1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
/* $Id: PGMPool.cpp $ */
/** @file
* PGM Shadow Page Pool.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/** @page pg_pgm_pool PGM Shadow Page Pool
*
* Motivations:
* -# Relationship between shadow page tables and physical guest pages. This
* should allow us to skip most of the global flushes now following access
* handler changes. The main expense is flushing shadow pages.
* -# Limit the pool size if necessary (default is kind of limitless).
* -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
* -# Required for 64-bit guests.
* -# Combining the PD cache and page pool in order to simplify caching.
*
*
* @section sec_pgm_pool_outline Design Outline
*
* The shadow page pool tracks pages used for shadowing paging structures (i.e.
* page tables, page directory, page directory pointer table and page map
* level-4). Each page in the pool has an unique identifier. This identifier is
* used to link a guest physical page to a shadow PT. The identifier is a
* non-zero value and has a relativly low max value - say 14 bits. This makes it
* possible to fit it into the upper bits of the of the aHCPhys entries in the
* ram range.
*
* By restricting host physical memory to the first 48 bits (which is the
* announced physical memory range of the K8L chip (scheduled for 2008)), we
* can safely use the upper 16 bits for shadow page ID and reference counting.
*
* Update: The 48 bit assumption will be lifted with the new physical memory
* management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
* into a box in some years.
*
* Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
* or PD. This is solved by creating a list of physical cross reference extents
* when ever this happens. Each node in the list (extent) is can contain 3 page
* pool indexes. The list it self is chained using indexes into the paPhysExt
* array.
*
*
* @section sec_pgm_pool_life Life Cycle of a Shadow Page
*
* -# The SyncPT function requests a page from the pool.
* The request includes the kind of page it is (PT/PD, PAE/legacy), the
* address of the page it's shadowing, and more.
* -# The pool responds to the request by allocating a new page.
* When the cache is enabled, it will first check if it's in the cache.
* Should the pool be exhausted, one of two things can be done:
* -# Flush the whole pool and current CR3.
* -# Use the cache to find a page which can be flushed (~age).
* -# The SyncPT function will sync one or more pages and insert it into the
* shadow PD.
* -# The SyncPage function may sync more pages on a later \#PFs.
* -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
* When caching is enabled, the page isn't flush but remains in the cache.
*
*
* @section sec_pgm_pool_monitoring Monitoring
*
* We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
* pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
* sharing the monitor get linked using the iMonitoredNext/Prev. The head page
* is the pvUser to the access handlers.
*
*
* @section sec_pgm_pool_impl Implementation
*
* The pool will take pages from the MM page pool. The tracking data
* (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
* pool content can be accessed both by using the page id and the physical
* address (HC). The former is managed by means of an array, the latter by an
* offset based AVL tree.
*
* Flushing of a pool page means that we iterate the content (we know what kind
* it is) and updates the link information in the ram range.
*
* ...
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM_POOL
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/mm.h>
#include "PGMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include "PGMInline.h"
#include <VBox/log.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/string.h>
#include <VBox/dbg.h>
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
#ifdef VBOX_WITH_DEBUGGER
static FNDBGCCMD pgmR3PoolCmdCheck;
#endif
#ifdef VBOX_WITH_DEBUGGER
/** Command descriptors. */
static const DBGCCMD g_aCmds[] =
{
/* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
{ "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
};
#endif
/**
* Initializes the pool
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
int pgmR3PoolInit(PVM pVM)
{
int rc;
AssertCompile(NIL_PGMPOOL_IDX == 0);
/* pPage->cLocked is an unsigned byte. */
AssertCompile(VMM_MAX_CPU_COUNT <= 255);
/*
* Query Pool config.
*/
PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
/* Default pgm pool size is 1024 pages (4MB). */
uint16_t cMaxPages = 1024;
/* Adjust it up relative to the RAM size, using the nested paging formula. */
uint64_t cbRam;
rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
uint64_t u64MaxPages = (cbRam >> 9)
+ (cbRam >> 18)
+ (cbRam >> 27)
+ 32 * PAGE_SIZE;
u64MaxPages >>= PAGE_SHIFT;
if (u64MaxPages > PGMPOOL_IDX_LAST)
cMaxPages = PGMPOOL_IDX_LAST;
else
cMaxPages = (uint16_t)u64MaxPages;
/** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
* The max size of the shadow page pool in pages. The pool will grow dynamically
* up to this limit.
*/
rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
cMaxPages = RT_ALIGN(cMaxPages, 16);
if (cMaxPages > PGMPOOL_IDX_LAST)
cMaxPages = PGMPOOL_IDX_LAST;
LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
/** @todo
* We need to be much more careful with our allocation strategy here.
* For nested paging we don't need pool user info nor extents at all, but
* we can't check for nested paging here (too early during init to get a
* confirmation it can be used). The default for large memory configs is a
* bit large for shadow paging, so I've restricted the extent maximum to 8k
* (8k * 16 = 128k of hyper heap).
*
* Also when large page support is enabled, we typically don't need so much,
* although that depends on the availability of 2 MB chunks on the host.
*/
/** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
* The max number of shadow page user tracking records. Each shadow page has
* zero of other shadow pages (or CR3s) that references it, or uses it if you
* like. The structures describing these relationships are allocated from a
* fixed sized pool. This configuration variable defines the pool size.
*/
uint16_t cMaxUsers;
rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
/** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
* The max number of extents for tracking aliased guest pages.
*/
uint16_t cMaxPhysExts;
rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
/** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
* Enables or disabling caching of shadow pages. Caching means that we will try
* reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
* SyncPage requests one. When reusing a shadow page, we can save time
* reconstructing it and it's children.
*/
bool fCacheEnabled;
rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
AssertLogRelRCReturn(rc, rc);
LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
/*
* Allocate the data structures.
*/
uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]);
cb += cMaxUsers * sizeof(PGMPOOLUSER);
cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
PPGMPOOL pPool;
rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
if (RT_FAILURE(rc))
return rc;
pVM->pgm.s.pPoolR3 = pPool;
pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
/*
* Initialize it.
*/
pPool->pVMR3 = pVM;
pPool->pVMR0 = pVM->pVMR0;
pPool->pVMRC = pVM->pVMRC;
pPool->cMaxPages = cMaxPages;
pPool->cCurPages = PGMPOOL_IDX_FIRST;
pPool->iUserFreeHead = 0;
pPool->cMaxUsers = cMaxUsers;
PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
pPool->paUsersR3 = paUsers;
pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
for (unsigned i = 0; i < cMaxUsers; i++)
{
paUsers[i].iNext = i + 1;
paUsers[i].iUser = NIL_PGMPOOL_IDX;
paUsers[i].iUserTable = 0xfffffffe;
}
paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
pPool->iPhysExtFreeHead = 0;
pPool->cMaxPhysExts = cMaxPhysExts;
PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
pPool->paPhysExtsR3 = paPhysExts;
pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
pPool->aiHash[i] = NIL_PGMPOOL_IDX;
pPool->iAgeHead = NIL_PGMPOOL_IDX;
pPool->iAgeTail = NIL_PGMPOOL_IDX;
pPool->fCacheEnabled = fCacheEnabled;
pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
pgmPoolAccessHandler,
NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
NULL, "pgmPoolAccessHandler", "pgmRZPoolAccessPfHandler",
"Guest Paging Access Handler",
&pPool->hAccessHandlerType);
AssertLogRelRCReturn(rc, rc);
pPool->HCPhysTree = 0;
/*
* The NIL entry.
*/
Assert(NIL_PGMPOOL_IDX == 0);
pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
/* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
#ifdef VBOX_WITH_STATISTICS
/*
* Register statistics.
*/
STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
#endif /* VBOX_WITH_STATISTICS */
#ifdef VBOX_WITH_DEBUGGER
/*
* Debugger commands.
*/
static bool s_fRegisteredCmds = false;
if (!s_fRegisteredCmds)
{
rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
if (RT_SUCCESS(rc))
s_fRegisteredCmds = true;
}
#endif
return VINF_SUCCESS;
}
/**
* Relocate the page pool data.
*
* @param pVM The cross context VM structure.
*/
void pgmR3PoolRelocate(PVM pVM)
{
pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
}
/**
* Grows the shadow page pool.
*
* I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
{
PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
/* With 32-bit guests and no EPT, the CR3 limits the root pages to low
(below 4 GB) memory. */
/** @todo change the pool to handle ROOT page allocations specially when
* required. */
bool fCanUseHighMemory = HMIsNestedPagingActive(pVM)
&& HMIsVmxActive(pVM);
pgmLock(pVM);
/*
* How much to grow it by?
*/
uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages. fCanUseHighMemory=%RTbool\n", cPages, cPages, fCanUseHighMemory));
for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
if (fCanUseHighMemory)
pPage->pvPageR3 = MMR3PageAlloc(pVM);
else
pPage->pvPageR3 = MMR3PageAllocLow(pVM);
if (!pPage->pvPageR3)
{
Log(("We're out of memory!! i=%d fCanUseHighMemory=%RTbool\n", i, fCanUseHighMemory));
pgmUnlock(pVM);
return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
}
pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
AssertFatal(pPage->Core.Key < _4G || fCanUseHighMemory);
pPage->GCPhys = NIL_RTGCPHYS;
pPage->enmKind = PGMPOOLKIND_FREE;
pPage->idx = pPage - &pPool->aPages[0];
LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
pPage->iNext = pPool->iFreeHead;
pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
pPage->iAgeNext = NIL_PGMPOOL_IDX;
pPage->iAgePrev = NIL_PGMPOOL_IDX;
/* commit it */
bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
pPool->iFreeHead = i;
pPool->cCurPages = i + 1;
}
pgmUnlock(pVM);
Assert(pPool->cCurPages <= pPool->cMaxPages);
return VINF_SUCCESS;
}
/**
* Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
* and all modification counters.
*
* This is only called on one of the EMTs while the other ones are waiting for
* it to complete this function.
*
* @returns VINF_SUCCESS (VBox strict status code).
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
* @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
* (This is the pvUser, so it has to be void *.)
*
*/
DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
{
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
STAM_PROFILE_START(&pPool->StatClearAll, c);
NOREF(pVCpu);
pgmLock(pVM);
Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
/*
* Iterate all the pages until we've encountered all that are in use.
* This is a simple but not quite optimal solution.
*/
unsigned cModifiedPages = 0; NOREF(cModifiedPages);
unsigned cLeft = pPool->cUsedPages;
uint32_t iPage = pPool->cCurPages;
while (--iPage >= PGMPOOL_IDX_FIRST)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if (pPage->GCPhys != NIL_RTGCPHYS)
{
switch (pPage->enmKind)
{
/*
* We only care about shadow page tables that reference physical memory
*/
#ifdef PGM_WITH_LARGE_PAGES
case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
if (pPage->cPresent)
{
PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
{
if ( pShwPD->a[i].n.u1Present
&& pShwPD->a[i].b.u1Size)
{
Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
pShwPD->a[i].u = 0;
Assert(pPage->cPresent);
pPage->cPresent--;
}
}
if (pPage->cPresent == 0)
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
goto default_case;
case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
if (pPage->cPresent)
{
PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
{
Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
if ( pShwPD->a[i].n.u1Present
&& pShwPD->a[i].b.u1Size)
{
Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
pShwPD->a[i].u = 0;
Assert(pPage->cPresent);
pPage->cPresent--;
}
}
if (pPage->cPresent == 0)
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
goto default_case;
#endif /* PGM_WITH_LARGE_PAGES */
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
case PGMPOOLKIND_EPT_PT_FOR_PHYS:
{
if (pPage->cPresent)
{
void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
STAM_PROFILE_START(&pPool->StatZeroPage, z);
#if 0
/* Useful check for leaking references; *very* expensive though. */
switch (pPage->enmKind)
{
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
{
bool fFoundFirst = false;
PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
{
if (pPT->a[ptIndex].u)
{
if (!fFoundFirst)
{
AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
if (pPage->iFirstPresent != ptIndex)
Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
fFoundFirst = true;
}
if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
{
pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
if (pPage->iFirstPresent == ptIndex)
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
}
}
AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
break;
}
default:
break;
}
#endif
ASMMemZeroPage(pvShw);
STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
pPage->cPresent = 0;
pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
}
}
RT_FALL_THRU();
#ifdef PGM_WITH_LARGE_PAGES
default_case:
#endif
default:
Assert(!pPage->cModifications || ++cModifiedPages);
Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
pPage->iModifiedNext = NIL_PGMPOOL_IDX;
pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
pPage->cModifications = 0;
break;
}
if (!--cLeft)
break;
}
}
#ifndef DEBUG_michael
AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
#endif
pPool->iModifiedHead = NIL_PGMPOOL_IDX;
pPool->cModifiedPages = 0;
/*
* Clear all the GCPhys links and rebuild the phys ext free list.
*/
for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
pRam;
pRam = pRam->CTX_SUFF(pNext))
{
iPage = pRam->cb >> PAGE_SHIFT;
while (iPage-- > 0)
PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
}
pPool->iPhysExtFreeHead = 0;
PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
for (unsigned i = 0; i < cMaxPhysExts; i++)
{
paPhysExts[i].iNext = i + 1;
paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
}
paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
/* Reset all dirty pages to reactivate the page monitoring. */
/* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
* recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
*/
for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
{
PPGMPOOLPAGE pPage;
unsigned idxPage;
if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
continue;
idxPage = pPool->aDirtyPages[i].uIdx;
AssertRelease(idxPage != NIL_PGMPOOL_IDX);
pPage = &pPool->aPages[idxPage];
Assert(pPage->idx == idxPage);
Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
/* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
AssertRCSuccess(rc);
pPage->fDirty = false;
pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
}
/* Clear all dirty pages. */
pPool->idxFreeDirtyPage = 0;
pPool->cDirtyPages = 0;
#endif
/* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
/* Flush job finished. */
VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
pPool->cPresent = 0;
pgmUnlock(pVM);
PGM_INVL_ALL_VCPU_TLBS(pVM);
if (fpvFlushRemTlb)
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
STAM_PROFILE_STOP(&pPool->StatClearAll, c);
return VINF_SUCCESS;
}
/**
* Clears the shadow page pool.
*
* @param pVM The cross context VM structure.
* @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
* well.
*/
void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
{
int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
AssertRC(rc);
}
/**
* Protect all pgm pool page table entries to monitor writes
*
* @param pVM The cross context VM structure.
*
* @remarks ASSUMES the caller will flush all TLBs!!
*/
void pgmR3PoolWriteProtectPages(PVM pVM)
{
PGM_LOCK_ASSERT_OWNER(pVM);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
unsigned cLeft = pPool->cUsedPages;
unsigned iPage = pPool->cCurPages;
while (--iPage >= PGMPOOL_IDX_FIRST)
{
PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
if ( pPage->GCPhys != NIL_RTGCPHYS
&& pPage->cPresent)
{
union
{
void *pv;
PX86PT pPT;
PPGMSHWPTPAE pPTPae;
PEPTPT pPTEpt;
} uShw;
uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
switch (pPage->enmKind)
{
/*
* We only care about shadow page tables.
*/
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
{
if (uShw.pPT->a[iShw].n.u1Present)
uShw.pPT->a[iShw].n.u1Write = 0;
}
break;
case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
case PGMPOOLKIND_PAE_PT_FOR_PHYS:
for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
{
if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
}
break;
case PGMPOOLKIND_EPT_PT_FOR_PHYS:
for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
{
if (uShw.pPTEpt->a[iShw].n.u1Present)
uShw.pPTEpt->a[iShw].n.u1Write = 0;
}
break;
default:
break;
}
if (!--cLeft)
break;
}
}
}
#ifdef VBOX_WITH_DEBUGGER
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
*/
static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
uint32_t cErrors = 0;
NOREF(paArgs);
PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
for (unsigned i = 0; i < pPool->cCurPages; i++)
{
PPGMPOOLPAGE pPage = &pPool->aPages[i];
bool fFirstMsg = true;
/** @todo cover other paging modes too. */
if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
{
PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
{
PX86PTPAE pGstPT;
PGMPAGEMAPLOCK LockPage;
int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
/* Check if any PTEs are out of sync. */
for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
{
if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
{
RTHCPHYS HCPhys = NIL_RTHCPHYS;
rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
if ( rc != VINF_SUCCESS
|| PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
{
if (fFirstMsg)
{
DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
cErrors++;
}
else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
&& !pGstPT->a[j].n.u1Write)
{
if (fFirstMsg)
{
DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
cErrors++;
}
}
}
PGMPhysReleasePageMappingLock(pVM, &LockPage);
}
/* Make sure this page table can't be written to from any shadow mapping. */
RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
if (rc == VINF_SUCCESS)
{
for (unsigned j = 0; j < pPool->cCurPages; j++)
{
PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
{
PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
{
if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
&& !pPage->fDirty
# endif
&& PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
{
if (fFirstMsg)
{
DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys);
fFirstMsg = false;
}
DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
cErrors++;
}
}
}
}
}
}
}
if (cErrors > 0)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors);
return VINF_SUCCESS;
}
#endif /* VBOX_WITH_DEBUGGER */
|