;
+
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
+ {
+ if (uShw.pPTEpt->a[iShw].n.u1Present)
+ uShw.pPTEpt->a[iShw].n.u1Write = 0;
+ }
+ break;
+
+ default:
+ break;
+ }
+ if (!--cLeft)
+ break;
+ }
+ }
+}
+
+#ifdef VBOX_WITH_DEBUGGER
+/**
+ * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
+ */
+static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
+{
+ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+ DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
+ uint32_t cErrors = 0;
+ NOREF(paArgs);
+
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ for (unsigned i = 0; i < pPool->cCurPages; i++)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+ bool fFirstMsg = true;
+
+ /** @todo cover other paging modes too. */
+ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ {
+ PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
+ {
+ PX86PTPAE pGstPT;
+ PGMPAGEMAPLOCK LockPage;
+ int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
+
+ /* Check if any PTEs are out of sync. */
+ for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
+ {
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
+ {
+ RTHCPHYS HCPhys = NIL_RTHCPHYS;
+ rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
+ if ( rc != VINF_SUCCESS
+ || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
+ {
+ if (fFirstMsg)
+ {
+ DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
+ fFirstMsg = false;
+ }
+ DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
+ cErrors++;
+ }
+ else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
+ && !pGstPT->a[j].n.u1Write)
+ {
+ if (fFirstMsg)
+ {
+ DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
+ fFirstMsg = false;
+ }
+ DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
+ cErrors++;
+ }
+ }
+ }
+ PGMPhysReleasePageMappingLock(pVM, &LockPage);
+ }
+
+ /* Make sure this page table can't be written to from any shadow mapping. */
+ RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
+ int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
+ AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
+ if (rc == VINF_SUCCESS)
+ {
+ for (unsigned j = 0; j < pPool->cCurPages; j++)
+ {
+ PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
+
+ if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ {
+ PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
+
+ for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
+ {
+ if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
+# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ && !pPage->fDirty
+# endif
+ && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
+ {
+ if (fFirstMsg)
+ {
+ DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
+ fFirstMsg = false;
+ }
+ DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
+ cErrors++;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ if (cErrors > 0)
+ return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
+ return VINF_SUCCESS;
+}
+#endif /* VBOX_WITH_DEBUGGER */