diff options
Diffstat (limited to 'src/backend/tsearch/ts_typanalyze.c')
-rw-r--r-- | src/backend/tsearch/ts_typanalyze.c | 536 |
1 files changed, 536 insertions, 0 deletions
diff --git a/src/backend/tsearch/ts_typanalyze.c b/src/backend/tsearch/ts_typanalyze.c new file mode 100644 index 0000000..56eeb6f --- /dev/null +++ b/src/backend/tsearch/ts_typanalyze.c @@ -0,0 +1,536 @@ +/*------------------------------------------------------------------------- + * + * ts_typanalyze.c + * functions for gathering statistics from tsvector columns + * + * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group + * + * + * IDENTIFICATION + * src/backend/tsearch/ts_typanalyze.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "catalog/pg_collation.h" +#include "catalog/pg_operator.h" +#include "commands/vacuum.h" +#include "common/hashfn.h" +#include "tsearch/ts_type.h" +#include "utils/builtins.h" + + +/* A hash key for lexemes */ +typedef struct +{ + char *lexeme; /* lexeme (not NULL terminated!) */ + int length; /* its length in bytes */ +} LexemeHashKey; + +/* A hash table entry for the Lossy Counting algorithm */ +typedef struct +{ + LexemeHashKey key; /* This is 'e' from the LC algorithm. */ + int frequency; /* This is 'f'. */ + int delta; /* And this is 'delta'. */ +} TrackItem; + +static void compute_tsvector_stats(VacAttrStats *stats, + AnalyzeAttrFetchFunc fetchfunc, + int samplerows, + double totalrows); +static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current); +static uint32 lexeme_hash(const void *key, Size keysize); +static int lexeme_match(const void *key1, const void *key2, Size keysize); +static int lexeme_compare(const void *key1, const void *key2); +static int trackitem_compare_frequencies_desc(const void *e1, const void *e2, + void *arg); +static int trackitem_compare_lexemes(const void *e1, const void *e2, + void *arg); + + +/* + * ts_typanalyze -- a custom typanalyze function for tsvector columns + */ +Datum +ts_typanalyze(PG_FUNCTION_ARGS) +{ + VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); + Form_pg_attribute attr = stats->attr; + + /* If the attstattarget column is negative, use the default value */ + /* NB: it is okay to scribble on stats->attr since it's a copy */ + if (attr->attstattarget < 0) + attr->attstattarget = default_statistics_target; + + stats->compute_stats = compute_tsvector_stats; + /* see comment about the choice of minrows in commands/analyze.c */ + stats->minrows = 300 * attr->attstattarget; + + PG_RETURN_BOOL(true); +} + +/* + * compute_tsvector_stats() -- compute statistics for a tsvector column + * + * This functions computes statistics that are useful for determining @@ + * operations' selectivity, along with the fraction of non-null rows and + * average width. + * + * Instead of finding the most common values, as we do for most datatypes, + * we're looking for the most common lexemes. This is more useful, because + * there most probably won't be any two rows with the same tsvector and thus + * the notion of a MCV is a bit bogus with this datatype. With a list of the + * most common lexemes we can do a better job at figuring out @@ selectivity. + * + * For the same reasons we assume that tsvector columns are unique when + * determining the number of distinct values. + * + * The algorithm used is Lossy Counting, as proposed in the paper "Approximate + * frequency counts over data streams" by G. S. Manku and R. Motwani, in + * Proceedings of the 28th International Conference on Very Large Data Bases, + * Hong Kong, China, August 2002, section 4.2. The paper is available at + * http://www.vldb.org/conf/2002/S10P03.pdf + * + * The Lossy Counting (aka LC) algorithm goes like this: + * Let s be the threshold frequency for an item (the minimum frequency we + * are interested in) and epsilon the error margin for the frequency. Let D + * be a set of triples (e, f, delta), where e is an element value, f is that + * element's frequency (actually, its current occurrence count) and delta is + * the maximum error in f. We start with D empty and process the elements in + * batches of size w. (The batch size is also known as "bucket size" and is + * equal to 1/epsilon.) Let the current batch number be b_current, starting + * with 1. For each element e we either increment its f count, if it's + * already in D, or insert a new triple into D with values (e, 1, b_current + * - 1). After processing each batch we prune D, by removing from it all + * elements with f + delta <= b_current. After the algorithm finishes we + * suppress all elements from D that do not satisfy f >= (s - epsilon) * N, + * where N is the total number of elements in the input. We emit the + * remaining elements with estimated frequency f/N. The LC paper proves + * that this algorithm finds all elements with true frequency at least s, + * and that no frequency is overestimated or is underestimated by more than + * epsilon. Furthermore, given reasonable assumptions about the input + * distribution, the required table size is no more than about 7 times w. + * + * We set s to be the estimated frequency of the K'th word in a natural + * language's frequency table, where K is the target number of entries in + * the MCELEM array plus an arbitrary constant, meant to reflect the fact + * that the most common words in any language would usually be stopwords + * so we will not actually see them in the input. We assume that the + * distribution of word frequencies (including the stopwords) follows Zipf's + * law with an exponent of 1. + * + * Assuming Zipfian distribution, the frequency of the K'th word is equal + * to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of + * words in the language. Putting W as one million, we get roughly 0.07/K. + * Assuming top 10 words are stopwords gives s = 0.07/(K + 10). We set + * epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and + * maximum expected hashtable size of about 1000 * (K + 10). + * + * Note: in the above discussion, s, epsilon, and f/N are in terms of a + * lexeme's frequency as a fraction of all lexemes seen in the input. + * However, what we actually want to store in the finished pg_statistic + * entry is each lexeme's frequency as a fraction of all rows that it occurs + * in. Assuming that the input tsvectors are correctly constructed, no + * lexeme occurs more than once per tsvector, so the final count f is a + * correct estimate of the number of input tsvectors it occurs in, and we + * need only change the divisor from N to nonnull_cnt to get the number we + * want. + */ +static void +compute_tsvector_stats(VacAttrStats *stats, + AnalyzeAttrFetchFunc fetchfunc, + int samplerows, + double totalrows) +{ + int num_mcelem; + int null_cnt = 0; + double total_width = 0; + + /* This is D from the LC algorithm. */ + HTAB *lexemes_tab; + HASHCTL hash_ctl; + HASH_SEQ_STATUS scan_status; + + /* This is the current bucket number from the LC algorithm */ + int b_current; + + /* This is 'w' from the LC algorithm */ + int bucket_width; + int vector_no, + lexeme_no; + LexemeHashKey hash_key; + TrackItem *item; + + /* + * We want statistics_target * 10 lexemes in the MCELEM array. This + * multiplier is pretty arbitrary, but is meant to reflect the fact that + * the number of individual lexeme values tracked in pg_statistic ought to + * be more than the number of values for a simple scalar column. + */ + num_mcelem = stats->attr->attstattarget * 10; + + /* + * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the + * comment above. + */ + bucket_width = (num_mcelem + 10) * 1000 / 7; + + /* + * Create the hashtable. It will be in local memory, so we don't need to + * worry about overflowing the initial size. Also we don't need to pay any + * attention to locking and memory management. + */ + hash_ctl.keysize = sizeof(LexemeHashKey); + hash_ctl.entrysize = sizeof(TrackItem); + hash_ctl.hash = lexeme_hash; + hash_ctl.match = lexeme_match; + hash_ctl.hcxt = CurrentMemoryContext; + lexemes_tab = hash_create("Analyzed lexemes table", + num_mcelem, + &hash_ctl, + HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); + + /* Initialize counters. */ + b_current = 1; + lexeme_no = 0; + + /* Loop over the tsvectors. */ + for (vector_no = 0; vector_no < samplerows; vector_no++) + { + Datum value; + bool isnull; + TSVector vector; + WordEntry *curentryptr; + char *lexemesptr; + int j; + + vacuum_delay_point(); + + value = fetchfunc(stats, vector_no, &isnull); + + /* + * Check for null/nonnull. + */ + if (isnull) + { + null_cnt++; + continue; + } + + /* + * Add up widths for average-width calculation. Since it's a + * tsvector, we know it's varlena. As in the regular + * compute_minimal_stats function, we use the toasted width for this + * calculation. + */ + total_width += VARSIZE_ANY(DatumGetPointer(value)); + + /* + * Now detoast the tsvector if needed. + */ + vector = DatumGetTSVector(value); + + /* + * We loop through the lexemes in the tsvector and add them to our + * tracking hashtable. + */ + lexemesptr = STRPTR(vector); + curentryptr = ARRPTR(vector); + for (j = 0; j < vector->size; j++) + { + bool found; + + /* + * Construct a hash key. The key points into the (detoasted) + * tsvector value at this point, but if a new entry is created, we + * make a copy of it. This way we can free the tsvector value + * once we've processed all its lexemes. + */ + hash_key.lexeme = lexemesptr + curentryptr->pos; + hash_key.length = curentryptr->len; + + /* Lookup current lexeme in hashtable, adding it if new */ + item = (TrackItem *) hash_search(lexemes_tab, + (const void *) &hash_key, + HASH_ENTER, &found); + + if (found) + { + /* The lexeme is already on the tracking list */ + item->frequency++; + } + else + { + /* Initialize new tracking list element */ + item->frequency = 1; + item->delta = b_current - 1; + + item->key.lexeme = palloc(hash_key.length); + memcpy(item->key.lexeme, hash_key.lexeme, hash_key.length); + } + + /* lexeme_no is the number of elements processed (ie N) */ + lexeme_no++; + + /* We prune the D structure after processing each bucket */ + if (lexeme_no % bucket_width == 0) + { + prune_lexemes_hashtable(lexemes_tab, b_current); + b_current++; + } + + /* Advance to the next WordEntry in the tsvector */ + curentryptr++; + } + + /* If the vector was toasted, free the detoasted copy. */ + if (TSVectorGetDatum(vector) != value) + pfree(vector); + } + + /* We can only compute real stats if we found some non-null values. */ + if (null_cnt < samplerows) + { + int nonnull_cnt = samplerows - null_cnt; + int i; + TrackItem **sort_table; + int track_len; + int cutoff_freq; + int minfreq, + maxfreq; + + stats->stats_valid = true; + /* Do the simple null-frac and average width stats */ + stats->stanullfrac = (double) null_cnt / (double) samplerows; + stats->stawidth = total_width / (double) nonnull_cnt; + + /* Assume it's a unique column (see notes above) */ + stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac); + + /* + * Construct an array of the interesting hashtable items, that is, + * those meeting the cutoff frequency (s - epsilon)*N. Also identify + * the minimum and maximum frequencies among these items. + * + * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff + * frequency is 9*N / bucket_width. + */ + cutoff_freq = 9 * lexeme_no / bucket_width; + + i = hash_get_num_entries(lexemes_tab); /* surely enough space */ + sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i); + + hash_seq_init(&scan_status, lexemes_tab); + track_len = 0; + minfreq = lexeme_no; + maxfreq = 0; + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency > cutoff_freq) + { + sort_table[track_len++] = item; + minfreq = Min(minfreq, item->frequency); + maxfreq = Max(maxfreq, item->frequency); + } + } + Assert(track_len <= i); + + /* emit some statistics for debug purposes */ + elog(DEBUG3, "tsvector_stats: target # mces = %d, bucket width = %d, " + "# lexemes = %d, hashtable size = %d, usable entries = %d", + num_mcelem, bucket_width, lexeme_no, i, track_len); + + /* + * If we obtained more lexemes than we really want, get rid of those + * with least frequencies. The easiest way is to qsort the array into + * descending frequency order and truncate the array. + */ + if (num_mcelem < track_len) + { + qsort_interruptible(sort_table, track_len, sizeof(TrackItem *), + trackitem_compare_frequencies_desc, NULL); + /* reset minfreq to the smallest frequency we're keeping */ + minfreq = sort_table[num_mcelem - 1]->frequency; + } + else + num_mcelem = track_len; + + /* Generate MCELEM slot entry */ + if (num_mcelem > 0) + { + MemoryContext old_context; + Datum *mcelem_values; + float4 *mcelem_freqs; + + /* + * We want to store statistics sorted on the lexeme value using + * first length, then byte-for-byte comparison. The reason for + * doing length comparison first is that we don't care about the + * ordering so long as it's consistent, and comparing lengths + * first gives us a chance to avoid a strncmp() call. + * + * This is different from what we do with scalar statistics -- + * they get sorted on frequencies. The rationale is that we + * usually search through most common elements looking for a + * specific value, so we can grab its frequency. When values are + * presorted we can employ binary search for that. See + * ts_selfuncs.c for a real usage scenario. + */ + qsort_interruptible(sort_table, num_mcelem, sizeof(TrackItem *), + trackitem_compare_lexemes, NULL); + + /* Must copy the target values into anl_context */ + old_context = MemoryContextSwitchTo(stats->anl_context); + + /* + * We sorted statistics on the lexeme value, but we want to be + * able to find out the minimal and maximal frequency without + * going through all the values. We keep those two extra + * frequencies in two extra cells in mcelem_freqs. + * + * (Note: the MCELEM statistics slot definition allows for a third + * extra number containing the frequency of nulls, but we don't + * create that for a tsvector column, since null elements aren't + * possible.) + */ + mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum)); + mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4)); + + /* + * See comments above about use of nonnull_cnt as the divisor for + * the final frequency estimates. + */ + for (i = 0; i < num_mcelem; i++) + { + TrackItem *item = sort_table[i]; + + mcelem_values[i] = + PointerGetDatum(cstring_to_text_with_len(item->key.lexeme, + item->key.length)); + mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt; + } + mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt; + mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt; + MemoryContextSwitchTo(old_context); + + stats->stakind[0] = STATISTIC_KIND_MCELEM; + stats->staop[0] = TextEqualOperator; + stats->stacoll[0] = DEFAULT_COLLATION_OID; + stats->stanumbers[0] = mcelem_freqs; + /* See above comment about two extra frequency fields */ + stats->numnumbers[0] = num_mcelem + 2; + stats->stavalues[0] = mcelem_values; + stats->numvalues[0] = num_mcelem; + /* We are storing text values */ + stats->statypid[0] = TEXTOID; + stats->statyplen[0] = -1; /* typlen, -1 for varlena */ + stats->statypbyval[0] = false; + stats->statypalign[0] = 'i'; + } + } + else + { + /* We found only nulls; assume the column is entirely null */ + stats->stats_valid = true; + stats->stanullfrac = 1.0; + stats->stawidth = 0; /* "unknown" */ + stats->stadistinct = 0.0; /* "unknown" */ + } + + /* + * We don't need to bother cleaning up any of our temporary palloc's. The + * hashtable should also go away, as it used a child memory context. + */ +} + +/* + * A function to prune the D structure from the Lossy Counting algorithm. + * Consult compute_tsvector_stats() for wider explanation. + */ +static void +prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current) +{ + HASH_SEQ_STATUS scan_status; + TrackItem *item; + + hash_seq_init(&scan_status, lexemes_tab); + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency + item->delta <= b_current) + { + char *lexeme = item->key.lexeme; + + if (hash_search(lexemes_tab, (const void *) &item->key, + HASH_REMOVE, NULL) == NULL) + elog(ERROR, "hash table corrupted"); + pfree(lexeme); + } + } +} + +/* + * Hash functions for lexemes. They are strings, but not NULL terminated, + * so we need a special hash function. + */ +static uint32 +lexeme_hash(const void *key, Size keysize) +{ + const LexemeHashKey *l = (const LexemeHashKey *) key; + + return DatumGetUInt32(hash_any((const unsigned char *) l->lexeme, + l->length)); +} + +/* + * Matching function for lexemes, to be used in hashtable lookups. + */ +static int +lexeme_match(const void *key1, const void *key2, Size keysize) +{ + /* The keysize parameter is superfluous, the keys store their lengths */ + return lexeme_compare(key1, key2); +} + +/* + * Comparison function for lexemes. + */ +static int +lexeme_compare(const void *key1, const void *key2) +{ + const LexemeHashKey *d1 = (const LexemeHashKey *) key1; + const LexemeHashKey *d2 = (const LexemeHashKey *) key2; + + /* First, compare by length */ + if (d1->length > d2->length) + return 1; + else if (d1->length < d2->length) + return -1; + /* Lengths are equal, do a byte-by-byte comparison */ + return strncmp(d1->lexeme, d2->lexeme, d1->length); +} + +/* + * Comparator for sorting TrackItems on frequencies (descending sort) + */ +static int +trackitem_compare_frequencies_desc(const void *e1, const void *e2, void *arg) +{ + const TrackItem *const *t1 = (const TrackItem *const *) e1; + const TrackItem *const *t2 = (const TrackItem *const *) e2; + + return (*t2)->frequency - (*t1)->frequency; +} + +/* + * Comparator for sorting TrackItems on lexemes + */ +static int +trackitem_compare_lexemes(const void *e1, const void *e2, void *arg) +{ + const TrackItem *const *t1 = (const TrackItem *const *) e1; + const TrackItem *const *t2 = (const TrackItem *const *) e2; + + return lexeme_compare(&(*t1)->key, &(*t2)->key); +} |