1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/types"
"sort"
)
// decompose converts phi ops on compound builtin types into phi
// ops on simple types, then invokes rewrite rules to decompose
// other ops on those types.
func decomposeBuiltIn(f *Func) {
// Decompose phis
for _, b := range f.Blocks {
for _, v := range b.Values {
if v.Op != OpPhi {
continue
}
decomposeBuiltInPhi(v)
}
}
// Decompose other values
// Note: deadcode is false because we need to keep the original
// values around so the name component resolution below can still work.
applyRewrite(f, rewriteBlockdec, rewriteValuedec, leaveDeadValues)
if f.Config.RegSize == 4 {
applyRewrite(f, rewriteBlockdec64, rewriteValuedec64, leaveDeadValues)
}
// Split up named values into their components.
// accumulate old names for aggregates (that are decomposed) in toDelete for efficient bulk deletion,
// accumulate new LocalSlots in newNames for addition after the iteration. This decomposition is for
// builtin types with leaf components, and thus there is no need to reprocess the newly create LocalSlots.
var toDelete []namedVal
var newNames []LocalSlot
for i, name := range f.Names {
t := name.Type
switch {
case t.IsInteger() && t.Size() > f.Config.RegSize:
hiName, loName := f.fe.SplitInt64(name)
newNames = append(newNames, hiName, loName)
for j, v := range f.NamedValues[name] {
if v.Op != OpInt64Make {
continue
}
f.NamedValues[hiName] = append(f.NamedValues[hiName], v.Args[0])
f.NamedValues[loName] = append(f.NamedValues[loName], v.Args[1])
toDelete = append(toDelete, namedVal{i, j})
}
case t.IsComplex():
rName, iName := f.fe.SplitComplex(name)
newNames = append(newNames, rName, iName)
for j, v := range f.NamedValues[name] {
if v.Op != OpComplexMake {
continue
}
f.NamedValues[rName] = append(f.NamedValues[rName], v.Args[0])
f.NamedValues[iName] = append(f.NamedValues[iName], v.Args[1])
toDelete = append(toDelete, namedVal{i, j})
}
case t.IsString():
ptrName, lenName := f.fe.SplitString(name)
newNames = append(newNames, ptrName, lenName)
for j, v := range f.NamedValues[name] {
if v.Op != OpStringMake {
continue
}
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0])
f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1])
toDelete = append(toDelete, namedVal{i, j})
}
case t.IsSlice():
ptrName, lenName, capName := f.fe.SplitSlice(name)
newNames = append(newNames, ptrName, lenName, capName)
for j, v := range f.NamedValues[name] {
if v.Op != OpSliceMake {
continue
}
f.NamedValues[ptrName] = append(f.NamedValues[ptrName], v.Args[0])
f.NamedValues[lenName] = append(f.NamedValues[lenName], v.Args[1])
f.NamedValues[capName] = append(f.NamedValues[capName], v.Args[2])
toDelete = append(toDelete, namedVal{i, j})
}
case t.IsInterface():
typeName, dataName := f.fe.SplitInterface(name)
newNames = append(newNames, typeName, dataName)
for j, v := range f.NamedValues[name] {
if v.Op != OpIMake {
continue
}
f.NamedValues[typeName] = append(f.NamedValues[typeName], v.Args[0])
f.NamedValues[dataName] = append(f.NamedValues[dataName], v.Args[1])
toDelete = append(toDelete, namedVal{i, j})
}
case t.IsFloat():
// floats are never decomposed, even ones bigger than RegSize
case t.Size() > f.Config.RegSize:
f.Fatalf("undecomposed named type %s %v", name, t)
}
}
deleteNamedVals(f, toDelete)
f.Names = append(f.Names, newNames...)
}
func decomposeBuiltInPhi(v *Value) {
switch {
case v.Type.IsInteger() && v.Type.Size() > v.Block.Func.Config.RegSize:
decomposeInt64Phi(v)
case v.Type.IsComplex():
decomposeComplexPhi(v)
case v.Type.IsString():
decomposeStringPhi(v)
case v.Type.IsSlice():
decomposeSlicePhi(v)
case v.Type.IsInterface():
decomposeInterfacePhi(v)
case v.Type.IsFloat():
// floats are never decomposed, even ones bigger than RegSize
case v.Type.Size() > v.Block.Func.Config.RegSize:
v.Fatalf("undecomposed type %s", v.Type)
}
}
func decomposeStringPhi(v *Value) {
types := &v.Block.Func.Config.Types
ptrType := types.BytePtr
lenType := types.Int
ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
len := v.Block.NewValue0(v.Pos, OpPhi, lenType)
for _, a := range v.Args {
ptr.AddArg(a.Block.NewValue1(v.Pos, OpStringPtr, ptrType, a))
len.AddArg(a.Block.NewValue1(v.Pos, OpStringLen, lenType, a))
}
v.reset(OpStringMake)
v.AddArg(ptr)
v.AddArg(len)
}
func decomposeSlicePhi(v *Value) {
types := &v.Block.Func.Config.Types
ptrType := v.Type.Elem().PtrTo()
lenType := types.Int
ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
len := v.Block.NewValue0(v.Pos, OpPhi, lenType)
cap := v.Block.NewValue0(v.Pos, OpPhi, lenType)
for _, a := range v.Args {
ptr.AddArg(a.Block.NewValue1(v.Pos, OpSlicePtr, ptrType, a))
len.AddArg(a.Block.NewValue1(v.Pos, OpSliceLen, lenType, a))
cap.AddArg(a.Block.NewValue1(v.Pos, OpSliceCap, lenType, a))
}
v.reset(OpSliceMake)
v.AddArg(ptr)
v.AddArg(len)
v.AddArg(cap)
}
func decomposeInt64Phi(v *Value) {
cfgtypes := &v.Block.Func.Config.Types
var partType *types.Type
if v.Type.IsSigned() {
partType = cfgtypes.Int32
} else {
partType = cfgtypes.UInt32
}
hi := v.Block.NewValue0(v.Pos, OpPhi, partType)
lo := v.Block.NewValue0(v.Pos, OpPhi, cfgtypes.UInt32)
for _, a := range v.Args {
hi.AddArg(a.Block.NewValue1(v.Pos, OpInt64Hi, partType, a))
lo.AddArg(a.Block.NewValue1(v.Pos, OpInt64Lo, cfgtypes.UInt32, a))
}
v.reset(OpInt64Make)
v.AddArg(hi)
v.AddArg(lo)
}
func decomposeComplexPhi(v *Value) {
cfgtypes := &v.Block.Func.Config.Types
var partType *types.Type
switch z := v.Type.Size(); z {
case 8:
partType = cfgtypes.Float32
case 16:
partType = cfgtypes.Float64
default:
v.Fatalf("decomposeComplexPhi: bad complex size %d", z)
}
real := v.Block.NewValue0(v.Pos, OpPhi, partType)
imag := v.Block.NewValue0(v.Pos, OpPhi, partType)
for _, a := range v.Args {
real.AddArg(a.Block.NewValue1(v.Pos, OpComplexReal, partType, a))
imag.AddArg(a.Block.NewValue1(v.Pos, OpComplexImag, partType, a))
}
v.reset(OpComplexMake)
v.AddArg(real)
v.AddArg(imag)
}
func decomposeInterfacePhi(v *Value) {
uintptrType := v.Block.Func.Config.Types.Uintptr
ptrType := v.Block.Func.Config.Types.BytePtr
itab := v.Block.NewValue0(v.Pos, OpPhi, uintptrType)
data := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
for _, a := range v.Args {
itab.AddArg(a.Block.NewValue1(v.Pos, OpITab, uintptrType, a))
data.AddArg(a.Block.NewValue1(v.Pos, OpIData, ptrType, a))
}
v.reset(OpIMake)
v.AddArg(itab)
v.AddArg(data)
}
func decomposeArgs(f *Func) {
applyRewrite(f, rewriteBlockdecArgs, rewriteValuedecArgs, removeDeadValues)
}
func decomposeUser(f *Func) {
for _, b := range f.Blocks {
for _, v := range b.Values {
if v.Op != OpPhi {
continue
}
decomposeUserPhi(v)
}
}
// Split up named values into their components.
i := 0
var newNames []LocalSlot
for _, name := range f.Names {
t := name.Type
switch {
case t.IsStruct():
newNames = decomposeUserStructInto(f, name, newNames)
case t.IsArray():
newNames = decomposeUserArrayInto(f, name, newNames)
default:
f.Names[i] = name
i++
}
}
f.Names = f.Names[:i]
f.Names = append(f.Names, newNames...)
}
// decomposeUserArrayInto creates names for the element(s) of arrays referenced
// by name where possible, and appends those new names to slots, which is then
// returned.
func decomposeUserArrayInto(f *Func, name LocalSlot, slots []LocalSlot) []LocalSlot {
t := name.Type
if t.NumElem() == 0 {
// TODO(khr): Not sure what to do here. Probably nothing.
// Names for empty arrays aren't important.
return slots
}
if t.NumElem() != 1 {
// shouldn't get here due to CanSSA
f.Fatalf("array not of size 1")
}
elemName := f.fe.SplitArray(name)
var keep []*Value
for _, v := range f.NamedValues[name] {
if v.Op != OpArrayMake1 {
keep = append(keep, v)
continue
}
f.NamedValues[elemName] = append(f.NamedValues[elemName], v.Args[0])
}
if len(keep) == 0 {
// delete the name for the array as a whole
delete(f.NamedValues, name)
} else {
f.NamedValues[name] = keep
}
if t.Elem().IsArray() {
return decomposeUserArrayInto(f, elemName, slots)
} else if t.Elem().IsStruct() {
return decomposeUserStructInto(f, elemName, slots)
}
return append(slots, elemName)
}
// decomposeUserStructInto creates names for the fields(s) of structs referenced
// by name where possible, and appends those new names to slots, which is then
// returned.
func decomposeUserStructInto(f *Func, name LocalSlot, slots []LocalSlot) []LocalSlot {
fnames := []LocalSlot{} // slots for struct in name
t := name.Type
n := t.NumFields()
for i := 0; i < n; i++ {
fs := f.fe.SplitStruct(name, i)
fnames = append(fnames, fs)
// arrays and structs will be decomposed further, so
// there's no need to record a name
if !fs.Type.IsArray() && !fs.Type.IsStruct() {
slots = append(slots, fs)
}
}
makeOp := StructMakeOp(n)
var keep []*Value
// create named values for each struct field
for _, v := range f.NamedValues[name] {
if v.Op != makeOp {
keep = append(keep, v)
continue
}
for i := 0; i < len(fnames); i++ {
f.NamedValues[fnames[i]] = append(f.NamedValues[fnames[i]], v.Args[i])
}
}
if len(keep) == 0 {
// delete the name for the struct as a whole
delete(f.NamedValues, name)
} else {
f.NamedValues[name] = keep
}
// now that this f.NamedValues contains values for the struct
// fields, recurse into nested structs
for i := 0; i < n; i++ {
if name.Type.FieldType(i).IsStruct() {
slots = decomposeUserStructInto(f, fnames[i], slots)
delete(f.NamedValues, fnames[i])
} else if name.Type.FieldType(i).IsArray() {
slots = decomposeUserArrayInto(f, fnames[i], slots)
delete(f.NamedValues, fnames[i])
}
}
return slots
}
func decomposeUserPhi(v *Value) {
switch {
case v.Type.IsStruct():
decomposeStructPhi(v)
case v.Type.IsArray():
decomposeArrayPhi(v)
}
}
// decomposeStructPhi replaces phi-of-struct with structmake(phi-for-each-field),
// and then recursively decomposes the phis for each field.
func decomposeStructPhi(v *Value) {
t := v.Type
n := t.NumFields()
var fields [MaxStruct]*Value
for i := 0; i < n; i++ {
fields[i] = v.Block.NewValue0(v.Pos, OpPhi, t.FieldType(i))
}
for _, a := range v.Args {
for i := 0; i < n; i++ {
fields[i].AddArg(a.Block.NewValue1I(v.Pos, OpStructSelect, t.FieldType(i), int64(i), a))
}
}
v.reset(StructMakeOp(n))
v.AddArgs(fields[:n]...)
// Recursively decompose phis for each field.
for _, f := range fields[:n] {
decomposeUserPhi(f)
}
}
// decomposeArrayPhi replaces phi-of-array with arraymake(phi-of-array-element),
// and then recursively decomposes the element phi.
func decomposeArrayPhi(v *Value) {
t := v.Type
if t.NumElem() == 0 {
v.reset(OpArrayMake0)
return
}
if t.NumElem() != 1 {
v.Fatalf("SSAable array must have no more than 1 element")
}
elem := v.Block.NewValue0(v.Pos, OpPhi, t.Elem())
for _, a := range v.Args {
elem.AddArg(a.Block.NewValue1I(v.Pos, OpArraySelect, t.Elem(), 0, a))
}
v.reset(OpArrayMake1)
v.AddArg(elem)
// Recursively decompose elem phi.
decomposeUserPhi(elem)
}
// MaxStruct is the maximum number of fields a struct
// can have and still be SSAable.
const MaxStruct = 4
// StructMakeOp returns the opcode to construct a struct with the
// given number of fields.
func StructMakeOp(nf int) Op {
switch nf {
case 0:
return OpStructMake0
case 1:
return OpStructMake1
case 2:
return OpStructMake2
case 3:
return OpStructMake3
case 4:
return OpStructMake4
}
panic("too many fields in an SSAable struct")
}
type namedVal struct {
locIndex, valIndex int // f.NamedValues[f.Names[locIndex]][valIndex] = key
}
// deleteNamedVals removes particular values with debugger names from f's naming data structures
func deleteNamedVals(f *Func, toDelete []namedVal) {
// Arrange to delete from larger indices to smaller, to ensure swap-with-end deletion does not invalid pending indices.
sort.Slice(toDelete, func(i, j int) bool {
if toDelete[i].locIndex != toDelete[j].locIndex {
return toDelete[i].locIndex > toDelete[j].locIndex
}
return toDelete[i].valIndex > toDelete[j].valIndex
})
// Get rid of obsolete names
for _, d := range toDelete {
loc := f.Names[d.locIndex]
vals := f.NamedValues[loc]
l := len(vals) - 1
if l > 0 {
vals[d.valIndex] = vals[l]
f.NamedValues[loc] = vals[:l]
} else {
delete(f.NamedValues, loc)
l = len(f.Names) - 1
f.Names[d.locIndex] = f.Names[l]
f.Names = f.Names[:l]
}
}
}
|