summaryrefslogtreecommitdiffstats
path: root/storage/tokudb/PerconaFT/locktree/manager.cc
blob: 5662150de4bdd9fbce5899ddedbdef53e6989457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

#include <stdlib.h>
#include <string.h>
#include <portability/toku_pthread.h>

#include "locktree.h"
#include "lock_request.h"

#include <util/status.h>

namespace toku {

void locktree_manager::create(lt_create_cb create_cb, lt_destroy_cb destroy_cb, lt_escalate_cb escalate_cb, void *escalate_extra) {
    m_max_lock_memory = DEFAULT_MAX_LOCK_MEMORY;
    m_current_lock_memory = 0;

    m_locktree_map.create();
    m_lt_create_callback = create_cb;
    m_lt_destroy_callback = destroy_cb;
    m_lt_escalate_callback = escalate_cb;
    m_lt_escalate_callback_extra = escalate_extra;
    ZERO_STRUCT(m_mutex);
    toku_mutex_init(*manager_mutex_key, &m_mutex, nullptr);

    ZERO_STRUCT(m_lt_counters);

    escalator_init();
}

void locktree_manager::destroy(void) {
    escalator_destroy();
    invariant(m_current_lock_memory == 0);
    invariant(m_locktree_map.size() == 0);
    m_locktree_map.destroy();
    toku_mutex_destroy(&m_mutex);
}

void locktree_manager::mutex_lock(void) {
    toku_mutex_lock(&m_mutex);
}

void locktree_manager::mutex_unlock(void) {
    toku_mutex_unlock(&m_mutex);
}

size_t locktree_manager::get_max_lock_memory(void) {
    return m_max_lock_memory;
}

int locktree_manager::set_max_lock_memory(size_t max_lock_memory) {
    int r = 0;
    mutex_lock();
    if (max_lock_memory < m_current_lock_memory) {
        r = EDOM;
    } else {
        m_max_lock_memory = max_lock_memory;
    }
    mutex_unlock();
    return r;
}

int locktree_manager::find_by_dict_id(locktree *const &lt, const DICTIONARY_ID &dict_id) {
    if (lt->get_dict_id().dictid < dict_id.dictid) {
        return -1;
    } else if (lt->get_dict_id().dictid == dict_id.dictid) {
        return 0;
    } else {
        return 1;
    }
}

locktree *locktree_manager::locktree_map_find(const DICTIONARY_ID &dict_id) {
    locktree *lt;
    int r = m_locktree_map.find_zero<DICTIONARY_ID, find_by_dict_id>(dict_id, &lt, nullptr);
    return r == 0 ? lt : nullptr;
}

void locktree_manager::locktree_map_put(locktree *lt) {
    int r = m_locktree_map.insert<DICTIONARY_ID, find_by_dict_id>(lt, lt->get_dict_id(), nullptr);
    invariant_zero(r);
}

void locktree_manager::locktree_map_remove(locktree *lt) {
    uint32_t idx;
    locktree *found_lt;
    int r = m_locktree_map.find_zero<DICTIONARY_ID, find_by_dict_id>(
            lt->get_dict_id(), &found_lt, &idx);
    invariant_zero(r);
    invariant(found_lt == lt);
    r = m_locktree_map.delete_at(idx);
    invariant_zero(r);
}

locktree *locktree_manager::get_lt(DICTIONARY_ID dict_id,
                                   const comparator &cmp, void *on_create_extra) {

    // hold the mutex around searching and maybe
    // inserting into the locktree map
    mutex_lock();

    locktree *lt = locktree_map_find(dict_id);
    if (lt == nullptr) {
        XCALLOC(lt);
        lt->create(this, dict_id, cmp);

        // new locktree created - call the on_create callback
        // and put it in the locktree map
        if (m_lt_create_callback) {
            int r = m_lt_create_callback(lt, on_create_extra);
            if (r != 0) {
                lt->release_reference();
                lt->destroy();
                toku_free(lt);
                lt = nullptr;
            }
        }
        if (lt) {
            locktree_map_put(lt);
        }
    } else {
        reference_lt(lt);
    }

    mutex_unlock();

    return lt;
}

void locktree_manager::reference_lt(locktree *lt) {
    // increment using a sync fetch and add.
    // the caller guarantees that the lt won't be
    // destroyed while we increment the count here.
    //
    // the caller can do this by already having an lt
    // reference or by holding the manager mutex.
    //
    // if the manager's mutex is held, it is ok for the
    // reference count to transition from 0 to 1 (no race),
    // since we're serialized with other opens and closes.
    lt->add_reference();
}

void locktree_manager::release_lt(locktree *lt) {
    bool do_destroy = false;
    DICTIONARY_ID dict_id = lt->get_dict_id();

    // Release a reference on the locktree. If the count transitions to zero,
    // then we *may* need to do the cleanup.
    //
    // Grab the manager's mutex and look for a locktree with this locktree's
    // dictionary id. Since dictionary id's never get reused, any locktree 
    // found must be the one we just released a reference on.
    //
    // At least two things could have happened since we got the mutex:
    // - Another thread gets a locktree with the same dict_id, increments
    // the reference count. In this case, we shouldn't destroy it.
    // - Another thread gets a locktree with the same dict_id and then
    // releases it quickly, transitioning the reference count from zero to
    // one and back to zero. In this case, only one of us should destroy it.
    // It doesn't matter which. We originally missed this case, see #5776.
    //
    // After 5776, the high level rule for release is described below.
    //
    // If a thread releases a locktree and notices the reference count transition
    // to zero, then that thread must immediately:
    // - assume the locktree object is invalid
    // - grab the manager's mutex
    // - search the locktree map for a locktree with the same dict_id and remove
    // it, if it exists. the destroy may be deferred.
    // - release the manager's mutex
    //
    // This way, if many threads transition the same locktree's reference count
    // from 1 to zero and wait behind the manager's mutex, only one of them will
    // do the actual destroy and the others will happily do nothing.
    uint32_t refs = lt->release_reference();
    if (refs == 0) {
        mutex_lock();
        // lt may not have already been destroyed, so look it up.
        locktree *find_lt = locktree_map_find(dict_id);
        if (find_lt != nullptr) {
            // A locktree is still in the map with that dict_id, so it must be
            // equal to lt. This is true because dictionary ids are never reused.
            // If the reference count is zero, it's our responsibility to remove
            // it and do the destroy. Otherwise, someone still wants it.
            // If the locktree is still valid then check if it should be deleted.
            if (find_lt == lt) {
                if (lt->get_reference_count() == 0) {
                    locktree_map_remove(lt);
                    do_destroy = true;
                }
                m_lt_counters.add(lt->get_lock_request_info()->counters);
            }
        }
        mutex_unlock();
    }

    // if necessary, do the destroy without holding the mutex
    if (do_destroy) {
        if (m_lt_destroy_callback) {
            m_lt_destroy_callback(lt);
        }
        lt->destroy();
        toku_free(lt);
    }
}

void locktree_manager::run_escalation(void) {
    struct escalation_fn {
        static void run(void *extra) {
            locktree_manager *mgr = (locktree_manager *) extra;
            mgr->escalate_all_locktrees();
        };
    };
    m_escalator.run(this, escalation_fn::run, this);
}

// test-only version of lock escalation
void locktree_manager::run_escalation_for_test(void) {
    run_escalation();
}

void locktree_manager::escalate_all_locktrees(void) {
    uint64_t t0 = toku_current_time_microsec();

    // get all locktrees
    mutex_lock();
    int num_locktrees = m_locktree_map.size();
    locktree **locktrees = new locktree *[num_locktrees];
    for (int i = 0; i < num_locktrees; i++) {
        int r = m_locktree_map.fetch(i, &locktrees[i]);
        invariant_zero(r);
        reference_lt(locktrees[i]);
    }
    mutex_unlock();
        
    // escalate them
    escalate_locktrees(locktrees, num_locktrees);

    delete [] locktrees;

    uint64_t t1 = toku_current_time_microsec();
    add_escalator_wait_time(t1 - t0);
}

void locktree_manager::note_mem_used(uint64_t mem_used) {
    (void) toku_sync_fetch_and_add(&m_current_lock_memory, mem_used);
}

void locktree_manager::note_mem_released(uint64_t mem_released) {
    uint64_t old_mem_used = toku_sync_fetch_and_sub(&m_current_lock_memory, mem_released);
    invariant(old_mem_used >= mem_released);
}

bool locktree_manager::out_of_locks(void) const {
    return m_current_lock_memory >= m_max_lock_memory;
}

bool locktree_manager::over_big_threshold(void) {
    return m_current_lock_memory >= m_max_lock_memory / 2;
}

int locktree_manager::iterate_pending_lock_requests(lock_request_iterate_callback callback,
                                                    void *extra) {
    mutex_lock();
    int r = 0;
    size_t num_locktrees = m_locktree_map.size();
    for (size_t i = 0; i < num_locktrees && r == 0; i++) {
        locktree *lt;
        r = m_locktree_map.fetch(i, &lt);
        invariant_zero(r);

        struct lt_lock_request_info *info = lt->get_lock_request_info();
        toku_mutex_lock(&info->mutex);

        size_t num_requests = info->pending_lock_requests.size();
        for (size_t k = 0; k < num_requests && r == 0; k++) {
            lock_request *req;
            r = info->pending_lock_requests.fetch(k, &req);
            invariant_zero(r);
            r = callback(lt->get_dict_id(), req->get_txnid(),
                         req->get_left_key(), req->get_right_key(),
                         req->get_conflicting_txnid(), req->get_start_time(), extra);
        }

        toku_mutex_unlock(&info->mutex);
    }
    mutex_unlock();
    return r;
}

int locktree_manager::check_current_lock_constraints(bool big_txn) {
    int r = 0;
    if (big_txn && over_big_threshold()) {
        run_escalation();
        if (over_big_threshold()) {
            r = TOKUDB_OUT_OF_LOCKS;
        }
    }
    if (r == 0 && out_of_locks()) {
        run_escalation();
        if (out_of_locks()) {
            // return an error if we're still out of locks after escalation.
            r = TOKUDB_OUT_OF_LOCKS;
        }
    }
    return r;
}

void locktree_manager::escalator_init(void) {
    ZERO_STRUCT(m_escalation_mutex);
    toku_mutex_init(
        *manager_escalation_mutex_key, &m_escalation_mutex, nullptr);
    m_escalation_count = 0;
    m_escalation_time = 0;
    m_wait_escalation_count = 0;
    m_wait_escalation_time = 0;
    m_long_wait_escalation_count = 0;
    m_long_wait_escalation_time = 0;
    m_escalation_latest_result = 0;
    m_escalator.create();
}

void locktree_manager::escalator_destroy(void) {
    m_escalator.destroy();
    toku_mutex_destroy(&m_escalation_mutex);
}

void locktree_manager::add_escalator_wait_time(uint64_t t) {
    toku_mutex_lock(&m_escalation_mutex);
    m_wait_escalation_count += 1;
    m_wait_escalation_time += t;
    if (t >= 1000000) {
        m_long_wait_escalation_count += 1;
        m_long_wait_escalation_time += t;
    }
    toku_mutex_unlock(&m_escalation_mutex);
}

void locktree_manager::escalate_locktrees(locktree **locktrees, int num_locktrees) {
    // there are too many row locks in the system and we need to tidy up.
    //
    // a simple implementation of escalation does not attempt
    // to reduce the memory foot print of each txn's range buffer.
    // doing so would require some layering hackery (or a callback)
    // and more complicated locking. for now, just escalate each
    // locktree individually, in-place.
    tokutime_t t0 = toku_time_now();
    for (int i = 0; i < num_locktrees; i++) {
        locktrees[i]->escalate(m_lt_escalate_callback, m_lt_escalate_callback_extra);
        release_lt(locktrees[i]);
    }
    tokutime_t t1 = toku_time_now();

    toku_mutex_lock(&m_escalation_mutex);
    m_escalation_count++;
    m_escalation_time += (t1 - t0);
    m_escalation_latest_result = m_current_lock_memory;
    toku_mutex_unlock(&m_escalation_mutex);
}

struct escalate_args {
    locktree_manager *mgr;
    locktree **locktrees;
    int num_locktrees;
};

void locktree_manager::locktree_escalator::create(void) {
    ZERO_STRUCT(m_escalator_mutex);
    toku_mutex_init(*manager_escalator_mutex_key, &m_escalator_mutex, nullptr);
    toku_cond_init(*manager_m_escalator_done_key, &m_escalator_done, nullptr);
    m_escalator_running = false;
}

void locktree_manager::locktree_escalator::destroy(void) {
    toku_cond_destroy(&m_escalator_done);
    toku_mutex_destroy(&m_escalator_mutex);
}

void locktree_manager::locktree_escalator::run(locktree_manager *mgr, void (*escalate_locktrees_fun)(void *extra), void *extra) {
    uint64_t t0 = toku_current_time_microsec();
    toku_mutex_lock(&m_escalator_mutex);
    if (!m_escalator_running) {
        // run escalation on this thread
        m_escalator_running = true;
        toku_mutex_unlock(&m_escalator_mutex);
        escalate_locktrees_fun(extra);
        toku_mutex_lock(&m_escalator_mutex);
        m_escalator_running = false;
        toku_cond_broadcast(&m_escalator_done);
    } else {
        toku_cond_wait(&m_escalator_done, &m_escalator_mutex);
    }
    toku_mutex_unlock(&m_escalator_mutex);
    uint64_t t1 = toku_current_time_microsec();
    mgr->add_escalator_wait_time(t1 - t0);
}

void locktree_manager::get_status(LTM_STATUS statp) {
    ltm_status.init();
    LTM_STATUS_VAL(LTM_SIZE_CURRENT) = m_current_lock_memory;
    LTM_STATUS_VAL(LTM_SIZE_LIMIT) = m_max_lock_memory;
    LTM_STATUS_VAL(LTM_ESCALATION_COUNT) = m_escalation_count;
    LTM_STATUS_VAL(LTM_ESCALATION_TIME) = m_escalation_time;
    LTM_STATUS_VAL(LTM_ESCALATION_LATEST_RESULT) = m_escalation_latest_result;
    LTM_STATUS_VAL(LTM_WAIT_ESCALATION_COUNT) = m_wait_escalation_count;
    LTM_STATUS_VAL(LTM_WAIT_ESCALATION_TIME) = m_wait_escalation_time;
    LTM_STATUS_VAL(LTM_LONG_WAIT_ESCALATION_COUNT) = m_long_wait_escalation_count;
    LTM_STATUS_VAL(LTM_LONG_WAIT_ESCALATION_TIME) = m_long_wait_escalation_time;    

    uint64_t lock_requests_pending = 0;
    uint64_t sto_num_eligible = 0;
    uint64_t sto_end_early_count = 0;
    tokutime_t sto_end_early_time = 0;
    size_t num_locktrees = 0;
    struct lt_counters lt_counters = {};

    if (toku_mutex_trylock(&m_mutex) == 0) {
        lt_counters = m_lt_counters;
        num_locktrees = m_locktree_map.size();
        for (size_t i = 0; i < num_locktrees; i++) {
            locktree *lt;
            int r = m_locktree_map.fetch(i, &lt);
            invariant_zero(r);
            if (toku_mutex_trylock(&lt->m_lock_request_info.mutex) == 0) {
                lock_requests_pending += lt->m_lock_request_info.pending_lock_requests.size();
                lt_counters.add(lt->get_lock_request_info()->counters);
                toku_mutex_unlock(&lt->m_lock_request_info.mutex);
            }
            sto_num_eligible += lt->sto_txnid_is_valid_unsafe() ? 1 : 0;
            sto_end_early_count += lt->m_sto_end_early_count;
            sto_end_early_time += lt->m_sto_end_early_time;
        }
        mutex_unlock();
    }

    LTM_STATUS_VAL(LTM_NUM_LOCKTREES) = num_locktrees;
    LTM_STATUS_VAL(LTM_LOCK_REQUESTS_PENDING) = lock_requests_pending;
    LTM_STATUS_VAL(LTM_STO_NUM_ELIGIBLE) = sto_num_eligible;
    LTM_STATUS_VAL(LTM_STO_END_EARLY_COUNT) = sto_end_early_count;
    LTM_STATUS_VAL(LTM_STO_END_EARLY_TIME) = sto_end_early_time;
    LTM_STATUS_VAL(LTM_WAIT_COUNT) = lt_counters.wait_count;
    LTM_STATUS_VAL(LTM_WAIT_TIME) = lt_counters.wait_time;
    LTM_STATUS_VAL(LTM_LONG_WAIT_COUNT) = lt_counters.long_wait_count;
    LTM_STATUS_VAL(LTM_LONG_WAIT_TIME) = lt_counters.long_wait_time;
    LTM_STATUS_VAL(LTM_TIMEOUT_COUNT) = lt_counters.timeout_count;
    *statp = ltm_status;
}

void locktree_manager::kill_waiter(void *extra) {
    mutex_lock();
    int r = 0;
    size_t num_locktrees = m_locktree_map.size();
    for (size_t i = 0; i < num_locktrees; i++) {
        locktree *lt;
        r = m_locktree_map.fetch(i, &lt);
        invariant_zero(r);
        lock_request::kill_waiter(lt, extra);
    }
    mutex_unlock();
}

} /* namespace toku */