diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
commit | 73df946d56c74384511a194dd01dbe099584fd1a (patch) | |
tree | fd0bcea490dd81327ddfbb31e215439672c9a068 /src/cmd/compile/internal/ssa/decompose.go | |
parent | Initial commit. (diff) | |
download | golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip |
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/decompose.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/decompose.go | 449 |
1 files changed, 449 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/decompose.go b/src/cmd/compile/internal/ssa/decompose.go new file mode 100644 index 0000000..bf7f1e8 --- /dev/null +++ b/src/cmd/compile/internal/ssa/decompose.go @@ -0,0 +1,449 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +import ( + "cmd/compile/internal/types" + "sort" +) + +// decompose converts phi ops on compound builtin types into phi +// ops on simple types, then invokes rewrite rules to decompose +// other ops on those types. +func decomposeBuiltIn(f *Func) { + // Decompose phis + for _, b := range f.Blocks { + for _, v := range b.Values { + if v.Op != OpPhi { + continue + } + decomposeBuiltInPhi(v) + } + } + + // Decompose other values + // Note: deadcode is false because we need to keep the original + // values around so the name component resolution below can still work. + applyRewrite(f, rewriteBlockdec, rewriteValuedec, leaveDeadValues) + if f.Config.RegSize == 4 { + applyRewrite(f, rewriteBlockdec64, rewriteValuedec64, leaveDeadValues) + } + + // Split up named values into their components. + // accumulate old names for aggregates (that are decomposed) in toDelete for efficient bulk deletion, + // accumulate new LocalSlots in newNames for addition after the iteration. This decomposition is for + // builtin types with leaf components, and thus there is no need to reprocess the newly create LocalSlots. + var toDelete []namedVal + var newNames []LocalSlot + for i, name := range f.Names { + t := name.Type + switch { + case t.IsInteger() && t.Size() > f.Config.RegSize: + hiName, loName := f.fe.SplitInt64(name) + newNames = append(newNames, hiName, loName) + for j, v := range f.NamedValues[name] { + if v.Op != OpInt64Make { + continue + } + f.NamedValues[hiName] = append(f.NamedValues[hiName], v.Args[0]) + f.NamedValues[loName] = append(f.NamedValues[loName], v.Args[1]) + toDelete = append(toDelete, namedVal{i, j}) + } + case t.IsComplex(): + rName, iName := f.fe.SplitComplex(name) + newNames = append(newNames, rName, iName) + for j, v := range f.NamedValues[name] { + if v.Op != OpComplexMake { + continue + } + f.NamedValues[rName] = append(f.NamedValues[rName], v.Args[0]) + f.NamedValues[iName] = append(f.NamedValues[iName], v.Args[1]) + toDelete = append(toDelete, namedVal{i, j}) + } + case t.IsString(): + ptrName, lenName := f.fe.SplitString(name) + newNames = append(newNames, ptrName, lenName) + for j, v := range f.NamedValues[name] { + if v.Op != OpStringMake { + continue + } + f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0]) + f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1]) + toDelete = append(toDelete, namedVal{i, j}) + } + case t.IsSlice(): + ptrName, lenName, capName := f.fe.SplitSlice(name) + newNames = append(newNames, ptrName, lenName, capName) + for j, v := range f.NamedValues[name] { + if v.Op != OpSliceMake { + continue + } + f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0]) + f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1]) + f.NamedValues[capName] = append(f.NamedValues[capName], v.Args[2]) + toDelete = append(toDelete, namedVal{i, j}) + } + case t.IsInterface(): + typeName, dataName := f.fe.SplitInterface(name) + newNames = append(newNames, typeName, dataName) + for j, v := range f.NamedValues[name] { + if v.Op != OpIMake { + continue + } + f.NamedValues[typeName] = append(f.NamedValues[typeName], v.Args[0]) + f.NamedValues[dataName] = append(f.NamedValues[dataName], v.Args[1]) + toDelete = append(toDelete, namedVal{i, j}) + } + case t.IsFloat(): + // floats are never decomposed, even ones bigger than RegSize + case t.Size() > f.Config.RegSize: + f.Fatalf("undecomposed named type %s %v", name, t) + } + } + + deleteNamedVals(f, toDelete) + f.Names = append(f.Names, newNames...) +} + +func decomposeBuiltInPhi(v *Value) { + switch { + case v.Type.IsInteger() && v.Type.Size() > v.Block.Func.Config.RegSize: + decomposeInt64Phi(v) + case v.Type.IsComplex(): + decomposeComplexPhi(v) + case v.Type.IsString(): + decomposeStringPhi(v) + case v.Type.IsSlice(): + decomposeSlicePhi(v) + case v.Type.IsInterface(): + decomposeInterfacePhi(v) + case v.Type.IsFloat(): + // floats are never decomposed, even ones bigger than RegSize + case v.Type.Size() > v.Block.Func.Config.RegSize: + v.Fatalf("undecomposed type %s", v.Type) + } +} + +func decomposeStringPhi(v *Value) { + types := &v.Block.Func.Config.Types + ptrType := types.BytePtr + lenType := types.Int + + ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType) + len := v.Block.NewValue0(v.Pos, OpPhi, lenType) + for _, a := range v.Args { + ptr.AddArg(a.Block.NewValue1(v.Pos, OpStringPtr, ptrType, a)) + len.AddArg(a.Block.NewValue1(v.Pos, OpStringLen, lenType, a)) + } + v.reset(OpStringMake) + v.AddArg(ptr) + v.AddArg(len) +} + +func decomposeSlicePhi(v *Value) { + types := &v.Block.Func.Config.Types + ptrType := v.Type.Elem().PtrTo() + lenType := types.Int + + ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType) + len := v.Block.NewValue0(v.Pos, OpPhi, lenType) + cap := v.Block.NewValue0(v.Pos, OpPhi, lenType) + for _, a := range v.Args { + ptr.AddArg(a.Block.NewValue1(v.Pos, OpSlicePtr, ptrType, a)) + len.AddArg(a.Block.NewValue1(v.Pos, OpSliceLen, lenType, a)) + cap.AddArg(a.Block.NewValue1(v.Pos, OpSliceCap, lenType, a)) + } + v.reset(OpSliceMake) + v.AddArg(ptr) + v.AddArg(len) + v.AddArg(cap) +} + +func decomposeInt64Phi(v *Value) { + cfgtypes := &v.Block.Func.Config.Types + var partType *types.Type + if v.Type.IsSigned() { + partType = cfgtypes.Int32 + } else { + partType = cfgtypes.UInt32 + } + + hi := v.Block.NewValue0(v.Pos, OpPhi, partType) + lo := v.Block.NewValue0(v.Pos, OpPhi, cfgtypes.UInt32) + for _, a := range v.Args { + hi.AddArg(a.Block.NewValue1(v.Pos, OpInt64Hi, partType, a)) + lo.AddArg(a.Block.NewValue1(v.Pos, OpInt64Lo, cfgtypes.UInt32, a)) + } + v.reset(OpInt64Make) + v.AddArg(hi) + v.AddArg(lo) +} + +func decomposeComplexPhi(v *Value) { + cfgtypes := &v.Block.Func.Config.Types + var partType *types.Type + switch z := v.Type.Size(); z { + case 8: + partType = cfgtypes.Float32 + case 16: + partType = cfgtypes.Float64 + default: + v.Fatalf("decomposeComplexPhi: bad complex size %d", z) + } + + real := v.Block.NewValue0(v.Pos, OpPhi, partType) + imag := v.Block.NewValue0(v.Pos, OpPhi, partType) + for _, a := range v.Args { + real.AddArg(a.Block.NewValue1(v.Pos, OpComplexReal, partType, a)) + imag.AddArg(a.Block.NewValue1(v.Pos, OpComplexImag, partType, a)) + } + v.reset(OpComplexMake) + v.AddArg(real) + v.AddArg(imag) +} + +func decomposeInterfacePhi(v *Value) { + uintptrType := v.Block.Func.Config.Types.Uintptr + ptrType := v.Block.Func.Config.Types.BytePtr + + itab := v.Block.NewValue0(v.Pos, OpPhi, uintptrType) + data := v.Block.NewValue0(v.Pos, OpPhi, ptrType) + for _, a := range v.Args { + itab.AddArg(a.Block.NewValue1(v.Pos, OpITab, uintptrType, a)) + data.AddArg(a.Block.NewValue1(v.Pos, OpIData, ptrType, a)) + } + v.reset(OpIMake) + v.AddArg(itab) + v.AddArg(data) +} + +func decomposeArgs(f *Func) { + applyRewrite(f, rewriteBlockdecArgs, rewriteValuedecArgs, removeDeadValues) +} + +func decomposeUser(f *Func) { + for _, b := range f.Blocks { + for _, v := range b.Values { + if v.Op != OpPhi { + continue + } + decomposeUserPhi(v) + } + } + // Split up named values into their components. + i := 0 + var newNames []LocalSlot + for _, name := range f.Names { + t := name.Type + switch { + case t.IsStruct(): + newNames = decomposeUserStructInto(f, name, newNames) + case t.IsArray(): + newNames = decomposeUserArrayInto(f, name, newNames) + default: + f.Names[i] = name + i++ + } + } + f.Names = f.Names[:i] + f.Names = append(f.Names, newNames...) +} + +// decomposeUserArrayInto creates names for the element(s) of arrays referenced +// by name where possible, and appends those new names to slots, which is then +// returned. +func decomposeUserArrayInto(f *Func, name LocalSlot, slots []LocalSlot) []LocalSlot { + t := name.Type + if t.NumElem() == 0 { + // TODO(khr): Not sure what to do here. Probably nothing. + // Names for empty arrays aren't important. + return slots + } + if t.NumElem() != 1 { + // shouldn't get here due to CanSSA + f.Fatalf("array not of size 1") + } + elemName := f.fe.SplitArray(name) + var keep []*Value + for _, v := range f.NamedValues[name] { + if v.Op != OpArrayMake1 { + keep = append(keep, v) + continue + } + f.NamedValues[elemName] = append(f.NamedValues[elemName], v.Args[0]) + } + if len(keep) == 0 { + // delete the name for the array as a whole + delete(f.NamedValues, name) + } else { + f.NamedValues[name] = keep + } + + if t.Elem().IsArray() { + return decomposeUserArrayInto(f, elemName, slots) + } else if t.Elem().IsStruct() { + return decomposeUserStructInto(f, elemName, slots) + } + + return append(slots, elemName) +} + +// decomposeUserStructInto creates names for the fields(s) of structs referenced +// by name where possible, and appends those new names to slots, which is then +// returned. +func decomposeUserStructInto(f *Func, name LocalSlot, slots []LocalSlot) []LocalSlot { + fnames := []LocalSlot{} // slots for struct in name + t := name.Type + n := t.NumFields() + + for i := 0; i < n; i++ { + fs := f.fe.SplitStruct(name, i) + fnames = append(fnames, fs) + // arrays and structs will be decomposed further, so + // there's no need to record a name + if !fs.Type.IsArray() && !fs.Type.IsStruct() { + slots = append(slots, fs) + } + } + + makeOp := StructMakeOp(n) + var keep []*Value + // create named values for each struct field + for _, v := range f.NamedValues[name] { + if v.Op != makeOp { + keep = append(keep, v) + continue + } + for i := 0; i < len(fnames); i++ { + f.NamedValues[fnames[i]] = append(f.NamedValues[fnames[i]], v.Args[i]) + } + } + if len(keep) == 0 { + // delete the name for the struct as a whole + delete(f.NamedValues, name) + } else { + f.NamedValues[name] = keep + } + + // now that this f.NamedValues contains values for the struct + // fields, recurse into nested structs + for i := 0; i < n; i++ { + if name.Type.FieldType(i).IsStruct() { + slots = decomposeUserStructInto(f, fnames[i], slots) + delete(f.NamedValues, fnames[i]) + } else if name.Type.FieldType(i).IsArray() { + slots = decomposeUserArrayInto(f, fnames[i], slots) + delete(f.NamedValues, fnames[i]) + } + } + return slots +} +func decomposeUserPhi(v *Value) { + switch { + case v.Type.IsStruct(): + decomposeStructPhi(v) + case v.Type.IsArray(): + decomposeArrayPhi(v) + } +} + +// decomposeStructPhi replaces phi-of-struct with structmake(phi-for-each-field), +// and then recursively decomposes the phis for each field. +func decomposeStructPhi(v *Value) { + t := v.Type + n := t.NumFields() + var fields [MaxStruct]*Value + for i := 0; i < n; i++ { + fields[i] = v.Block.NewValue0(v.Pos, OpPhi, t.FieldType(i)) + } + for _, a := range v.Args { + for i := 0; i < n; i++ { + fields[i].AddArg(a.Block.NewValue1I(v.Pos, OpStructSelect, t.FieldType(i), int64(i), a)) + } + } + v.reset(StructMakeOp(n)) + v.AddArgs(fields[:n]...) + + // Recursively decompose phis for each field. + for _, f := range fields[:n] { + decomposeUserPhi(f) + } +} + +// decomposeArrayPhi replaces phi-of-array with arraymake(phi-of-array-element), +// and then recursively decomposes the element phi. +func decomposeArrayPhi(v *Value) { + t := v.Type + if t.NumElem() == 0 { + v.reset(OpArrayMake0) + return + } + if t.NumElem() != 1 { + v.Fatalf("SSAable array must have no more than 1 element") + } + elem := v.Block.NewValue0(v.Pos, OpPhi, t.Elem()) + for _, a := range v.Args { + elem.AddArg(a.Block.NewValue1I(v.Pos, OpArraySelect, t.Elem(), 0, a)) + } + v.reset(OpArrayMake1) + v.AddArg(elem) + + // Recursively decompose elem phi. + decomposeUserPhi(elem) +} + +// MaxStruct is the maximum number of fields a struct +// can have and still be SSAable. +const MaxStruct = 4 + +// StructMakeOp returns the opcode to construct a struct with the +// given number of fields. +func StructMakeOp(nf int) Op { + switch nf { + case 0: + return OpStructMake0 + case 1: + return OpStructMake1 + case 2: + return OpStructMake2 + case 3: + return OpStructMake3 + case 4: + return OpStructMake4 + } + panic("too many fields in an SSAable struct") +} + +type namedVal struct { + locIndex, valIndex int // f.NamedValues[f.Names[locIndex]][valIndex] = key +} + +// deleteNamedVals removes particular values with debugger names from f's naming data structures +func deleteNamedVals(f *Func, toDelete []namedVal) { + // Arrange to delete from larger indices to smaller, to ensure swap-with-end deletion does not invalid pending indices. + sort.Slice(toDelete, func(i, j int) bool { + if toDelete[i].locIndex != toDelete[j].locIndex { + return toDelete[i].locIndex > toDelete[j].locIndex + } + return toDelete[i].valIndex > toDelete[j].valIndex + + }) + + // Get rid of obsolete names + for _, d := range toDelete { + loc := f.Names[d.locIndex] + vals := f.NamedValues[loc] + l := len(vals) - 1 + if l > 0 { + vals[d.valIndex] = vals[l] + f.NamedValues[loc] = vals[:l] + } else { + delete(f.NamedValues, loc) + l = len(f.Names) - 1 + f.Names[d.locIndex] = f.Names[l] + f.Names = f.Names[:l] + } + } +} |