1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package elliptic
import (
"crypto/elliptic/internal/fiat"
"math/big"
)
type p521Curve struct {
*CurveParams
}
var p521 p521Curve
var p521Params *CurveParams
func initP521() {
// See FIPS 186-3, section D.2.5
p521.CurveParams = &CurveParams{Name: "P-521"}
p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
p521.BitSize = 521
}
func (curve p521Curve) Params() *CurveParams {
return curve.CurveParams
}
func (curve p521Curve) IsOnCurve(x, y *big.Int) bool {
if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
return false
}
x1 := bigIntToFiatP521(x)
y1 := bigIntToFiatP521(y)
b := bigIntToFiatP521(curve.B) // TODO: precompute this value.
// x³ - 3x + b.
x3 := new(fiat.P521Element).Square(x1)
x3.Mul(x3, x1)
threeX := new(fiat.P521Element).Add(x1, x1)
threeX.Add(threeX, x1)
x3.Sub(x3, threeX)
x3.Add(x3, b)
// y² = x³ - 3x + b
y2 := new(fiat.P521Element).Square(y1)
return x3.Equal(y2) == 1
}
type p521Point struct {
x, y, z *fiat.P521Element
}
func fiatP521ToBigInt(x *fiat.P521Element) *big.Int {
xBytes := x.Bytes()
for i := range xBytes[:len(xBytes)/2] {
xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
}
return new(big.Int).SetBytes(xBytes)
}
// affineFromJacobian brings a point in Jacobian coordinates back to affine
// coordinates, with (0, 0) representing infinity by convention. It also goes
// back to big.Int values to match the exposed API.
func (curve p521Curve) affineFromJacobian(p *p521Point) (x, y *big.Int) {
if p.z.IsZero() == 1 {
return new(big.Int), new(big.Int)
}
zinv := new(fiat.P521Element).Invert(p.z)
zinvsq := new(fiat.P521Element).Mul(zinv, zinv)
xx := new(fiat.P521Element).Mul(p.x, zinvsq)
zinvsq.Mul(zinvsq, zinv)
yy := new(fiat.P521Element).Mul(p.y, zinvsq)
return fiatP521ToBigInt(xx), fiatP521ToBigInt(yy)
}
func bigIntToFiatP521(x *big.Int) *fiat.P521Element {
xBytes := new(big.Int).Mod(x, p521.P).FillBytes(make([]byte, 66))
for i := range xBytes[:len(xBytes)/2] {
xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
}
x1, err := new(fiat.P521Element).SetBytes(xBytes)
if err != nil {
// The input is reduced modulo P and encoded in a fixed size bytes
// slice, this should be impossible.
panic("internal error: bigIntToFiatP521")
}
return x1
}
// jacobianFromAffine converts (x, y) affine coordinates into (x, y, z) Jacobian
// coordinates. It also converts from big.Int to fiat, which is necessarily a
// messy and variable-time operation, which we can't avoid due to the exposed API.
func (curve p521Curve) jacobianFromAffine(x, y *big.Int) *p521Point {
// (0, 0) is by convention the point at infinity, which can't be represented
// in affine coordinates, but is (0, 0, 0) in Jacobian.
if x.Sign() == 0 && y.Sign() == 0 {
return &p521Point{
x: new(fiat.P521Element),
y: new(fiat.P521Element),
z: new(fiat.P521Element),
}
}
return &p521Point{
x: bigIntToFiatP521(x),
y: bigIntToFiatP521(y),
z: new(fiat.P521Element).One(),
}
}
func (curve p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
p1 := curve.jacobianFromAffine(x1, y1)
p2 := curve.jacobianFromAffine(x2, y2)
return curve.affineFromJacobian(p1.addJacobian(p1, p2))
}
// addJacobian sets q = p1 + p2, and returns q. The points may overlap.
func (q *p521Point) addJacobian(p1, p2 *p521Point) *p521Point {
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
z1IsZero := p1.z.IsZero()
z2IsZero := p2.z.IsZero()
z1z1 := new(fiat.P521Element).Square(p1.z)
z2z2 := new(fiat.P521Element).Square(p2.z)
u1 := new(fiat.P521Element).Mul(p1.x, z2z2)
u2 := new(fiat.P521Element).Mul(p2.x, z1z1)
h := new(fiat.P521Element).Sub(u2, u1)
xEqual := h.IsZero() == 1
i := new(fiat.P521Element).Add(h, h)
i.Square(i)
j := new(fiat.P521Element).Mul(h, i)
s1 := new(fiat.P521Element).Mul(p1.y, p2.z)
s1.Mul(s1, z2z2)
s2 := new(fiat.P521Element).Mul(p2.y, p1.z)
s2.Mul(s2, z1z1)
r := new(fiat.P521Element).Sub(s2, s1)
yEqual := r.IsZero() == 1
if xEqual && yEqual && z1IsZero == 0 && z2IsZero == 0 {
return q.doubleJacobian(p1)
}
r.Add(r, r)
v := new(fiat.P521Element).Mul(u1, i)
x := new(fiat.P521Element).Set(r)
x.Square(x)
x.Sub(x, j)
x.Sub(x, v)
x.Sub(x, v)
y := new(fiat.P521Element).Set(r)
v.Sub(v, x)
y.Mul(y, v)
s1.Mul(s1, j)
s1.Add(s1, s1)
y.Sub(y, s1)
z := new(fiat.P521Element).Add(p1.z, p2.z)
z.Square(z)
z.Sub(z, z1z1)
z.Sub(z, z2z2)
z.Mul(z, h)
x.Select(p2.x, x, z1IsZero)
x.Select(p1.x, x, z2IsZero)
y.Select(p2.y, y, z1IsZero)
y.Select(p1.y, y, z2IsZero)
z.Select(p2.z, z, z1IsZero)
z.Select(p1.z, z, z2IsZero)
q.x.Set(x)
q.y.Set(y)
q.z.Set(z)
return q
}
func (curve p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
p := curve.jacobianFromAffine(x1, y1)
return curve.affineFromJacobian(p.doubleJacobian(p))
}
// doubleJacobian sets q = p + p, and returns q. The points may overlap.
func (q *p521Point) doubleJacobian(p *p521Point) *p521Point {
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
delta := new(fiat.P521Element).Square(p.z)
gamma := new(fiat.P521Element).Square(p.y)
alpha := new(fiat.P521Element).Sub(p.x, delta)
alpha2 := new(fiat.P521Element).Add(p.x, delta)
alpha.Mul(alpha, alpha2)
alpha2.Set(alpha)
alpha.Add(alpha, alpha)
alpha.Add(alpha, alpha2)
beta := alpha2.Mul(p.x, gamma)
q.x.Square(alpha)
beta8 := new(fiat.P521Element).Add(beta, beta)
beta8.Add(beta8, beta8)
beta8.Add(beta8, beta8)
q.x.Sub(q.x, beta8)
q.z.Add(p.y, p.z)
q.z.Square(q.z)
q.z.Sub(q.z, gamma)
q.z.Sub(q.z, delta)
beta.Add(beta, beta)
beta.Add(beta, beta)
beta.Sub(beta, q.x)
q.y.Mul(alpha, beta)
gamma.Square(gamma)
gamma.Add(gamma, gamma)
gamma.Add(gamma, gamma)
gamma.Add(gamma, gamma)
q.y.Sub(q.y, gamma)
return q
}
func (curve p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
B := curve.jacobianFromAffine(Bx, By)
p, t := &p521Point{
x: new(fiat.P521Element),
y: new(fiat.P521Element),
z: new(fiat.P521Element),
}, &p521Point{
x: new(fiat.P521Element),
y: new(fiat.P521Element),
z: new(fiat.P521Element),
}
for _, byte := range scalar {
for bitNum := 0; bitNum < 8; bitNum++ {
p.doubleJacobian(p)
bit := (byte >> (7 - bitNum)) & 1
t.addJacobian(p, B)
p.x.Select(t.x, p.x, int(bit))
p.y.Select(t.y, p.y, int(bit))
p.z.Select(t.z, p.z, int(bit))
}
}
return curve.affineFromJacobian(p)
}
func (curve p521Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}
|