1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// walkAssign walks an OAS (AssignExpr) or OASOP (AssignOpExpr) node.
func walkAssign(init *ir.Nodes, n ir.Node) ir.Node {
init.Append(ir.TakeInit(n)...)
var left, right ir.Node
switch n.Op() {
case ir.OAS:
n := n.(*ir.AssignStmt)
left, right = n.X, n.Y
case ir.OASOP:
n := n.(*ir.AssignOpStmt)
left, right = n.X, n.Y
}
// Recognize m[k] = append(m[k], ...) so we can reuse
// the mapassign call.
var mapAppend *ir.CallExpr
if left.Op() == ir.OINDEXMAP && right.Op() == ir.OAPPEND {
left := left.(*ir.IndexExpr)
mapAppend = right.(*ir.CallExpr)
if !ir.SameSafeExpr(left, mapAppend.Args[0]) {
base.Fatalf("not same expressions: %v != %v", left, mapAppend.Args[0])
}
}
left = walkExpr(left, init)
left = safeExpr(left, init)
if mapAppend != nil {
mapAppend.Args[0] = left
}
if n.Op() == ir.OASOP {
// Rewrite x op= y into x = x op y.
n = ir.NewAssignStmt(base.Pos, left, typecheck.Expr(ir.NewBinaryExpr(base.Pos, n.(*ir.AssignOpStmt).AsOp, left, right)))
} else {
n.(*ir.AssignStmt).X = left
}
as := n.(*ir.AssignStmt)
if oaslit(as, init) {
return ir.NewBlockStmt(as.Pos(), nil)
}
if as.Y == nil {
// TODO(austin): Check all "implicit zeroing"
return as
}
if !base.Flag.Cfg.Instrumenting && ir.IsZero(as.Y) {
return as
}
switch as.Y.Op() {
default:
as.Y = walkExpr(as.Y, init)
case ir.ORECV:
// x = <-c; as.Left is x, as.Right.Left is c.
// order.stmt made sure x is addressable.
recv := as.Y.(*ir.UnaryExpr)
recv.X = walkExpr(recv.X, init)
n1 := typecheck.NodAddr(as.X)
r := recv.X // the channel
return mkcall1(chanfn("chanrecv1", 2, r.Type()), nil, init, r, n1)
case ir.OAPPEND:
// x = append(...)
call := as.Y.(*ir.CallExpr)
if call.Type().Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", call.Type().Elem())
}
var r ir.Node
switch {
case isAppendOfMake(call):
// x = append(y, make([]T, y)...)
r = extendSlice(call, init)
case call.IsDDD:
r = appendSlice(call, init) // also works for append(slice, string).
default:
r = walkAppend(call, init, as)
}
as.Y = r
if r.Op() == ir.OAPPEND {
// Left in place for back end.
// Do not add a new write barrier.
// Set up address of type for back end.
r.(*ir.CallExpr).X = reflectdata.TypePtr(r.Type().Elem())
return as
}
// Otherwise, lowered for race detector.
// Treat as ordinary assignment.
}
if as.X != nil && as.Y != nil {
return convas(as, init)
}
return as
}
// walkAssignDotType walks an OAS2DOTTYPE node.
func walkAssignDotType(n *ir.AssignListStmt, init *ir.Nodes) ir.Node {
walkExprListSafe(n.Lhs, init)
n.Rhs[0] = walkExpr(n.Rhs[0], init)
return n
}
// walkAssignFunc walks an OAS2FUNC node.
func walkAssignFunc(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0]
walkExprListSafe(n.Lhs, init)
r = walkExpr(r, init)
if ir.IsIntrinsicCall(r.(*ir.CallExpr)) {
n.Rhs = []ir.Node{r}
return n
}
init.Append(r)
ll := ascompatet(n.Lhs, r.Type())
return ir.NewBlockStmt(src.NoXPos, ll)
}
// walkAssignList walks an OAS2 node.
func walkAssignList(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
return ir.NewBlockStmt(src.NoXPos, ascompatee(ir.OAS, n.Lhs, n.Rhs))
}
// walkAssignMapRead walks an OAS2MAPR node.
func walkAssignMapRead(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0].(*ir.IndexExpr)
walkExprListSafe(n.Lhs, init)
r.X = walkExpr(r.X, init)
r.Index = walkExpr(r.Index, init)
t := r.X.Type()
fast := mapfast(t)
key := mapKeyArg(fast, r, r.Index)
// from:
// a,b = m[i]
// to:
// var,b = mapaccess2*(t, m, i)
// a = *var
a := n.Lhs[0]
var call *ir.CallExpr
if w := t.Elem().Size(); w <= zeroValSize {
fn := mapfn(mapaccess2[fast], t, false)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key)
} else {
fn := mapfn("mapaccess2_fat", t, true)
z := reflectdata.ZeroAddr(w)
call = mkcall1(fn, fn.Type().Results(), init, reflectdata.TypePtr(t), r.X, key, z)
}
// mapaccess2* returns a typed bool, but due to spec changes,
// the boolean result of i.(T) is now untyped so we make it the
// same type as the variable on the lhs.
if ok := n.Lhs[1]; !ir.IsBlank(ok) && ok.Type().IsBoolean() {
call.Type().Field(1).Type = ok.Type()
}
n.Rhs = []ir.Node{call}
n.SetOp(ir.OAS2FUNC)
// don't generate a = *var if a is _
if ir.IsBlank(a) {
return walkExpr(typecheck.Stmt(n), init)
}
var_ := typecheck.Temp(types.NewPtr(t.Elem()))
var_.SetTypecheck(1)
var_.MarkNonNil() // mapaccess always returns a non-nil pointer
n.Lhs[0] = var_
init.Append(walkExpr(n, init))
as := ir.NewAssignStmt(base.Pos, a, ir.NewStarExpr(base.Pos, var_))
return walkExpr(typecheck.Stmt(as), init)
}
// walkAssignRecv walks an OAS2RECV node.
func walkAssignRecv(init *ir.Nodes, n *ir.AssignListStmt) ir.Node {
init.Append(ir.TakeInit(n)...)
r := n.Rhs[0].(*ir.UnaryExpr) // recv
walkExprListSafe(n.Lhs, init)
r.X = walkExpr(r.X, init)
var n1 ir.Node
if ir.IsBlank(n.Lhs[0]) {
n1 = typecheck.NodNil()
} else {
n1 = typecheck.NodAddr(n.Lhs[0])
}
fn := chanfn("chanrecv2", 2, r.X.Type())
ok := n.Lhs[1]
call := mkcall1(fn, types.Types[types.TBOOL], init, r.X, n1)
return typecheck.Stmt(ir.NewAssignStmt(base.Pos, ok, call))
}
// walkReturn walks an ORETURN node.
func walkReturn(n *ir.ReturnStmt) ir.Node {
fn := ir.CurFunc
fn.NumReturns++
if len(n.Results) == 0 {
return n
}
results := fn.Type().Results().FieldSlice()
dsts := make([]ir.Node, len(results))
for i, v := range results {
// TODO(mdempsky): typecheck should have already checked the result variables.
dsts[i] = typecheck.AssignExpr(v.Nname.(*ir.Name))
}
n.Results = ascompatee(n.Op(), dsts, n.Results)
return n
}
// check assign type list to
// an expression list. called in
// expr-list = func()
func ascompatet(nl ir.Nodes, nr *types.Type) []ir.Node {
if len(nl) != nr.NumFields() {
base.Fatalf("ascompatet: assignment count mismatch: %d = %d", len(nl), nr.NumFields())
}
var nn ir.Nodes
for i, l := range nl {
if ir.IsBlank(l) {
continue
}
r := nr.Field(i)
// Order should have created autotemps of the appropriate type for
// us to store results into.
if tmp, ok := l.(*ir.Name); !ok || !tmp.AutoTemp() || !types.Identical(tmp.Type(), r.Type) {
base.FatalfAt(l.Pos(), "assigning %v to %+v", r.Type, l)
}
res := ir.NewResultExpr(base.Pos, nil, types.BADWIDTH)
res.Index = int64(i)
res.SetType(r.Type)
res.SetTypecheck(1)
nn.Append(ir.NewAssignStmt(base.Pos, l, res))
}
return nn
}
// check assign expression list to
// an expression list. called in
// expr-list = expr-list
func ascompatee(op ir.Op, nl, nr []ir.Node) []ir.Node {
// cannot happen: should have been rejected during type checking
if len(nl) != len(nr) {
base.Fatalf("assignment operands mismatch: %+v / %+v", ir.Nodes(nl), ir.Nodes(nr))
}
var assigned ir.NameSet
var memWrite, deferResultWrite bool
// affected reports whether expression n could be affected by
// the assignments applied so far.
affected := func(n ir.Node) bool {
if deferResultWrite {
return true
}
return ir.Any(n, func(n ir.Node) bool {
if n.Op() == ir.ONAME && assigned.Has(n.(*ir.Name)) {
return true
}
if memWrite && readsMemory(n) {
return true
}
return false
})
}
// If a needed expression may be affected by an
// earlier assignment, make an early copy of that
// expression and use the copy instead.
var early ir.Nodes
save := func(np *ir.Node) {
if n := *np; affected(n) {
*np = copyExpr(n, n.Type(), &early)
}
}
var late ir.Nodes
for i, lorig := range nl {
l, r := lorig, nr[i]
// Do not generate 'x = x' during return. See issue 4014.
if op == ir.ORETURN && ir.SameSafeExpr(l, r) {
continue
}
// Save subexpressions needed on left side.
// Drill through non-dereferences.
for {
// If an expression has init statements, they must be evaluated
// before any of its saved sub-operands (#45706).
// TODO(mdempsky): Disallow init statements on lvalues.
init := ir.TakeInit(l)
walkStmtList(init)
early.Append(init...)
switch ll := l.(type) {
case *ir.IndexExpr:
if ll.X.Type().IsArray() {
save(&ll.Index)
l = ll.X
continue
}
case *ir.ParenExpr:
l = ll.X
continue
case *ir.SelectorExpr:
if ll.Op() == ir.ODOT {
l = ll.X
continue
}
}
break
}
var name *ir.Name
switch l.Op() {
default:
base.Fatalf("unexpected lvalue %v", l.Op())
case ir.ONAME:
name = l.(*ir.Name)
case ir.OINDEX, ir.OINDEXMAP:
l := l.(*ir.IndexExpr)
save(&l.X)
save(&l.Index)
case ir.ODEREF:
l := l.(*ir.StarExpr)
save(&l.X)
case ir.ODOTPTR:
l := l.(*ir.SelectorExpr)
save(&l.X)
}
// Save expression on right side.
save(&r)
appendWalkStmt(&late, convas(ir.NewAssignStmt(base.Pos, lorig, r), &late))
// Check for reasons why we may need to compute later expressions
// before this assignment happens.
if name == nil {
// Not a direct assignment to a declared variable.
// Conservatively assume any memory access might alias.
memWrite = true
continue
}
if name.Class == ir.PPARAMOUT && ir.CurFunc.HasDefer() {
// Assignments to a result parameter in a function with defers
// becomes visible early if evaluation of any later expression
// panics (#43835).
deferResultWrite = true
continue
}
if sym := types.OrigSym(name.Sym()); sym == nil || sym.IsBlank() {
// We can ignore assignments to blank or anonymous result parameters.
// These can't appear in expressions anyway.
continue
}
if name.Addrtaken() || !name.OnStack() {
// Global variable, heap escaped, or just addrtaken.
// Conservatively assume any memory access might alias.
memWrite = true
continue
}
// Local, non-addrtaken variable.
// Assignments can only alias with direct uses of this variable.
assigned.Add(name)
}
early.Append(late.Take()...)
return early
}
// readsMemory reports whether the evaluation n directly reads from
// memory that might be written to indirectly.
func readsMemory(n ir.Node) bool {
switch n.Op() {
case ir.ONAME:
n := n.(*ir.Name)
if n.Class == ir.PFUNC {
return false
}
return n.Addrtaken() || !n.OnStack()
case ir.OADD,
ir.OAND,
ir.OANDAND,
ir.OANDNOT,
ir.OBITNOT,
ir.OCONV,
ir.OCONVIFACE,
ir.OCONVIDATA,
ir.OCONVNOP,
ir.ODIV,
ir.ODOT,
ir.ODOTTYPE,
ir.OLITERAL,
ir.OLSH,
ir.OMOD,
ir.OMUL,
ir.ONEG,
ir.ONIL,
ir.OOR,
ir.OOROR,
ir.OPAREN,
ir.OPLUS,
ir.ORSH,
ir.OSUB,
ir.OXOR:
return false
}
// Be conservative.
return true
}
// expand append(l1, l2...) to
// init {
// s := l1
// n := len(s) + len(l2)
// // Compare as uint so growslice can panic on overflow.
// if uint(n) > uint(cap(s)) {
// s = growslice(s, n)
// }
// s = s[:n]
// memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T))
// }
// s
//
// l2 is allowed to be a string.
func appendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
walkAppendArgs(n, init)
l1 := n.Args[0]
l2 := n.Args[1]
l2 = cheapExpr(l2, init)
n.Args[1] = l2
var nodes ir.Nodes
// var s []T
s := typecheck.Temp(l1.Type())
nodes.Append(ir.NewAssignStmt(base.Pos, s, l1)) // s = l1
elemtype := s.Type().Elem()
// n := len(s) + len(l2)
nn := typecheck.Temp(types.Types[types.TINT])
nodes.Append(ir.NewAssignStmt(base.Pos, nn, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), ir.NewUnaryExpr(base.Pos, ir.OLEN, l2))))
// if uint(n) > uint(cap(s))
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nuint := typecheck.Conv(nn, types.Types[types.TUINT])
scapuint := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT])
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nuint, scapuint)
// instantiate growslice(typ *type, []any, int) []any
fn := typecheck.LookupRuntime("growslice")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nodes.Append(nif)
// s = s[:n]
nt := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, nn, nil)
nt.SetBounded(true)
nodes.Append(ir.NewAssignStmt(base.Pos, s, nt))
var ncopy ir.Node
if elemtype.HasPointers() {
// copy(s[len(l1):], l2)
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1), nil, nil)
slice.SetType(s.Type())
ir.CurFunc.SetWBPos(n.Pos())
// instantiate typedslicecopy(typ *type, dstPtr *any, dstLen int, srcPtr *any, srcLen int) int
fn := typecheck.LookupRuntime("typedslicecopy")
fn = typecheck.SubstArgTypes(fn, l1.Type().Elem(), l2.Type().Elem())
ptr1, len1 := backingArrayPtrLen(cheapExpr(slice, &nodes))
ptr2, len2 := backingArrayPtrLen(l2)
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, reflectdata.TypePtr(elemtype), ptr1, len1, ptr2, len2)
} else if base.Flag.Cfg.Instrumenting && !base.Flag.CompilingRuntime {
// rely on runtime to instrument:
// copy(s[len(l1):], l2)
// l2 can be a slice or string.
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1), nil, nil)
slice.SetType(s.Type())
ptr1, len1 := backingArrayPtrLen(cheapExpr(slice, &nodes))
ptr2, len2 := backingArrayPtrLen(l2)
fn := typecheck.LookupRuntime("slicecopy")
fn = typecheck.SubstArgTypes(fn, ptr1.Type().Elem(), ptr2.Type().Elem())
ncopy = mkcall1(fn, types.Types[types.TINT], &nodes, ptr1, len1, ptr2, len2, ir.NewInt(elemtype.Size()))
} else {
// memmove(&s[len(l1)], &l2[0], len(l2)*sizeof(T))
ix := ir.NewIndexExpr(base.Pos, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1))
ix.SetBounded(true)
addr := typecheck.NodAddr(ix)
sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, l2)
nwid := cheapExpr(typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, l2), types.Types[types.TUINTPTR]), &nodes)
nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(elemtype.Size()))
// instantiate func memmove(to *any, frm *any, length uintptr)
fn := typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
ncopy = mkcall1(fn, nil, &nodes, addr, sptr, nwid)
}
ln := append(nodes, ncopy)
typecheck.Stmts(ln)
walkStmtList(ln)
init.Append(ln...)
return s
}
// isAppendOfMake reports whether n is of the form append(x, make([]T, y)...).
// isAppendOfMake assumes n has already been typechecked.
func isAppendOfMake(n ir.Node) bool {
if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
return false
}
if n.Typecheck() == 0 {
base.Fatalf("missing typecheck: %+v", n)
}
if n.Op() != ir.OAPPEND {
return false
}
call := n.(*ir.CallExpr)
if !call.IsDDD || len(call.Args) != 2 || call.Args[1].Op() != ir.OMAKESLICE {
return false
}
mk := call.Args[1].(*ir.MakeExpr)
if mk.Cap != nil {
return false
}
// y must be either an integer constant or the largest possible positive value
// of variable y needs to fit into an uint.
// typecheck made sure that constant arguments to make are not negative and fit into an int.
// The care of overflow of the len argument to make will be handled by an explicit check of int(len) < 0 during runtime.
y := mk.Len
if !ir.IsConst(y, constant.Int) && y.Type().Size() > types.Types[types.TUINT].Size() {
return false
}
return true
}
// extendSlice rewrites append(l1, make([]T, l2)...) to
// init {
// if l2 >= 0 { // Empty if block here for more meaningful node.SetLikely(true)
// } else {
// panicmakeslicelen()
// }
// s := l1
// n := len(s) + l2
// // Compare n and s as uint so growslice can panic on overflow of len(s) + l2.
// // cap is a positive int and n can become negative when len(s) + l2
// // overflows int. Interpreting n when negative as uint makes it larger
// // than cap(s). growslice will check the int n arg and panic if n is
// // negative. This prevents the overflow from being undetected.
// if uint(n) > uint(cap(s)) {
// s = growslice(T, s, n)
// }
// s = s[:n]
// lptr := &l1[0]
// sptr := &s[0]
// if lptr == sptr || !T.HasPointers() {
// // growslice did not clear the whole underlying array (or did not get called)
// hp := &s[len(l1)]
// hn := l2 * sizeof(T)
// memclr(hp, hn)
// }
// }
// s
func extendSlice(n *ir.CallExpr, init *ir.Nodes) ir.Node {
// isAppendOfMake made sure all possible positive values of l2 fit into an uint.
// The case of l2 overflow when converting from e.g. uint to int is handled by an explicit
// check of l2 < 0 at runtime which is generated below.
l2 := typecheck.Conv(n.Args[1].(*ir.MakeExpr).Len, types.Types[types.TINT])
l2 = typecheck.Expr(l2)
n.Args[1] = l2 // walkAppendArgs expects l2 in n.List.Second().
walkAppendArgs(n, init)
l1 := n.Args[0]
l2 = n.Args[1] // re-read l2, as it may have been updated by walkAppendArgs
var nodes []ir.Node
// if l2 >= 0 (likely happens), do nothing
nifneg := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGE, l2, ir.NewInt(0)), nil, nil)
nifneg.Likely = true
// else panicmakeslicelen()
nifneg.Else = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
nodes = append(nodes, nifneg)
// s := l1
s := typecheck.Temp(l1.Type())
nodes = append(nodes, ir.NewAssignStmt(base.Pos, s, l1))
elemtype := s.Type().Elem()
// n := len(s) + l2
nn := typecheck.Temp(types.Types[types.TINT])
nodes = append(nodes, ir.NewAssignStmt(base.Pos, nn, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), l2)))
// if uint(n) > uint(cap(s))
nuint := typecheck.Conv(nn, types.Types[types.TUINT])
capuint := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT])
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, nuint, capuint), nil, nil)
// instantiate growslice(typ *type, old []any, newcap int) []any
fn := typecheck.LookupRuntime("growslice")
fn = typecheck.SubstArgTypes(fn, elemtype, elemtype)
// s = growslice(T, s, n)
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(), reflectdata.TypePtr(elemtype), s, nn))}
nodes = append(nodes, nif)
// s = s[:n]
nt := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, nn, nil)
nt.SetBounded(true)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, s, nt))
// lptr := &l1[0]
l1ptr := typecheck.Temp(l1.Type().Elem().PtrTo())
tmp := ir.NewUnaryExpr(base.Pos, ir.OSPTR, l1)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, l1ptr, tmp))
// sptr := &s[0]
sptr := typecheck.Temp(elemtype.PtrTo())
tmp = ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
nodes = append(nodes, ir.NewAssignStmt(base.Pos, sptr, tmp))
// hp := &s[len(l1)]
ix := ir.NewIndexExpr(base.Pos, s, ir.NewUnaryExpr(base.Pos, ir.OLEN, l1))
ix.SetBounded(true)
hp := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR])
// hn := l2 * sizeof(elem(s))
hn := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, l2, ir.NewInt(elemtype.Size())), types.Types[types.TUINTPTR])
clrname := "memclrNoHeapPointers"
hasPointers := elemtype.HasPointers()
if hasPointers {
clrname = "memclrHasPointers"
ir.CurFunc.SetWBPos(n.Pos())
}
var clr ir.Nodes
clrfn := mkcall(clrname, nil, &clr, hp, hn)
clr.Append(clrfn)
if hasPointers {
// if l1ptr == sptr
nifclr := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OEQ, l1ptr, sptr), nil, nil)
nifclr.Body = clr
nodes = append(nodes, nifclr)
} else {
nodes = append(nodes, clr...)
}
typecheck.Stmts(nodes)
walkStmtList(nodes)
init.Append(nodes...)
return s
}
|