summaryrefslogtreecommitdiffstats
path: root/storage/tokudb/PerconaFT/locktree/manager.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:07:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 18:07:14 +0000
commita175314c3e5827eb193872241446f2f8f5c9d33c (patch)
treecd3d60ca99ae00829c52a6ca79150a5b6e62528b /storage/tokudb/PerconaFT/locktree/manager.cc
parentInitial commit. (diff)
downloadmariadb-10.5-a175314c3e5827eb193872241446f2f8f5c9d33c.tar.xz
mariadb-10.5-a175314c3e5827eb193872241446f2f8f5c9d33c.zip
Adding upstream version 1:10.5.12.upstream/1%10.5.12upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'storage/tokudb/PerconaFT/locktree/manager.cc')
-rw-r--r--storage/tokudb/PerconaFT/locktree/manager.cc513
1 files changed, 513 insertions, 0 deletions
diff --git a/storage/tokudb/PerconaFT/locktree/manager.cc b/storage/tokudb/PerconaFT/locktree/manager.cc
new file mode 100644
index 00000000..5662150d
--- /dev/null
+++ b/storage/tokudb/PerconaFT/locktree/manager.cc
@@ -0,0 +1,513 @@
+/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
+// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
+#ident "$Id$"
+/*======
+This file is part of PerconaFT.
+
+
+Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
+
+ PerconaFT is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License, version 2,
+ as published by the Free Software Foundation.
+
+ PerconaFT is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
+
+----------------------------------------
+
+ PerconaFT is free software: you can redistribute it and/or modify
+ it under the terms of the GNU Affero General Public License, version 3,
+ as published by the Free Software Foundation.
+
+ PerconaFT is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Affero General Public License for more details.
+
+ You should have received a copy of the GNU Affero General Public License
+ along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
+
+----------------------------------------
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+======= */
+
+#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
+
+#include <stdlib.h>
+#include <string.h>
+#include <portability/toku_pthread.h>
+
+#include "locktree.h"
+#include "lock_request.h"
+
+#include <util/status.h>
+
+namespace toku {
+
+void locktree_manager::create(lt_create_cb create_cb, lt_destroy_cb destroy_cb, lt_escalate_cb escalate_cb, void *escalate_extra) {
+ m_max_lock_memory = DEFAULT_MAX_LOCK_MEMORY;
+ m_current_lock_memory = 0;
+
+ m_locktree_map.create();
+ m_lt_create_callback = create_cb;
+ m_lt_destroy_callback = destroy_cb;
+ m_lt_escalate_callback = escalate_cb;
+ m_lt_escalate_callback_extra = escalate_extra;
+ ZERO_STRUCT(m_mutex);
+ toku_mutex_init(*manager_mutex_key, &m_mutex, nullptr);
+
+ ZERO_STRUCT(m_lt_counters);
+
+ escalator_init();
+}
+
+void locktree_manager::destroy(void) {
+ escalator_destroy();
+ invariant(m_current_lock_memory == 0);
+ invariant(m_locktree_map.size() == 0);
+ m_locktree_map.destroy();
+ toku_mutex_destroy(&m_mutex);
+}
+
+void locktree_manager::mutex_lock(void) {
+ toku_mutex_lock(&m_mutex);
+}
+
+void locktree_manager::mutex_unlock(void) {
+ toku_mutex_unlock(&m_mutex);
+}
+
+size_t locktree_manager::get_max_lock_memory(void) {
+ return m_max_lock_memory;
+}
+
+int locktree_manager::set_max_lock_memory(size_t max_lock_memory) {
+ int r = 0;
+ mutex_lock();
+ if (max_lock_memory < m_current_lock_memory) {
+ r = EDOM;
+ } else {
+ m_max_lock_memory = max_lock_memory;
+ }
+ mutex_unlock();
+ return r;
+}
+
+int locktree_manager::find_by_dict_id(locktree *const &lt, const DICTIONARY_ID &dict_id) {
+ if (lt->get_dict_id().dictid < dict_id.dictid) {
+ return -1;
+ } else if (lt->get_dict_id().dictid == dict_id.dictid) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+locktree *locktree_manager::locktree_map_find(const DICTIONARY_ID &dict_id) {
+ locktree *lt;
+ int r = m_locktree_map.find_zero<DICTIONARY_ID, find_by_dict_id>(dict_id, &lt, nullptr);
+ return r == 0 ? lt : nullptr;
+}
+
+void locktree_manager::locktree_map_put(locktree *lt) {
+ int r = m_locktree_map.insert<DICTIONARY_ID, find_by_dict_id>(lt, lt->get_dict_id(), nullptr);
+ invariant_zero(r);
+}
+
+void locktree_manager::locktree_map_remove(locktree *lt) {
+ uint32_t idx;
+ locktree *found_lt;
+ int r = m_locktree_map.find_zero<DICTIONARY_ID, find_by_dict_id>(
+ lt->get_dict_id(), &found_lt, &idx);
+ invariant_zero(r);
+ invariant(found_lt == lt);
+ r = m_locktree_map.delete_at(idx);
+ invariant_zero(r);
+}
+
+locktree *locktree_manager::get_lt(DICTIONARY_ID dict_id,
+ const comparator &cmp, void *on_create_extra) {
+
+ // hold the mutex around searching and maybe
+ // inserting into the locktree map
+ mutex_lock();
+
+ locktree *lt = locktree_map_find(dict_id);
+ if (lt == nullptr) {
+ XCALLOC(lt);
+ lt->create(this, dict_id, cmp);
+
+ // new locktree created - call the on_create callback
+ // and put it in the locktree map
+ if (m_lt_create_callback) {
+ int r = m_lt_create_callback(lt, on_create_extra);
+ if (r != 0) {
+ lt->release_reference();
+ lt->destroy();
+ toku_free(lt);
+ lt = nullptr;
+ }
+ }
+ if (lt) {
+ locktree_map_put(lt);
+ }
+ } else {
+ reference_lt(lt);
+ }
+
+ mutex_unlock();
+
+ return lt;
+}
+
+void locktree_manager::reference_lt(locktree *lt) {
+ // increment using a sync fetch and add.
+ // the caller guarantees that the lt won't be
+ // destroyed while we increment the count here.
+ //
+ // the caller can do this by already having an lt
+ // reference or by holding the manager mutex.
+ //
+ // if the manager's mutex is held, it is ok for the
+ // reference count to transition from 0 to 1 (no race),
+ // since we're serialized with other opens and closes.
+ lt->add_reference();
+}
+
+void locktree_manager::release_lt(locktree *lt) {
+ bool do_destroy = false;
+ DICTIONARY_ID dict_id = lt->get_dict_id();
+
+ // Release a reference on the locktree. If the count transitions to zero,
+ // then we *may* need to do the cleanup.
+ //
+ // Grab the manager's mutex and look for a locktree with this locktree's
+ // dictionary id. Since dictionary id's never get reused, any locktree
+ // found must be the one we just released a reference on.
+ //
+ // At least two things could have happened since we got the mutex:
+ // - Another thread gets a locktree with the same dict_id, increments
+ // the reference count. In this case, we shouldn't destroy it.
+ // - Another thread gets a locktree with the same dict_id and then
+ // releases it quickly, transitioning the reference count from zero to
+ // one and back to zero. In this case, only one of us should destroy it.
+ // It doesn't matter which. We originally missed this case, see #5776.
+ //
+ // After 5776, the high level rule for release is described below.
+ //
+ // If a thread releases a locktree and notices the reference count transition
+ // to zero, then that thread must immediately:
+ // - assume the locktree object is invalid
+ // - grab the manager's mutex
+ // - search the locktree map for a locktree with the same dict_id and remove
+ // it, if it exists. the destroy may be deferred.
+ // - release the manager's mutex
+ //
+ // This way, if many threads transition the same locktree's reference count
+ // from 1 to zero and wait behind the manager's mutex, only one of them will
+ // do the actual destroy and the others will happily do nothing.
+ uint32_t refs = lt->release_reference();
+ if (refs == 0) {
+ mutex_lock();
+ // lt may not have already been destroyed, so look it up.
+ locktree *find_lt = locktree_map_find(dict_id);
+ if (find_lt != nullptr) {
+ // A locktree is still in the map with that dict_id, so it must be
+ // equal to lt. This is true because dictionary ids are never reused.
+ // If the reference count is zero, it's our responsibility to remove
+ // it and do the destroy. Otherwise, someone still wants it.
+ // If the locktree is still valid then check if it should be deleted.
+ if (find_lt == lt) {
+ if (lt->get_reference_count() == 0) {
+ locktree_map_remove(lt);
+ do_destroy = true;
+ }
+ m_lt_counters.add(lt->get_lock_request_info()->counters);
+ }
+ }
+ mutex_unlock();
+ }
+
+ // if necessary, do the destroy without holding the mutex
+ if (do_destroy) {
+ if (m_lt_destroy_callback) {
+ m_lt_destroy_callback(lt);
+ }
+ lt->destroy();
+ toku_free(lt);
+ }
+}
+
+void locktree_manager::run_escalation(void) {
+ struct escalation_fn {
+ static void run(void *extra) {
+ locktree_manager *mgr = (locktree_manager *) extra;
+ mgr->escalate_all_locktrees();
+ };
+ };
+ m_escalator.run(this, escalation_fn::run, this);
+}
+
+// test-only version of lock escalation
+void locktree_manager::run_escalation_for_test(void) {
+ run_escalation();
+}
+
+void locktree_manager::escalate_all_locktrees(void) {
+ uint64_t t0 = toku_current_time_microsec();
+
+ // get all locktrees
+ mutex_lock();
+ int num_locktrees = m_locktree_map.size();
+ locktree **locktrees = new locktree *[num_locktrees];
+ for (int i = 0; i < num_locktrees; i++) {
+ int r = m_locktree_map.fetch(i, &locktrees[i]);
+ invariant_zero(r);
+ reference_lt(locktrees[i]);
+ }
+ mutex_unlock();
+
+ // escalate them
+ escalate_locktrees(locktrees, num_locktrees);
+
+ delete [] locktrees;
+
+ uint64_t t1 = toku_current_time_microsec();
+ add_escalator_wait_time(t1 - t0);
+}
+
+void locktree_manager::note_mem_used(uint64_t mem_used) {
+ (void) toku_sync_fetch_and_add(&m_current_lock_memory, mem_used);
+}
+
+void locktree_manager::note_mem_released(uint64_t mem_released) {
+ uint64_t old_mem_used = toku_sync_fetch_and_sub(&m_current_lock_memory, mem_released);
+ invariant(old_mem_used >= mem_released);
+}
+
+bool locktree_manager::out_of_locks(void) const {
+ return m_current_lock_memory >= m_max_lock_memory;
+}
+
+bool locktree_manager::over_big_threshold(void) {
+ return m_current_lock_memory >= m_max_lock_memory / 2;
+}
+
+int locktree_manager::iterate_pending_lock_requests(lock_request_iterate_callback callback,
+ void *extra) {
+ mutex_lock();
+ int r = 0;
+ size_t num_locktrees = m_locktree_map.size();
+ for (size_t i = 0; i < num_locktrees && r == 0; i++) {
+ locktree *lt;
+ r = m_locktree_map.fetch(i, &lt);
+ invariant_zero(r);
+
+ struct lt_lock_request_info *info = lt->get_lock_request_info();
+ toku_mutex_lock(&info->mutex);
+
+ size_t num_requests = info->pending_lock_requests.size();
+ for (size_t k = 0; k < num_requests && r == 0; k++) {
+ lock_request *req;
+ r = info->pending_lock_requests.fetch(k, &req);
+ invariant_zero(r);
+ r = callback(lt->get_dict_id(), req->get_txnid(),
+ req->get_left_key(), req->get_right_key(),
+ req->get_conflicting_txnid(), req->get_start_time(), extra);
+ }
+
+ toku_mutex_unlock(&info->mutex);
+ }
+ mutex_unlock();
+ return r;
+}
+
+int locktree_manager::check_current_lock_constraints(bool big_txn) {
+ int r = 0;
+ if (big_txn && over_big_threshold()) {
+ run_escalation();
+ if (over_big_threshold()) {
+ r = TOKUDB_OUT_OF_LOCKS;
+ }
+ }
+ if (r == 0 && out_of_locks()) {
+ run_escalation();
+ if (out_of_locks()) {
+ // return an error if we're still out of locks after escalation.
+ r = TOKUDB_OUT_OF_LOCKS;
+ }
+ }
+ return r;
+}
+
+void locktree_manager::escalator_init(void) {
+ ZERO_STRUCT(m_escalation_mutex);
+ toku_mutex_init(
+ *manager_escalation_mutex_key, &m_escalation_mutex, nullptr);
+ m_escalation_count = 0;
+ m_escalation_time = 0;
+ m_wait_escalation_count = 0;
+ m_wait_escalation_time = 0;
+ m_long_wait_escalation_count = 0;
+ m_long_wait_escalation_time = 0;
+ m_escalation_latest_result = 0;
+ m_escalator.create();
+}
+
+void locktree_manager::escalator_destroy(void) {
+ m_escalator.destroy();
+ toku_mutex_destroy(&m_escalation_mutex);
+}
+
+void locktree_manager::add_escalator_wait_time(uint64_t t) {
+ toku_mutex_lock(&m_escalation_mutex);
+ m_wait_escalation_count += 1;
+ m_wait_escalation_time += t;
+ if (t >= 1000000) {
+ m_long_wait_escalation_count += 1;
+ m_long_wait_escalation_time += t;
+ }
+ toku_mutex_unlock(&m_escalation_mutex);
+}
+
+void locktree_manager::escalate_locktrees(locktree **locktrees, int num_locktrees) {
+ // there are too many row locks in the system and we need to tidy up.
+ //
+ // a simple implementation of escalation does not attempt
+ // to reduce the memory foot print of each txn's range buffer.
+ // doing so would require some layering hackery (or a callback)
+ // and more complicated locking. for now, just escalate each
+ // locktree individually, in-place.
+ tokutime_t t0 = toku_time_now();
+ for (int i = 0; i < num_locktrees; i++) {
+ locktrees[i]->escalate(m_lt_escalate_callback, m_lt_escalate_callback_extra);
+ release_lt(locktrees[i]);
+ }
+ tokutime_t t1 = toku_time_now();
+
+ toku_mutex_lock(&m_escalation_mutex);
+ m_escalation_count++;
+ m_escalation_time += (t1 - t0);
+ m_escalation_latest_result = m_current_lock_memory;
+ toku_mutex_unlock(&m_escalation_mutex);
+}
+
+struct escalate_args {
+ locktree_manager *mgr;
+ locktree **locktrees;
+ int num_locktrees;
+};
+
+void locktree_manager::locktree_escalator::create(void) {
+ ZERO_STRUCT(m_escalator_mutex);
+ toku_mutex_init(*manager_escalator_mutex_key, &m_escalator_mutex, nullptr);
+ toku_cond_init(*manager_m_escalator_done_key, &m_escalator_done, nullptr);
+ m_escalator_running = false;
+}
+
+void locktree_manager::locktree_escalator::destroy(void) {
+ toku_cond_destroy(&m_escalator_done);
+ toku_mutex_destroy(&m_escalator_mutex);
+}
+
+void locktree_manager::locktree_escalator::run(locktree_manager *mgr, void (*escalate_locktrees_fun)(void *extra), void *extra) {
+ uint64_t t0 = toku_current_time_microsec();
+ toku_mutex_lock(&m_escalator_mutex);
+ if (!m_escalator_running) {
+ // run escalation on this thread
+ m_escalator_running = true;
+ toku_mutex_unlock(&m_escalator_mutex);
+ escalate_locktrees_fun(extra);
+ toku_mutex_lock(&m_escalator_mutex);
+ m_escalator_running = false;
+ toku_cond_broadcast(&m_escalator_done);
+ } else {
+ toku_cond_wait(&m_escalator_done, &m_escalator_mutex);
+ }
+ toku_mutex_unlock(&m_escalator_mutex);
+ uint64_t t1 = toku_current_time_microsec();
+ mgr->add_escalator_wait_time(t1 - t0);
+}
+
+void locktree_manager::get_status(LTM_STATUS statp) {
+ ltm_status.init();
+ LTM_STATUS_VAL(LTM_SIZE_CURRENT) = m_current_lock_memory;
+ LTM_STATUS_VAL(LTM_SIZE_LIMIT) = m_max_lock_memory;
+ LTM_STATUS_VAL(LTM_ESCALATION_COUNT) = m_escalation_count;
+ LTM_STATUS_VAL(LTM_ESCALATION_TIME) = m_escalation_time;
+ LTM_STATUS_VAL(LTM_ESCALATION_LATEST_RESULT) = m_escalation_latest_result;
+ LTM_STATUS_VAL(LTM_WAIT_ESCALATION_COUNT) = m_wait_escalation_count;
+ LTM_STATUS_VAL(LTM_WAIT_ESCALATION_TIME) = m_wait_escalation_time;
+ LTM_STATUS_VAL(LTM_LONG_WAIT_ESCALATION_COUNT) = m_long_wait_escalation_count;
+ LTM_STATUS_VAL(LTM_LONG_WAIT_ESCALATION_TIME) = m_long_wait_escalation_time;
+
+ uint64_t lock_requests_pending = 0;
+ uint64_t sto_num_eligible = 0;
+ uint64_t sto_end_early_count = 0;
+ tokutime_t sto_end_early_time = 0;
+ size_t num_locktrees = 0;
+ struct lt_counters lt_counters = {};
+
+ if (toku_mutex_trylock(&m_mutex) == 0) {
+ lt_counters = m_lt_counters;
+ num_locktrees = m_locktree_map.size();
+ for (size_t i = 0; i < num_locktrees; i++) {
+ locktree *lt;
+ int r = m_locktree_map.fetch(i, &lt);
+ invariant_zero(r);
+ if (toku_mutex_trylock(&lt->m_lock_request_info.mutex) == 0) {
+ lock_requests_pending += lt->m_lock_request_info.pending_lock_requests.size();
+ lt_counters.add(lt->get_lock_request_info()->counters);
+ toku_mutex_unlock(&lt->m_lock_request_info.mutex);
+ }
+ sto_num_eligible += lt->sto_txnid_is_valid_unsafe() ? 1 : 0;
+ sto_end_early_count += lt->m_sto_end_early_count;
+ sto_end_early_time += lt->m_sto_end_early_time;
+ }
+ mutex_unlock();
+ }
+
+ LTM_STATUS_VAL(LTM_NUM_LOCKTREES) = num_locktrees;
+ LTM_STATUS_VAL(LTM_LOCK_REQUESTS_PENDING) = lock_requests_pending;
+ LTM_STATUS_VAL(LTM_STO_NUM_ELIGIBLE) = sto_num_eligible;
+ LTM_STATUS_VAL(LTM_STO_END_EARLY_COUNT) = sto_end_early_count;
+ LTM_STATUS_VAL(LTM_STO_END_EARLY_TIME) = sto_end_early_time;
+ LTM_STATUS_VAL(LTM_WAIT_COUNT) = lt_counters.wait_count;
+ LTM_STATUS_VAL(LTM_WAIT_TIME) = lt_counters.wait_time;
+ LTM_STATUS_VAL(LTM_LONG_WAIT_COUNT) = lt_counters.long_wait_count;
+ LTM_STATUS_VAL(LTM_LONG_WAIT_TIME) = lt_counters.long_wait_time;
+ LTM_STATUS_VAL(LTM_TIMEOUT_COUNT) = lt_counters.timeout_count;
+ *statp = ltm_status;
+}
+
+void locktree_manager::kill_waiter(void *extra) {
+ mutex_lock();
+ int r = 0;
+ size_t num_locktrees = m_locktree_map.size();
+ for (size_t i = 0; i < num_locktrees; i++) {
+ locktree *lt;
+ r = m_locktree_map.fetch(i, &lt);
+ invariant_zero(r);
+ lock_request::kill_waiter(lt, extra);
+ }
+ mutex_unlock();
+}
+
+} /* namespace toku */